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Abstract: Press-hardening, also known as hot stamping, is a manufacturing process for producing car
body parts that must meet the high demands of their mechanical properties and safety parameters.
Moreover, these components often require different mechanical properties in different parts of the
component. This work presents the press-hardening process in a special combined tool where one
half of the tool is heated and the other half is cooled. The cooled part has been 3D printed due to
the complexity of the internal cooling channels. The aim of this work is to investigate the variation
of the microstructures in the sheet metal and the mechanical properties in relation to the cooling
process in the tool and to determine the transition area where these properties cross over. Two
steels were chosen for the experiment. The most commonly used steel 22MnB5, and an experimental
high-strength steel with 0.2% C alloyed with manganese and aluminium. A temperature of 425 ◦C
was set in the heated part of the tool, and different holding times in the tool were tested. In the heated
part of the tool, a bainitic structure with a fraction of ferrite and retained austenite was formed, while
in the quenched part of the tool, a martensitic transformation was promoted due to rapid cooling. In
addition to microscopic analyses, mechanical tests and hardness measurements were also performed.

Keywords: press-hardening; hot stamping; high-strength steel; multiphase structure

1. Introduction

The use of ultrahigh-strength steels (UHSS) is still rapidly increasing in the automotive
industry. This is mainly because of the improvement in the results obtained for the material
from crash safety tests. It is related to the increase in mechanical properties and the
reduction of vehicle weight. UHSS are used in the hot stamping process for parts such
as side impact reinforcement beams, A-pillars, B-pillars, and bumpers [1,2]. The entire
automotive industry is trying to achieve as much sustainability as possible. A good
example is the large expansion of electric car production in order to reduce CO2 emissions.
Reducing the weight of vehicle parts can lead directly to a reduction in fuel consumption,
and therefore to a reduction in the quantity of exhaust gases produced from internal
combustion and diesel engines, and in the case of electric cars to a reduction in electricity
consumption [3,4]. New car models are at least 20% lighter than old models [1,5]. The
highest use of hot-formed steels is in the Volvo XC (2nd generation since 2014) where 38%
of the body mass of all the steels used are hot formed [1]. The hot stamping process enables
the production of these lighter parts with excellent ultimate tensile strength (UTS), up
to around 1500 MPa [6]. Press hardening was initially developed for boron steels. The
best-known representative is 22MnB5 steel which can produce a martensitic microstructure
that is important for enhancing the side crash performance in B-pillar parts [7,8]. With
22MnB5 steel, it is necessary to reach a cooling rate of at least 27 ◦C/s, as shown in Figure 1,
(possibly up to 30 ◦C/s) to gain martensitic microstructures [3,9–11].
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Figure 1. (a) Mechanical properties of 22MnB5 and (b) CCT diagram [3]. 
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partially heated and partially cooled). The first option for manufacturing a combined tool 
is to drill in multiple directions to create cooling channels in the tool then plugging some 
of the holes. A drilled tool for aluminium sheet processing was prepared by Meza-García 
et al. [14]. Hoffmann et al. also used drilling to create cooling channels and optimized 
them. The diameters of the holes ranged from 8 to 16 mm [15]. Schieck et al. evaluated the 
advantages and disadvantages of drilled cooling channels, shell design, and cast-in cool-
ing channels. For example, drilled tools have a good cooling ability, but more complex 
geometries cannot be produced. Cast-in cooling channels are cost-effective to make, suit-
able for complicated shapes, and there are no sealing issues as in the case of drilled tools. 
On the other hand, they have to be made of cast iron, are difficult to repair if broken, and 
have a lower cooling capacity [16]. 

