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Abstract: The creation of sustainable composites reinforced with natural fibers has recently drawn
the interest of both industrial and academics. Basalt fiber (BF) stands out as the most intriguing
among the natural fibers that may be utilized as reinforcement due to their characteristics. Numerous
academics have conducted many tests on the strength, durability, temperature, and microstructure
characteristics of concrete reinforced with BF and have found promising results. However, because
the information is dispersed, readers find it problematic to assess the advantages of BF reinforced
concrete, which limits its applications. Therefore, a condensed study that provides the reader with an
easy route and summarizes all pertinent information is needed. The purpose of this paper (Part II) is
to undertake a compressive assessment of basalt fiber reinforced concrete’s durability features. The
results show that adding BF significantly increased concrete durability. The review also identifies a
research deficiency that must be addressed before BF is used in practice.

Keywords: basalt fibers; shrinkage; thermal properties; scan electronic microscopy

1. Introduction

In recent years, there have been increased demands for strength and durability features
due to the construction of large-scale infrastructure in several challenging service sett-
ings [1–4]. Contrarily, concrete has several unfavorable characteristics, including brittleness,
low impact resistance, and excessive weight. Consequently, there is a need to improve
tensile capacity [5–8]. One of the current hot topics for building materials research is the
use of fiber-reinforced technology to boost the durability of concrete [9–11]. Traditional
concrete is typically strong in compression, but not in tension [12–14]. Reinforcement bars
are frequently utilized in concrete to compensate for the tensile stresses. In fiber-reinforced
concrete, a specific type of concrete, fibers are added to increase the necessary tensile
capacity of concrete [15,16].

Since ancient times, many parts of the world have been using fibers in construction
materials. The motivation for this effort was to boost the tensile strain of the concrete’s
“perceived” delicate properties. In the 20th century, this technique was employed to
produce fiber-reinforced concrete, which has grown in popularity and apply in construction
sector due to its improved strength. The components of concrete are reinforced with
a variety of fibers, including biological and inorganic fibers. The surface of the fibers,
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length, elastic modulus, and the material from which they are made all perform a role in
determining the type of fibers used in concrete to increase tensile strength. Additionally, it
is uncertain to what degree these fibers affect the functionality of concrete [17]. Metallic
and nonmetallic fibers are the two categories into which fibers are frequently categorized.
The capacity of metallic fibers to conduct electricity sets them apart from nonmetallic fibers.
Steel fibers make up the majority of metallic fibers, whilst nonmetallic fibers are made of
materials like steel fiber [18], propylene [19], carbon [20], jute fiber [21], glass fibers [22]
and other similar ones [23]. Concrete brittleness may be reduced by adding fiber, and its
strength and durability can be increased [13,24–27].

BFs are made from genuine basalt ore using hot melting and wire drawing techniques
at high temperatures [28]. When the chemical composition is examined, it can be shown
that SiO2 is the primary component and Al2O3 is the second, as indicated in Figure 1.

Materials 2023, 16, x FOR PEER REVIEW 2 of 22 
 

 

“perceived” delicate properties. In the 20th century, this technique was employed to pro-
duce fiber-reinforced concrete, which has grown in popularity and apply in construction 
sector due to its improved strength. The components of concrete are reinforced with a 
variety of fibers, including biological and inorganic fibers. The surface of the fibers, length, 
elastic modulus, and the material from which they are made all perform a role in deter-
mining the type of fibers used in concrete to increase tensile strength. Additionally, it is 
uncertain to what degree these fibers affect the functionality of concrete [17]. Metallic and 
nonmetallic fibers are the two categories into which fibers are frequently categorized. The 
capacity of metallic fibers to conduct electricity sets them apart from nonmetallic fibers. 
Steel fibers make up the majority of metallic fibers, whilst nonmetallic fibers are made of 
materials like steel fiber [18], propylene [19], carbon [20], jute fiber [21], glass fibers [22] 
and other similar ones [23]. Concrete brittleness may be reduced by adding fiber, and its 
strength and durability can be increased [13,24–27]. 

BFs are made from genuine basalt ore using hot melting and wire drawing tech-
niques at high temperatures [28]. When the chemical composition is examined, it can be 
shown that SiO2 is the primary component and Al2O3 is the second, as indicated in Figure 
1. 

 
Figure 1. Chemical composition of BF [29]. 