After considering the advantages and disadvantages, it was decided to use the most 
modern variant of additive manufacturing, direct metal laser sintering (DMLS), which has 
almost no limits in terms of cooling channel design. Moreover, we decided to produce a 
half-heated and half-cooled tool, i.e., a combined tool suitable for the production of tai-
lored sheets. In the tailored tempering process (TTP) of 22MnB5, or tailored hot stamping 
(THS), different distributions of mechanical properties in the same component can be 
achieved [17]. Conventional hot stamping requires the blank to be heated up to the aus-
tenitizing temperature and transferred to a cooled stamping die for forming and quench-
ing. There are two types of phase transformation, austenitisation and cooling transfor-
mations of austenite, which occur during the stamping procedure. Tailored partial cooling 
and partial heating process variants are designed according to this special feature of hot 
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sights into the field of hot stamping, both in terms of determining the optimal setup of the 
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method. 
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Hot stamping has a number of advantages over conventional stamping at room tem-
perature. The main advantages are the need for lower forming forces, a decrease in spring
back, and simultaneous control of complex microstructures during thermomechanical
processing. This means it is possible to vary mechanical properties and combinations
using a single blank. These hot-stamped parts with tailored properties can avoid particular
problems, such as two different materials being welded together, the presence of a weld,
and heat-affected zones (HAZ), and during crash test conditions when using a material
with local soft areas. Moreover, complex geometries with different thicknesses and strength
levels can be manufactured by using tailored blanks in hot stamping [12,13]. Several articles
have been written that discuss different ways of making combined tools (i.e., partially
heated and partially cooled). The first option for manufacturing a combined tool is to drill
in multiple directions to create cooling channels in the tool then plugging some of the holes.
A drilled tool for aluminium sheet processing was prepared by Meza-García et al. [14].
Hoffmann et al. also used drilling to create cooling channels and optimized them. The
diameters of the holes ranged from 8 to 16 mm [15]. Schieck et al. evaluated the advantages
and disadvantages of drilled cooling channels, shell design, and cast-in cooling channels.
For example, drilled tools have a good cooling ability, but more complex geometries cannot
be produced. Cast-in cooling channels are cost-effective to make, suitable for complicated
shapes, and there are no sealing issues as in the case of drilled tools. On the other hand,
they have to be made of cast iron, are difficult to repair if broken, and have a lower cooling
capacity [16].

After considering the advantages and disadvantages, it was decided to use the most
modern variant of additive manufacturing, direct metal laser sintering (DMLS), which has
almost no limits in terms of cooling channel design. Moreover, we decided to produce a
half-heated and half-cooled tool, i.e., a combined tool suitable for the production of tailored
sheets. In the tailored tempering process (TTP) of 22MnB5, or tailored hot stamping (THS),
different distributions of mechanical properties in the same component can be achieved [17].
Conventional hot stamping requires the blank to be heated up to the austenitizing tempera-
ture and transferred to a cooled stamping die for forming and quenching. There are two
types of phase transformation, austenitisation and cooling transformations of austenite,
which occur during the stamping procedure. Tailored partial cooling and partial heating
process variants are designed according to this special feature of hot stamping to obtain
parts with tailored properties [18].

The production of a combined tool for experimental purposes can provide new in-
sights into the field of hot stamping, both in terms of determining the optimal setup of the
process parameters and in terms of using new materials suitable for this processing method.

2. Experimental Programme
2.1. Materials

Two materials were used for the experiment. The first material was 22MnB5 steel
with a thickness of 1.5 mm and the chemical composition shown in Table 1, which was
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used to verify the functionality of the tool and also as a standard to compare the results
with other materials that will be processed in the future. The second material was a
sheet of 20MnAl experimental steel with a thickness of 1.7 mm for hot stamping, which is
expected to produce tailored properties and in addition, could take advantage of complex
multi-phase microstructures. The chemical composition of the ingot is shown in Table 1.
Since this is experimental steel without a standardized marking, the marking for this
steel was created based on its chemical composition, with the marking similar to the
22MnB5 steel. The ingot was forged, hot rolled, annealed, machined, and cold rolled to
a final thickness of 1.8 ± 0.05 mm. This indicates that the sheets had to be ground to a
thickness of 1.7 mm before use. For the experiment, 240 mm × 210 mm specimens were
prepared from sheet metal.

Table 1. Chemical composition of the materials (wt. %).