The kind, quality, and production method of the raw materials, as well as the quali-
ties of the finished product, all influence the base cost of BFs. The chemical and mechanical 
qualities are influenced by the composition of the raw materials, much like the price. Var-
iations in composition and element concentration result in variations in thermal and 
chemical stability as well as favorable strength and basic qualities. Generally, the produc-
tion of this type of fiber is comparable to that of glass fiber (GF), but it uses less energy 
and does not include any additives, making it less expensive than GF or carbon fiber (CF). 
Basalt rock from volcanic eruptions is used as the raw material to make BF, which is then 
molten in a kiln at 1450–1500 °C. The heated substance is then driven through a plati-
num/rhodium crucible bushing to produce fibers. Constant spinning is a technique that 
may provide reinforcing material in the form of continuous fibers or chopped fibers for 
use in the manufacture of textiles and has a lot of potential users in composite materials. 
Along with being simple to handle using standard procedures, it also has significant cost 
advantages [30]. The advantages of BF used in concrete are shown in Figure 2. 

56%

17.40%

11.80%

3.20%

9.90% 1.70%

SiO2

Al2O3

Fe2O3

MgO

CaO

Na2O+K2O

Figure 1. Chemical composition of BF [29].

The kind, quality, and production method of the raw materials, as well as the qualities
of the finished product, all influence the base cost of BFs. The chemical and mechanical
qualities are influenced by the composition of the raw materials, much like the price.
Variations in composition and element concentration result in variations in thermal and
chemical stability as well as favorable strength and basic qualities. Generally, the production
of this type of fiber is comparable to that of glass fiber (GF), but it uses less energy and
does not include any additives, making it less expensive than GF or carbon fiber (CF).
Basalt rock from volcanic eruptions is used as the raw material to make BF, which is
then molten in a kiln at 1450–1500 ◦C. The heated substance is then driven through a
platinum/rhodium crucible bushing to produce fibers. Constant spinning is a technique
that may provide reinforcing material in the form of continuous fibers or chopped fibers
for use in the manufacture of textiles and has a lot of potential users in composite materials.
Along with being simple to handle using standard procedures, it also has significant cost
advantages [30]. The advantages of BF used in concrete are shown in Figure 2.
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Figure 2. Benefits of BF.

A new class of inorganic fiber called BF has several benefits, including strength,
stability, insulation, corrosion resistance, simple production, cheap cost, and high compati-
bility [31]. The insulating capabilities and anti-corrosion of BF make it further appropriate
for extreme-speed rail and road engineering than those of metal fiber. BF is an eco-friendly
material as well [32].

Every year, significant economic losses and security risks are brought on by steel
corrosion in concrete buildings. In salty conditions, chloride damage is a virulent reason
for steel corrosion [33]. According to research [34], BF is more resistant to corrosion in
saltwater than carbon and GF. Additionally, some researchers noted that the BF’s alkali
resistance was low, in contrast to these investigations. According to Lee’s research [35], the
weight loss rate in strong alkaline solutions may reach 40%. The strength loss rate of BF is
as great as 80% after 90 days of immersing in an alkaline mixture. According to research, BF
concrete performed better than CF and GF concrete. Engineering mechanics and durability
may be enhanced by BF [30].

According to the findings, self-compacting concrete is less practical when BFs are added.
The physical qualities of concrete might be greatly improved, but BF decreased the flow
properties [36]. The impacts of polypropylene and BFs on the mechanical parameters of
concrete samples were examined. The tensile strength (TS) and flexural strength (FS) of
specimens of concrete were claimed to be significantly increased by fiber. It is not immediately
clear, nevertheless, how compressive strength (CS) improves [37]. Excellent mechanical and
physical properties of BFs include good resistance to corrosion, excellent heat resistance, and
resistance to alkalis and acids [30]. The three-dimensional network that was created by the
irregular BF mixing in the concrete is closely connected to the cement paste and aggregate. A
small amount of porosity reduction, a delay in the appearance of tiny internal fissures, and
a more compact structure are all possible effects of doped fiber [10]. According to research,
reinforced concrete with fiber reinforcement (BFRC) has a greater bonding capacity with
steel bars in saline-alkaline environments and a greater level of dependability in bonding
slip tests [38]. According to a study on the chemical stability of BF in alkaline mixtures, BF
immersed in a mild alkaline mixture could be extremely durable, with a minimal weight-loss
rate after immersing in a Ca(OH)2 mixture for three months [35].

Many scholars work on strength properties, durability aspects, thermal properties,
and microstructure analyses of BFs-reinforced concrete and stated an encouraging response.
However, information is dispersed, and readers cannot simply judge the benefits of BFs-
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reinforced concrete, which restricts its uses. Therefore, a compressive study is required that
summarizes all relevant information and provides an easy path for the reader. Although
a compressive review was conducted by other scholars [39], some durability properties
are missing such as shrinkage, density, and electrical resistivity. The aim of this article is
to conduct a compressive review on durability aspects such as density, water absorption,
electric resistivity, freezing and thawing effects, chloride content, shrinkage, rapid chloride
ions penetrability, and alkali resistance. The results indicate that the durability assets
considerably enhanced with the addition of BF. Furthermore, the review also suggests
recommendations that must be explored before being used practically.

2. Apparent Density

Figure 3 displays each mixture’s apparent density. The findings demonstrate a declin-
ing tendency in perceived density with boosting BF percentages. The density of concrete
reduces with increasing BF percentage even though BF has a slightly greater density than
concrete. The following is a summary of the causes: First, BF may result in a weak matrix
across the fiber and reduce compatibility. Second, the BF network configuration produced
prevents cement paste from separation and movement, making it more difficult to remove
voids and bubbles with shaking. Third, BF needs an additional plasticizer to sustain the
target slump, and the plasticizer can cause more air cavities because it includes the elements
of the air-entrain. All of these factors cause more air spaces to exist in concrete, and this
fact plays a significant role in determining the material’s apparent density [25].
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Figure 3. Density of basalt fiber (BF) reinforced concrete: Source [40].

Additionally, BF creates a network structure that boosts the matrix’s internal binding
force and prevents cement paste from flowing or segregating. Therefore, the presence
of BF causes concrete’s flowability to decrease [41], making it difficult to fill up gaps in
concrete using vibration. Due to this, the interior sponginess rises and the compatibility
falls, which lowers the apparent density. Furthermore, with the same fiber content, the
density of a combination containing secondary cementitious materials (SCM) is constantly
smaller than it would be without them. This may be attributable to cement’s greater specific
gravity than fly ashes. A lower fresh concrete density and porous concrete are the results of
higher fiber dosages (4.0%), which makes the compaction activity additional challenging.
Concrete gains density by around 15% when 1.5 percent of its volume is added to fibers [42].
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Research revealed that the permeability coefficient of concrete is decreased by the addition
of BF. The permeability coefficient reduces by 86.3, 85.5, and 84.3 percent when the volume
content of BF is 0.1, 0.2, and 0.3 percent, respectively [43].

It can be concluded that the density of concrete decreased with the addition of BF.
However, with the substitution of cementitious materials such as fly ash, a slightly de-
creased in density was observed up to 0.45% addition of BF, further addition of BF (0.6%)
results in considerably decreased density.

3. Permeability
3.1. Sorptivity

Hazardous chemicals like chloride and sulphate ions may penetrate construction
materials via water infiltration. Diffusion and capillary action are the two major methods
of transporting chloride and sulphate ions through the material, although transformation
by itself is a very sluggish procedure. Consequently, particularly close to the unsaturated
concrete surface, capillary action could be the primary transport pathway. Understanding
how concrete transports moisture is crucial for determining its service life and enhancing
its value as a construction material [44].

The total water absorption over 6 h and 8 days, respectively, was used to calculate the
initial and secondary sorptivity. Figure 4 displays the sorptivity coefficients of concrete. A
similar pattern can be seen in both the primary and secondary sorptivity of all concrete
mixtures. BF5 (0.05%) has the lowest sorptivity, while BF20 (0.20%) has the maximum. The
initial and secondary sorptivity of the specimen with 0.05 percent t o0.15 percent BF was
lowered, falling by 2.75 to 20.97 percent, and 5.39 to 16.78 percent, respectively, associated
with the control concrete. The initial and secondary sorptivity are boosted by 19.35 and
20.52 percent, respectively, by a BF concentration of 0.2 percent. It is determined that
lowering water absorption and sorptivity depends significantly on the presence of suitable
BF. When steel slag is replaced with zigzag-shaped fibers, the porosity of the concrete is
reduced, which reduces capillary action in steel slag concrete and improves the resistance
of the movement of water through it. Compared to traditional concrete, the elements in
the concrete mix are tightly packed and have less porosity. The value of the coefficient of
sorptivity is 10.67% smaller in fiber-reinforced concrete than in regular concrete, per the
test findings [45]. It can be concluded that sorpitivty decreased with the addition of BF due
to the crack prevention of BF. However, a higher dose of BF (0.2%) results in considerably
increased sorpitivity value due to lack of flowability, which increased compaction efforts,
leading to more voids.