Material C Si Mn P S Al Ti Cr B Nb

22MnB5 0.25 0.4 1.35 0.023 0.01 0.08 0.03 0.25 0.004 -

20MnAl 0.2 0.51 1.75 0.007 0.001 1.39 - 0.19 - 0.056

2.2. Combined Tool

A combined hot stamping tool was used for the experiment. Figure 2 shows the CAD
model of the tool. The heated part has holes for HPCH (i.e., high power cartridge heater)
stainless steel heating cartridges with a diameter of 20 mm and a length of 125 mm, capable
of reaching temperatures of up to 750 ◦C. The upper part has three cartridges and the
lower has four cartridges. All the cartridges are connected to a heating source with PID
controllers. Figure 3 shows the detail of the cooled part of the tool with the cut view of
the cooling channels inside. The tool was printed from MS1 material on the EOS M290 3D
printer which works on the principle of DMLS (direct metal laser sintering). The models
underwent topological optimization to save material. Heat treatment in a protective argon
atmosphere was carried out after printing to reduce internal stresses. It consisted of heating
to 820 ◦C with a dwell time of one hour and aging at 490 ◦C for six hours [19]. Hoses with
threaded brass hose tails were connected to the cooled part. The cooling medium was water
which flowed through distribution blocks made of aluminium alloy, one with 14 inputs
of water and the other with 14 outputs. Between the heated and cooled parts there were
insulating plates made of laminate material PAMITHERM 41,130 with a thickness of 5 mm.
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Figure 3. Cut view of the cooling channels in the female part of the tool.

There were 12 holes in the heated part for mounting K-type insulated thermocouples
with a diameter of 1.5 mm which controlled the temperature during the hot stamping
process. One thermocouple from both heated parts was connected to a heating source with
PID controllers which then regulated the set temperature of the heating cartridges. The
other 10 thermocouples were connected to the data logger, which captured temperatures
from various locations in the tool during the hot stamping process. Figure 4 shows the set-
up of the workplace with the combined tool placed in a CKW 6000 hydraulic forging press.
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2.3. Different Heat Treatment Parameters

A laboratory electric chamber resistance furnace LAC LH 30/13 was used to heat the
sheets. Austenitisation was carried out at 950 ◦C. A soaking time of 15 min was chosen.
This may seem excessive if we consider the results of [20], where minimum times are
defined for given thicknesses of 22MnB5 sheets so that a hardness of 470 HV10 is achieved
after quenching in the tool. For a thickness of 1.5 mm, 2.75 min is given in the paper.
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For a thickness of 1.75 mm at 950 ◦C it is 3 min. The longer time in our experiment was
chosen based on previous experience with austenitizing times in this furnace for sheets with
smaller dimensions for forming with a smaller hot stamping tool. The choice for the heated
parts of the tool was based on the fact that the temperature of 425 ◦C is also above the Ms
temperature for 22MnB5 [9]. Min et al. reported a Ms value of 411 ◦C [21]. In addition,
using JMatPro software (version 12.1), the temperatures of Ms and A3 were calculated
to be 369.5 ◦C and 813.9 ◦C, respectively. For the 20MnAl material, the Ms temperature
was 428.3 ◦C and the A3 temperature was 993.1 ◦C. These parameters were kept for both
experimental materials in order to compare the properties of the materials. The cooled part
had a temperature of approximately 20 ◦C, where the cooling is controlled by the water
flow rate. The selected dwell times of the sheet in the tool were graded as follows: 10 s; then
subsequent steps with a dwell time progressively increasing by 1 min, i.e., 70; 140; 210 s;
with the final time of 900 s (15 min). The summary data of the experimental parameters are
shown in Table 2. Figure 5 shows the processed sheet with the cooling curves for the parts.

Table 2. Parameters of experimental programme.

Material Furnace Temperature (◦C) Soaking Time (min)
Tool Parts (◦C)

Time in the Tool (s)
Heated Cooled

22MnB5 950 15 c. 425 c. 20 10; 70; 140; 210; 900

20MnAl 950 15 c. 425 c. 20 10; 70; 140; 210; 900
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The transfer between the furnace and the tool took approximately 5 s, the tool closing
took 2 s. The press speed was 100 mm/s. After the specified time in the tool, the sheet was
removed and further cooled freely in air.

2.4. Equipment Used for Evaluation

The sampling for metallography was always carried out from three locations on the
sheet: cooled (C), transition area (T), and heated (H). The samples were cut with a water jet
to avoid creating a thermally affected area. The samples for the mini tensile test were then
taken by electro-erosive machining and ground to the required thickness, i.e., 1.2 mm. In
all cases, the samples were taken from the cooled and heated parts.

Preparation of the samples for metallography consisted of grinding on sandpaper
with grits ranging from 240 to 1200. This was followed by polishing on diamond slurry
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screens with grits of 3 and 1 µm. The etching was carried out in a Nital etchant (3%).
The samples were observed on an Olympus light microscope (Tokyo, Japan). Scanning
electron microscopy (SEM) Tescan VEGA 3 (Brno, Czech Republic) for 22MnB5 material
and Zeiss Crossbeam 340-47-44 (Oberkochen, Germany) for 20MnAl material were used for
detailed microstructure analysis. For verification of the amount of retained austenite, XRD
measurements were taken in a Panalytical X’Pert PRO diffractometer with Co Kα radiation
(0.1789 nm) and an X’celerator detector (Malvern, UK). The patterns were collected in
the range of 30–130 degrees, with a step of 0.05 deg. They were subsequently processed
by X’Pert HighScore Plus using PDF4 database software to perform phase identification.
Finally, Rietveld refinements were performed employing TOPAS V3 software to determine
the quantification of phase composition. In addition, Vickers hardness measurements
(LECO Instrumente Plzeň, spol. s r. o., Pilsen, Czech Republic) were performed with a
load of 10 kg. In the transition region, the hardness profile was measured for the 20MnAl
material with a load of 1 kg and an indentation spacing of 0.3 mm over a total path length
of 12 mm for the limiting times (10 and 900 s).

The tensile test was performed according to ČSN EN ISO 6892-1 method A on a
ZWICK Roel Z250 machine (Ulm, Germany) on mini tensile specimens with an active
length of 5 mm and a cross-section of 2 mm × 1.2 mm. The values given are the average of
two tensile tests.

3. Results

It is visible in the light microscopy photos that the different tool dwell times affected
the resulting structure. Figure 6 shows the images of 22MnB5 for each region of the omega
profile. Images were selected for the limiting dwell times (i.e., 10 s and 900 s) and 140 s. In
the cooled part of the tool, the microstructure was predominantly martensite in the case
of the shortest dwell time of 10 s (Figure 6a) or martensitic–bainitic with a proportion of
bainite increasing with increasing dwell time (Figure 6d,g). In the transition area between
the cooled and heated parts of the tool, the microstructure changed. For the shorter dwell
times in the tool in Figure 6b,e, the structure was mainly composed of lamellar bainite
and a small proportion of martensite. At the longest dwell time (i.e., 900 s), pearlite was
detected in the structure in addition to bainite. In the part of the tool heated to 425 ◦C,
the influence of a different cooling rate profile compared to the cooled part was evident.
Due to the cooling stopping at 425 ◦C, which is above the Ms temperature for this steel,
only a small amount of fine martensite was formed after removing the sheet from the tool.
In the case of the shortest tool dwell time of 10 s, the structure was mainly composed of
pearlite and ferrite, as well as in the longest dwell time of 900 s (Figure 6c,i). A different
character of the structure was obtained for tool dwell times of 70, 140, and 210 s, where a
multiphase structure consisting of ferrite, bainite, and pearlite was obtained. The presence
of large coarse blocks of lamellar bainite at the dwell time of 140 s was due to the suitable
dwell time for its formation (Figure 6f). In addition, areas of pearlite and martensite are
not visible. The results of XRD measurements of retained austenite showed in all cases a
result below the detection limit of the method, the only exception was sample 10s_H where
a value of 5 ± 1 wt. % was measured.

For a more detailed analysis, the microstructures were also documented on a Tescan
VEGA 3 scanning electron microscope (Figure 7). For the SEM images of 22MnB5 steel,
only samples with tool dwell times of 10 and 70 s were selected because these times should
be sufficient to achieve martensite in the structure. It is clear from the microstructure
images that at a tool dwell time of 10 s in the cooled part, the structure was predominantly
martensite, while at the same time, significant precipitation of very fine particles can be
seen following the martensitic needles (Figure 7a). The presence of lamellar pearlite was
confirmed in the heated part (Figure 7b). During processing with a tool dwell time of
70 s, a martensitic structure was observed in the cooled part of the tool with a proportion
of lower bainite and precipitations along the boundaries and within the martensitic and
bainitic formations (Figure 7c). In the heated part, rather coarser lower-bainite blocks were
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observed with significant precipitation along the bainitic ferrite laths, occasional ferritic
grains, and rather rare small pearlitic islands (Figure 7d).
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Two samples per area were also taken from the cooled and heated areas of the omega
profiles for mini tensile tests, shown in Figure 8. The resulting values are shown in Figure 9.
We can observe a trend of high ultimate tensile strength (Rm) for the cooled section with a
lower ductility value (A5). On the other hand, for the heated part, the ductility is higher
and the ultimate tensile strength is lower. The measured values of Rm are consistent with
the findings of other papers, however, the values of ductility are noticeably higher. This is
due to the size of the specimens used for the tensile test. A similar issue of affected ductility
in terms of geometry was reported by Jirková et al. [22] and Opatová et al. [23]. The results
are then only comparable mainly between each other, or with specimens with a similar
length for the active part.