3.2. Water Absorption (WA)

Concrete must have both compressive strength and long-term durability. The density
of concrete has an impact on its long-lasting qualities. Compact (dense) concrete has more
load carrying capacity and has fewer voids and pores. Concrete with fewer voids is less
porous to liquid chemicals and water. As a result, this kind of concrete will last longer, and
less WA or other harmful chemicals will penetrate.

A study [41] shows that the specimens with 10 percent silica fume have the lowest
values of water absorption, which are 3.22 percent, 3.36 percent, and 4 percent for specimens
with 0 percent, 1 percent, and 1.5 percent basalt, respectively. Figure 5 demonstrates a
44 percent, 43 percent, and 32 percent drop from the control specimen.
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Glass fibers (GF) had a far better effect on water absorption (WA) than polypropylene
fibers. Adding 1.35 percent GF decreased the sample WA from 3.49 percent to 1.99 percent,
with a maximum reduction of 43.1 percent, when the water/binder ratio was 0.30. The
highest decline of 10.6 percent in water absorption (WA) was achieved by incorporating
0.45 percent PPF, which decreased it from 3.49 to 3.12 percent [47].

The statistics on water absorption show that increasing the fiber content somewhat
improves the WA as associated to reference SCC. Nevertheless, the water absorption
values of all fiber-reinforced SCC were within 2% of one another. Concrete has less water
penetration because of a more compact pore structure as a consequence of the GF’s tight
bond with cement particles. The endurance of the concrete is increased by the introduction
of GF [48]. It was known that the least amount of WA was attained at 2.0% steel fiber [49].
Regular concrete has a lower MOE than fiber concrete. Fibers would improve the tensile
strain properties of concrete, reducing the development and spread of early fractures [50].
Therefore, BF addition decreased water absorption penetration due to crack prevention.
Furthermore, the substitution of secondary cementitious materials such as silica fume
considerably due to combined pozzolanic and micro filling effects. However, some higher
dose results in increased water absorption due to a lack of flowability, which increased
compaction efforts, leading to more possibility of voids which results in more water
absorption. Therefore, the review recommends a higher dose of superplasticizer for a
higher dose of BF addition.

3.3. Rapid Chloride Ions Penetrability

Figure 6 displays the outcomes of the charge after it was run through all combinations
that were aged between 28 and 56 days. The outcomes show that adding BF raises the
charge of the concrete. For the same series, a greater charge is obtained in the blends with
greater BF (0.60 percent). According to a study [41], the inclusion of BFs in cementitious
mixtures leads to a reduction in electrical resistivity, making electrical resistivity more
apparent as fiber volume increases. Results from the electrical resistivity test have been
altered by the percentages and composition of pores and the chemical composition of
the pore mixture. Therefore, specimens containing 15% silica fume do not necessarily
have higher performance or durability because of their higher specific electrical resistivity.
According to Zhang et al. [51], adding BF enhances the permeability of concrete because
the fiber causes an increase in porosity. Other organic fibers, such as polypropylene fibers
were explored in earlier research, which suggested a poorer chloride resistance with fibers
in contrast with no fiber [52]. Though, according to a study [36], adding BF makes self-
compacting concrete more resistant to chlorides and decreases porosity.

The defects generated by BF, such as fractures and pores surrounding fiber in the
matrix, are responsible for the charge rise [53]. Particularly, the porous, weak fiber-matrix
interfacial transition zone (fiber-ITZ). The fibers become more easily clumped and unevenly
distributed as the BF content rises, and more severe flaws develop as a result of the tangled
and folded fibers. Moreover, fibers have a significant surface area, and further cement paste
is required to coat them [54].