The results show that in the cooled part of the tool an ultimate tensile strength limit of
over 1300 MPa was achieved for all processing parameters. To achieve a higher ultimate
tensile strength limit of 800 MPa in the heated part, it was necessary to attain a bainitic
structure. This was observed mainly for dwell times from 70 to 210 s. When a ferritic-
pearlitic structure was obtained, the ultimate tensile strength limit dropped to values
around 680 MPa (10 and 900 s dwell time). Cooling in the heated part of the tool had
an influence on the ductility value. The slower cooling rate, the dwell at 425 ◦C, and the
absence of martensite in the structure led to an increase in ductility to values between
23 and 28.6%.
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Table 3 shows the HV10 hardness values with standard deviation. In 22MnB5 there was
a decrease in hardness from the cooled part to the heated part. At 10 s dwell, 469 ± 7 HV10
was achieved in the cooled part, 254 ± 2 HV10 in the transition area, and 216 ± 4 HV10 in
the heated part.
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Figure 9. Mechanical properties of 22MnB5 steel (cooled (C) and heated (H) part).

Table 3. Hardness of 22MnB5 steel in different parts of the sheet.

Material Sample HV10 Sample HV10 Sample HV10 Sample HV10 Sample HV10

22MnB5

10s_C 469 ± 7 70s_C 386 ± 6 140s_C 420 ± 3 210s_C 481 ± 7 900s_C 453 ± 1

10s_T 254 ± 2 70s_T 357 ± 12 140s_T 342 ± 8 210s_T 279 ± 2 900s_T 245 ± 2

10s_H 216 ± 4 70s_H 255 ± 2 140s_H 259 ± 4 210s_H 265 ± 5 900s_H 219 ± 2

For 20MnAl steel, the structure in the cooled part of the tool was a combination of
proeutectoid ferrite, martensite, and a small proportion of retained austenite or so-called
M-A constituent, i.e., partially transformed islands of residual austenite to martensite
(Figure 10a,d,g). A small amount of bainite was also detected in the structure. Retained
austenite was present along the margins of the martensitic islands in M-A constituents as
well as between the bainitic ferrite lamellae. The bainite was carbide-free in all samples
of 20MnAl steel, consisting of a mixture of bainitic ferrite laths and retained austenite (or
M-A constituents) laths or islands. This morphology of bainite is typical for advanced high
strength low alloyed steels with chemical compositions similar to 20MnAl steel [24]. A
significant decrease in the proportion of martensite was found in the transition area of the
tool for all analysed samples. However, increasing ferrite phase fraction and ferrite grain
coarsening were observed with increasing dwell time as is apparent from the comparison
of Figure 10b,h. When the forming was carried out in the heated part of the tool with
a dwell time of 10 s, the structure consisted of proeutectoid ferrite, bainite, and a large
proportion of the so-called M-A constituent, i.e., partially transformed islands of residual
austenite to martensite. At longer dwell times of 70 and 140 s, the austenitic islands were
more stabilized and less transformed to martensite during the final cooling after removal
of the profile from the tool, and the proportion of martensite decreased. This was reflected
by the results of the retained austenite quantification by XRD measurements of the heated
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parts. While the amount of austenite in sample 10s_C was below detection limit of the
method, 9 ± 2 wt. % of retained austenite were found in 210s_C sample, and 8 ± 2 wt. %.
in 900s_C. At the longest tool dwell time of 900 s, large grains of M-A constituent partially
transformed to martensite were detected in the structure.
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The morphology of martensite and bainite was observed on a Zeiss Crossbeam 340-47-44
scanning electron microscope (Figure 11). Figure 11a shows the detail of a martensitic islands
surrounded by ferritic grains. A very similar character of the microstructure was confirmed
in the heated part as well (Figure 11b), even though the martensitic (or M-A constituent)
islands in Figure 11b look much smoother than in Figure 11a and only groups of fine
dimples are suggesting the occurrence of the martensite. The identification of the islands
as martensitic is further supported by the results of XRD phase diffraction analysis which
did not detect a significant amount of retained austenite in this microstructure, and also
the hardness values were similar to those of the cooled part. With a dwell time of 900 s,
untransformed islands of residual austenite were detected in the structure (Figure 11c,d) as
well as islands of partially transformed M-A constituent (Figure 11c).

The results from the mini tensile strength tests of 20MnAl steel (Figure 12) correspond
to the microstructures. For the shortest tool dwell time of 10 s, very similar values of
ultimate strength of about 980 MPa and ductility in the range of 26 to 28% were obtained.
These results show that the cooling rate, which varied in the different parts of the tool,
did not have a significant effect on the evolution of the structure and, due to the short
dwell time, there was no stabilization of the residual austenite in the heated part of the
tool, which transformed to martensite during cooling in the air after removal from the tool.
The effect of the cooling rate in the intercritical region was also not demonstrated in the
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paper by Kučerová et al. [24]. The same character of the microstructure was confirmed by
metallographic analysis and hardness values, which ranged from 243 to 248 HV10.
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Figure 12. Mechanical properties for 20MnAl steel (cooled (C) and heated (H) part).
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In the case of longer tool dwell times (70 s and more) and therefore longer isothermal
dwell times in the heated part of the tool, a significant difference in mechanical properties
between the cooled and heated parts was observed. In the cooled parts, an ultimate tensile
strength limit of around 1000 MPa and ductility in the range of 23 to 26% were achieved
for the other processing parameters. A higher strength value than for the shortest dwell
time was due to the higher proportion of martensite in the structure, which was also
reflected by an increase in hardness, up to values of around 250 HV10. As far as the
heated part is concerned, the length of the dwell time was evident. As the dwell time
increased, there was a gradual decrease in ultimate strength from 914 MPa for a dwell time
of 70 s to 818 MPa for a dwell time of 900 s. This decrease in strength was due to the loss
of martensite in the structure and an increase in the proportion of bainite and retained
austenite. This was also reflected by an increase in the ductility value, which here was
between 35 and 36% (Figure 12). The hardness values in these regions decreased to values
around 200 HV10 (Table 4).

Table 4. Hardness of 20MnAl steel in different parts of the sheet.

Material Sample HV10 Sample HV10 Sample HV10 Sample HV10 Sample HV10

20MnAl

10s_C 243 ± 3 70s_C 255 ± 5 140s_C 256 ± 6 210s_C 249 ± 1 900s_C 240 ± 2

10s_T 232 ± 2 70s_T 223 ± 2 140s_T 207 ± 6 210s_T 217 ± 4 900s_T 200 ± 6

10s_H 248 ± 2 70s_H 195 ± 3 140s_H 210 ± 4 210s_H 205 ± 1 900s_H 198 ± 1

Since a change in mechanical properties was expected in the transition area, i.e., at
the point of insulation between the cooled and heated part of the tool, the hardness profile
over this area was measured for the 20MnAl material. The aim was to determine over how
wide a region the change in properties occurs and whether there is a local step change
that could cause problems. This hardness profile HV1 was measured over a total length
of 12 mm with an indentation spacing of 0.3 mm. As can be seen in Figure 13, measured
values were interleaved with exponential trend lines. The hardness results confirmed that
for a 10 s sample there is almost no change in hardness across the region examined. For
the 900 s sample, there was a gradual increase in hardness. The difference in hardness at
the endpoints was approximately 30 HV1. There were no step changes in hardness in the
material, which is especially important from the point of view of the use of the parts in
terms of their behaviour under stress.
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4. Discussion

For 22MnB5 steel, it was found that in the combined press hardening tool in the
cooled part of the omega profile, it was possible to obtain martensitic structures with
bainite content and to reach strength limits exceeding 1400 MPa. These properties have
previously been investigated e.g., in [3,4]. For this steel, a tool dwell time of 10 s at the
heating point of 425 ◦C already showed a significant change in mechanical properties and
microstructure (according to the diagram in Figure 5). The reduced cooling rate and the
stopping of quenching at 425 ◦C led to the formation of a ferritic-pearlitic structure, which
resulted in a decrease in ultimate tensile strength to 668 MPa. Longer dwell times in the
heated tool from 70 to 210 s led to the promotion of bainite formation and only a small
proportion of martensite was formed when cooling to room temperature after removal
from the tool. The significant bainite formation at isothermal dwell was confirmed by the
TTT diagram calculated for this steel, according to which bainite formation already occurs
at dwell times around 3 s (Figure 14). These mixed structures showed higher strength limits
of over 830 MPa than the ferritic-pearlitic structure and at the same time higher ductility
values than the martensitic structures in the cooled part. The optimum combinations of the
tailored properties were observed at 140 and 210 s.
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Figure 14. TTT diagram for 22MnB5 steel calculated in JMatPro software (version 12.1).