The total charge transmitted through BF reinforced with 30% fly ash (FA) falls by
7.4 percent to BF without fly ash. Fly ash (FA) and silica fume (SF) both drop by 20.3 percent
and 50.7 percent after 56 days. This finding suggests that the charge of BF-reinforced
concrete is reduced when mineral admixtures are added, particularly when fly ash and
silica are combined together. The pozzolanic activity and pore-filling properties of SCM are
responsible for this alteration [6]. Mineral admixtures’ ability to bind chloride reduces the
charge that passes through the concrete [55]. Additionally, SF has a significantly smaller
grain size than FA, which intensifies the pozzolanic reaction and pore-filling effects.
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Figure 6. Charge pass of BF reinforced concrete (a) 0% fly ash and (b) 30% fly ash: Source [40].

According to Thomas et al. [56], ternary cementitious mixes provide concrete with a
very high chlorine resistance. A similar pattern is seen as the curing age rises. For basalt
fiber reinforced concrete, the total charge transmitted through mixes after 56 days reduces
by 36.8% as compared to those at 28 days. Additionally, when the curing age increases,
the charge with cementitious dramatically reduces. It may be related to the fact that the
pozzolanic activity early phase is delayed and the result is not immediately apparent.
Though, when concrete ages, an intense pozzolanic reaction produces a considerable
quantity of secondary hydration products that greatly enhance concrete’s compactness. As
a result, as people age, the positive effects of mineral admixtures become more noticeable.
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In contrast, the research found that adding 1, 1.5, or 2% BF to a concrete mixture in which
40% fly ash replaces some of the cement increases the combination’s resistance to the
chloride penetration-associated reference [57]. It can be concluded that chloride resistance
decreased considerably with the addition of BF due to the crack prevention of BF. The
resistance further increased with the substitution of pozzolanic materials (fly ash), which
fill the voids among concrete ingredients, leading to more dense concrete. Additionally,
due to the pozzolanic reaction, secondary cementitious compounds such as calcium silicate
hydrates (CSH) are formed, which increase the binding properties of cement paste.

4. Shrinkage

Shrinkage is seen in the early hours after casting, however, it may be prevented by
improving the blend mix and proper curing. Carbon dioxide and solidified cement paste
combine to induce carbonation shrinkage [58].

According to the experimental findings, depending on the fiber content, using BFs
greatly reduced concrete shrinkage and increased efficiency. Figure 7 depicts the shrinkage
reduction impact of BF after 7 days of concrete curing. The findings demonstrated that
concrete shrinkage dramatically reduced as the fiber concentration rose. The shrinkage re-
duction efficiency in concrete employing 0.5 percent fiber compared to the control achieved
40% in the first week. The shrinkage reduction impact of concrete is quite strong, reaching
84 percent in comparison to the control when employing fibers up to 1.0 percent. The
effectiveness of concrete shrinkage reduction reached 98 percent when the fiber content
was raised to 1.75 percent.
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Figure 7. Shrinkage of BF reinforced concrete: Source [59].

The concrete shrinks by 0.716 mm/m, which is 25% less than the control sample, when
the fiber content is utilized at 0.5 percent. The shrinkage will be reduced by 56.9% and
91.6 percent, respectively, associated with the reference, with the fiber content raised to
1.5 and 1.75 percent. When fibers are added to concrete mixtures, shrinkage in concrete
is improved. A reduction in the amount of moisture in the concrete and shrinkage of the
concrete will occur along with the hydration of the cement. However, the fiber will play a
role as a bridge to transport stress throughout the concrete in the presence of micro-sized BF,
considerably decreasing shrinkage. A study also reported that carbon nanotubes delay the
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propagation of micro-cracks and strengthen the interfacial transition zone [60]. However,
the shrinkage reduction impact for concrete does not significantly improve when the fiber
percentage is increased from 1.5 to 1.75 percent. When the fibers have a propensity to
group to create yarn balls, this may be explained by raising the fiber content utilized to
a certain value. As a result, the fiber distribution in concrete will be less even, which
will lessen the impact of lowering fiber shrinkage [59]. In comparison to plain concrete
specimens, all fiber-reinforced concrete samples with blended fibers showed considerably
reduced shrinkage values up to 180 days. Fibers stop the development of microcracks on
the concrete’s surface, which stops the movement of dangerous components in samples. As
a consequence, the detrimental effects of shrinkage are minimized and the fracture density
and size are decreased [61].