The experimental steel 20MnAl is a multiphase steel that belongs to the group of
steels using deformation-induced martensitic transformation to achieve the desired me-
chanical properties. In these steels, stability and the proportion of residual austenite in the
microstructure are important [8,19,25]. As reported by B.C. De Cooman and X. Zhao, the
evolution of the structure and the stability of the residual austenite are greatly influenced
by the processing parameters, especially the temperature and the dwell time in the bainitic
transformation region [26,27], which is carried out above the Ms temperature of the steel.
Due to the carbon content and alloying elements, full austenitisation was not achieved
at the selected heating temperature of 950 ◦C (Figure 15), which was chosen because of
the sufficient stabilization by carbon of the formed austenite. Heating to high intercritical
temperatures leads to the formation of a higher fraction of austenite with a lower carbon
content, which is not sufficiently stable and thus does not contribute to the ductility en-
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hancement [28]. Heating between Ac1 and Ac3 is also recommended by other authors. A
higher proportion of residual austenite when heating to the middle of the interval between
Ac1 and Ac3 was also found by S. Lee et al. [29,30] and L. Zhao [28].
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Figure 15. TTT diagram for 20MnAl steel calculated in JMatPro software.

For the experimental material 20MnAl, a fully martensitic structure was not achieved
in the cooled part of the tool at any dwell time, which was due to the mixed martensitic-
ferritic microstructure, with martensite forming in the fully or partially decomposed
austenitic islands. When the omega profile in the tool was cooled down to room tem-
perature, a strength limit of around 1000 MPa was obtained with a ductility of about
23 to 25%. Very similar results were obtained in [31], where a strength limit of about
930 MPa was obtained for 0.2C1.4Mn1.8Si steel. In the heated part of the tool, different
dwell times at 425 ◦C were observed. As also reported by [32] the isothermal dwell in the
bainitic transformation region affects both the proportion of bainite and the stability of the
residual austenite. The ultimate strength dropped to values around 817 MPa at the longest
dwell time, but the ductility increased up to 35%. Very similar results were also found
by Kučerová et al. on steels of similar chemical composition, where an ultimate strength
in the range of 805 to 859 MPa was achieved depending on the heating and deformation
temperature [24,33].

Based on the obtained mechanical properties, dwell times of 70 or 140 s are recom-
mended as suitable processing options to achieve the best properties in both the cooled
and heated parts. With a dwell time of 140 s, a hardness of 256 ± 6 HV10 was achieved for
the cooled part with a strength of 1008 MPa and a ductility of 23.5%, and for the heated
part, a hardness of 207 ± 6 HV10 was achieved with a strength of 860 MPa and a ductility
of almost 36%.

Future research will focus on testing other experimental materials and finding optimal
parameters for hot stamping.
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5. Conclusions

Press-hardening of two advanced high-strength steels was carried out to produce
parts with tailored properties in one processing step, and save material and the weight of
the parts while maintaining or improving their mechanical properties. In this paper, the
ability of a special combined tool partially manufactured by 3D printing to produce sheets
with different cooling rates was verified. The process was tested on the most frequently
used 22MnB5 steel and then on experimental steel 20MnAl, where we obtained previously
unreported results. For the purpose of comparison, the following processing parameters
were used: heating the sheet for 15 min at 950 ◦C, then transferring it to the combined tool
and holding it in the tool for 10, 70, 140, 210, and 900 s. The heated part was 425 ◦C and the
cooled part was 20 ◦C.

For 22MnB5 steel, the cooling rate was found to have a large effect on the evolution of
the microstructures and the resulting mechanical properties. Slower cooling in the heated
part of the tool resulted in a significant decrease in ultimate tensile strength compared
to the part formed in the cooled part of the tool. The decrease in strength was around
600 MPa with a tool dwell of 210 s. On the other hand, by removing the martensite from
the structure, it was possible to increase the ductility by up to 25%. Steel 22MnB5 belongs
to the group of boron steels, which are predestined by their chemical composition to form
quench hardening structures. Good mechanical properties were already achieved at the
shortest tool dwell time (i.e., 10 s) in the quenched region, which consisted of martensite and
bainite and reached a hardness of 469 ± 7 HV10. Then, the heated part of the tool showed
higher ductility values as the structure contained pearlite and ferrite and a hardness of
216 ± 4 HV10. These are results that are consistent with findings from other publications.