The research looked at the effects of steel and BF on the concrete’s dry shrinkage char-
acteristics. Since the fibers will prevent the cementitious matrix from shrinking, shrinkage
values should, in theory, decrease as fiber volume is raised. As the concrete has more
water available to be utilized in the cement hydration process, enabling the concrete to
not shrink for a longer length of time, the boost in the w/c percentage would result in a
drop in shrinkage strain. With an increase in fiber content, shrinkage strain values reduced
consistently across all fiber samples. Additionally, as compared to the same percentages of
BFs, the usage of steel fibers revealed a much reduced shrinkage strain [62].

According to research fiber concrete had less shrinkage deformations than plain
concrete without fibers, suggesting that it was more stable. By strengthening the bond
among the fibers and mix, which facilitates the limiting of shrinkage during the drying
activity, fibers may help reduce the amount of shrinkage in concrete [63].

Another study’s [64] investigation focused on the impact of GF on shrinkage. They
found a significant reduction in initial shrinkage, which they ascribed to a solid link
between the fibers and the cementitious mix. Additionally, the shrinkage of fiber-reinforced
concrete was more uniform than that of fiber-free mortar. Finally, it was determined that
fiber had a positive effect on containing fractures and lowering the likelihood that they
would occur. Regarding confined shrinkage, it was noted in [65] that 1% fiber after 24 h
decreased constrained stresses in mortar by 24%. It can be concluded that dry shrinkage
cracks decreased considerably with the addition of BF due to the crack prevention of BF.

5. Electric Resistivity

The possibility of electrical charge transport through the composite is made clear by
the material feature known as specific electrical resistivity. It often relies on the chemical
makeup of the cementitious material, the kind and form of the pores, and the composition
of the pore solution [66]. An essential factor characterizing a material’s capacity to conduct
electric current is its electrical resistivity. Due to their insulating properties, dry cementitious
materials display extremely high electrical resistivity values. Oven-dried concrete has an
electrical resistance of roughly 109 Ω m [67].

Figure 8 demonstrates that BF results in a decline in the penetrability of chloride ions
(>12 kW/cm) for all combinations (w/c = 0.35) and a decline in the penetrability of chloride
ions up to a 0.30% percent fiber for specimens with w/c = 0.45. Research also found that
the presence of water and steel fiber clusters increased conductive pathways and lowered
electrical resistance [67]. Due to the larger porosity gained due to a higher w/c ratio and
fibers percentage, rising cavities through blending, and possible effects from the higher
fiber volume, 0.45 and 0.50 percent. BF did not offer higher results for w/c = 0.45. Although
there was no balling of the fibers, increased fiber volumes influence how the fibers are
distributed, which reduces their effectiveness. According to research, BF increases water
absorption and decreases electrical resistivity in cementitious materials, with the negative
impact being more pronounced the greater the volume level of BF [41].
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Figure 8. Resistivity of BF reinforced concrete: Source [62].

The samples with the biggest improvements were sample (w/c = 0.35) with 0.30 per-
cent BFs and an increase in chloride ion penetration resistance of 61 percent, and sample
(w/c = 0.45) with 0.45 percent BF and an increase in chloride ion penetration resistance
of 47 percent. Due to the rise in the w/c ratio, sample (w/c = 0.35) results are higher
than sample (w/c = 0.45) values, as predicted, and at 0.30 percent fiber offers the greatest
improvement. Using steel fibers improved the resistance to chloride ion infiltration. This
is because steel fibers interact with one another, increasing their susceptibility to assaults
from chloride. The steel fiber reinforcement shows a 48.45 percent decline or a 0.50 percent
decrease (w/c = 0.45) in chloride ion penetrability resistance.

According to research, adding fibers to concrete increased its electrical conductivity or
decreased its electrical resistance. Particularly small fiber doses had a significant influence
on the electrical resistivity that was measured, but larger fiber dosages made the changes
less noticeable. The electrical resistance of the unreinforced concrete was split in half, from
roughly 50 to 25 Ωm, with the addition of 30 kg/m3 of fiber. There is no linear relationship
between fiber content and electrical resistivity; when an additional 30 kg/m3 of fibers were
added, the loss of electrical resistivity was only around 30%. Contrarily, it was evident that
conductivity almost linearly correlated with fiber concentration [68]. It can be concluded
that BF increased electric resistivity. However, the increase depends on the BF percentages
and w/c. Higher BF percentages or higher w/c results decrease in electric resistivity.