Compared to 22MnB5 steel, 20MnAl has lower strength limits but higher ductility
values. The difference in hardness in the case of the 70 s sample is then approximately
60 HV10, with the microstructure containing proeutectoid ferrite, martensite, and a small
proportion of retained austenite in the cooled part, with a hardness of 255 ± 5 HV10.
Furthermore, in the heated part there is proeutectoid ferrite, bainite, and a large proportion
of partially transformed islands of residual austenite to martensite with a hardness of
195 ± 3 HV10. For the multiphase 20MnAl steel, by slowing down the cooling rate in the
heated part of the tool, a ductility of up to 36% could be achieved by promoting bainite
formation and stabilizing the residual austenite with carbon. The difference between the
heated and cooled parts of the omega profile was around 140 MPa for ultimate strength
and around 10% for ductility.
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24. Kučerová, L.; Bystrianský, M. Comparison of thermo-mechanical treatment of C-Mn-Si-Nb and C-Mn-Si-Al-Nb TRIP steels.
Procedia Eng. 2017, 207, 1856–1861. [CrossRef]

25. Hu, J.; Du, L.; Xu, W.; Zhai, J.; Dong, Y.; Liu, Y.; Misra, R. Ensuring combination of strength, ductility and toughness in
medium-manganese steel through optimization of nano-scale metastable austenite. Mater. Charact. 2018, 136, 20–28. [CrossRef]

26. De Cooman, B.C. Structure-properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci.
2004, 8, 285–303. [CrossRef]

27. Zhao, X.; Shen, Y.; Qiu, L.; Liu, Y.; Sun, X.; Zuo, L. Effects of intercritical annealing temperature on mechanical properties of
Fe-7.9Mn-0.14Si-0.05Al-0.07C steel. Materials 2014, 7, 7891–7906. [CrossRef] [PubMed]

28. Zhao, L.; Moreno, J.; Kruijver, S.; Sietsma, J.; van der Zwaag, S. Influence of intercritical annealing temperature on phase
transformations in a high aluminium TRIP steel. Int. Conf. TRIP-Aided High Strenght Ferr. Alloy. 2002, 141–146.

29. Lee, S.; De Cooman, B.C. On the selection of the optimal intercritical annealing temperature for medium Mn TRIP steel. Metall.
Mater. Trans. A Phys. Metall. Mater. Sci. 2013, 44, 5018–5024. [CrossRef]

http://doi.org/10.30958/ajte.4-2-3
http://doi.org/10.1016/j.jmatprotec.2010.07.019
http://doi.org/10.3390/ma14112759
http://doi.org/10.1016/j.trpro.2016.05.082
http://doi.org/10.1016/j.ijfatigue.2019.105262
http://doi.org/10.1016/j.jmatprotec.2015.09.023
http://doi.org/10.4028/www.scientific.net/MSF.1016.636
http://doi.org/10.1016/j.proeng.2017.04.045
http://doi.org/10.1016/j.jmrt.2019.11.003
http://doi.org/10.12776/ams.v25i2.1267
http://doi.org/10.1016/j.cirp.2007.05.062
http://doi.org/10.1016/j.cirpj.2011.06.001
http://doi.org/10.1016/j.mtcomm.2022.103236
http://doi.org/10.1016/j.jmrt.2021.07.025
http://doi.org/10.1016/j.msea.2021.141195
http://doi.org/10.1166/asl.2011.1374
http://doi.org/10.1016/j.proeng.2017.10.951
http://doi.org/10.1016/j.matchar.2017.11.058
http://doi.org/10.1016/j.cossms.2004.10.002
http://doi.org/10.3390/ma7127891
http://www.ncbi.nlm.nih.gov/pubmed/28788282
http://doi.org/10.1007/s11661-013-1860-2


Materials 2023, 16, 442 17 of 17

30. Lee, S.; Lee, S.J.; Santhosh Kumar, S.; Lee, K.; De Cooman, B.C. Localized deformation in multiphase, ultra-fine-grained 6 Pct Mn
transformation-induced plasticity steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2011, 42, 3638–3651. [CrossRef]
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