6. Freezing and Thawing

The compressive capacity is intimately connected with its porosity, the smaller the
perviousness, the denser the composition, the greater the compressive capacity and the
critical pore size and pore size distribution are directly correlated with the permeability
and durability of concrete.

Figure 9 implies that the initial porosity of the concrete will decrease with the addition
of BF. It was discovered that the 0.02 percent BF group had the lowest original porosity,
and the 0.03 percent BF group had a higher original porosity than the 0.02 percent BF
and 0.02 percent BF groups. However, some studies claimed that promising results were
achieved at 0.6% [69,70]. This was due to extreme fiber integration and significant amounts
of disordered fiber clusters, which increased the likelihood of flaws. Each group’s con-
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crete started to become more porous as the single-side salt–freezing–drying–wetting cycle
developed.

The expansion tension brought on by sulphate crystallization and the tensile stress
brought on by freezing pressure and capillary osmotic pressure enhanced the pervious-
ness [71]. After 20 cycles, the perviousness with additions of 0, 0.01, 0.02, and 0.03 percent
of BF rose by 9.8, 4.1, 4.7, and 7.5%, respectively. As can be observed, the inclusion of BF
prevents the single-side salt–freezing–drying–wetting cycle from increasing perviousness.
The addition of BF enhances the compactness and increases the depth and content of
concrete’s resistance to sulphate ion destruction. BF resilience and crack resistance lessen
the concentration of stress and the resulting damage. According to research, adding fiber
to concrete may boost its resistance to freezing and thawing. Additionally, fibers may
strengthen the matrix by halting the growth of cracks. Fibers may be added to boost the
amount of unharmful openings, which can lower the extension pressure brought on by a
freezing case and lower the amount of destruction from freezing–thawing [72].

The pore structure system in concrete is interconnected and dispersed at random. The
critical pore diameter, which may indicate the connectedness of pores, is the maximum pore
diameter that can link the bigger pores. The physical meaning is that pores cannot be linked
to one another if the pore thickness is bigger than the critical aperture. The better the critical
pore size, the more durable and impermeable the cement concrete pore arrangement.
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Figure 9. Porosity of BF reinforced concrete at different no. of cycle: Source [73].

Figure 10 displays the critical pore width for each group under various cycles. The
critical pore width of concrete with additions of BF of 0, 0.01, 0.02, and 0.03 percent is 116.7,
79.1, 60.4, and 82.6 nm, respectively, under 0 cycles. The critical pore diameter of concrete
is successfully decreased by the use of BF.

The critical pore size of the concrete rose progressively for each group as the cycle
continued. The critical pore diameters for additions of 0, 0.01, 0.02, and 0.03 percent of BF
were, respectively, 205.5, 133.3, 115.4, and 165.6 nm after 20 cycles. Concrete’s permeability
resistance diminishes with an increase in critical pore size, making it less stable in service
when subjected to a single cycle of salt, freezing, drying, and wetting. Each major cycle of
control concrete saw a steady rise in growth rate. After 10 cycles, the growth rates of the
concrete in the 0.01 and 0.02 percent BF groups greatly rose, but those in the 0.03 percent
BF group notably increased after 5 cycles. It has been revealed that while BF has the
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impact of strengthening and crack resistance, the optimal performance still requires the
synergistic action of SCM and the proper quantity of BF. The required pore width for
concrete’s durability and impermeability is reliable with its macroscopic performance index
in each cycle. It can be concluded that pore diameter decreased considerably with the
addition of BF due to the crack prevention of BF. However, at a higher dose of BF (0.3%),
the results increased in pore diameter value due to a lack of flowability, which increased
compaction efforts, leading to more voids.

Materials 2023, 16, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 9. Porosity of BF reinforced concrete at different no. of cycle: Source [73]. 

Figure 10 displays the critical pore width for each group under various cycles. The 
critical pore width of concrete with additions of BF of 0, 0.01, 0.02, and 0.03 percent is 
116.7, 79.1, 60.4, and 82.6 nm, respectively, under 0 cycles. The critical pore diameter of 
concrete is successfully decreased by the use of BF. 

 
Figure 10. Critical pore diameter of BF reinforced concrete at different no. of cycle: Source [73]. 

The critical pore size of the concrete rose progressively for each group as the cycle 
continued. The critical pore diameters for additions of 0, 0.01, 0.02, and 0.03 percent of BF 
were, respectively, 205.5, 133.3, 115.4, and 165.6 nm after 20 cycles. Concrete’s permeabil-
ity resistance diminishes with an increase in critical pore size, making it less stable in ser-
vice when subjected to a single cycle of salt, freezing, drying, and wetting. Each major 
cycle of control concrete saw a steady rise in growth rate. After 10 cycles, the growth rates 

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20
Cr

iti
cle

 p
or

e 
da

im
et

er
 /n

m
No of cycle/times 

BF-0% BF-0.01% BF-0.02% BF-0.03

0

50

100

150

200

250

0 5 10 15 20

Cr
iti

ce
l p

or
e 

di
am

et
er

/n
m

No of cycle/times 

BF-0% BF-0.01% BF-0.02% BF-0.02
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7. Chloride Content

The total chloride concentration of concrete after the addition of BF is shown in
Figure 11. The concrete containing 0.05 percent fibers has a greater total chloride ion
concentration than normal concrete after curing for more than 3 days. At 14 to 90 days,
concrete reinforced with 0.2% BF had a lower total chloride ion level than other specimens.
The total chloride ion level decreased by 0.48 to 5.8 percent after 3 days after adding 0.05
and 0.20 percent of BF. The amount of total chloride ions in concrete with 0.05 percent BF
rose by 2.7 percent after 90 days. However, by adding 0.1 percent to 0.2 percent of BF, the
total chloride ion level was reduced by 0.45 percent to 5 percent.

The pressure differential between the interior and exterior of the aggregate enables
the prewetted water to be released when the moisture content of the concrete lowers due
to continual hydration. Chloride ions from the inside of the aggregate with the water
enter the concrete matrix as the internal curing process is accomplished. The internal
curing action is most noticeable, the chloride ion concentration is maximum, and the pore
structure is optimum in the 0.05 percent of BF-based concrete. A decreased total chloride
ion concentration is the consequence of the internal curing action of concrete being less
effective because of the greater BF content.
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Figure 11. Total chloride content: Source [46].

The free chloride ion concentration of BF reinforced concrete reduces during the first
stages of hydration as shown in Figure 12. However, the free chloride ion level rises around
14–28 days. All specimens had their greatest free chloride ion level at 28 days. All the
BF-containing samples had greater free chloride ion contents than control concrete after
28 days, increasing by 1.6 percent to 4.8 percent. All specimens see a dramatic decline in free
chloride ions after 60 days, which is 3.87 percent to 11.2 percent lower than at 28 days. The
hydration of BF reinforced concrete has finished reducing after 90 days, and all specimens
have stable free chloride ion contents of 0.12 percent to 0.14 percent, which is below the
threshold chloride ion concentration for steel corrosion [74]. It can be concluded that the
chloride ion content decreases with BF addition due to crack prevention, leading to more
dense concrete. Furthermore, considerable improvement was observed particularly at later
age curing (beyond 28 days).
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8. Ultra-Sonic Pulse Velocity

Figure 13 demonstrates that when the BF concentration increased, the pulse velocity
decreased. The phenomenon may be attributed to several factors. The first is that BF-
containing mixes have some capillaries that migrated into the hardened concrete as the
hydration process progressed. It has long been known that the most significant influence
on the impact of the transmission velocity of ultrasonic pulses comes from the capillaries in
the concrete specimen. The fact that void concrete propagates pulses more quickly than
solid matter does provide evidence that it slows the predicted velocity by increasing the
pulse’s capillary transit [75].
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The network structure created by BF additionally strengthens the matrix’s internal
binding force and prevents cement paste from flowing or segregating. As a result, the
existence of BF reduces the flowability of concrete [41], making it difficult to fill gaps
in concrete with vibration. As a consequence, the compactness reduces and the interior
porosity rises, which lowers the VPV. Furthermore, with the same fiber content, the UPV
of a combination including cementitious materials is always smaller than that of a blend
without them. This is explained by the fact that cement has greater specific gravity than
fly ash. The compaction process becomes more challenging at higher dosages, such as
4.0 percent fiber replacement, leading to porous concrete and a lower UPV. Reinforced
concrete has less homogeneity than regular concrete. The UPV declined as the quantity
of fiber improved. Reinforced SCC showed superior homogeneity, while steel fiber had a
lesser pulse velocity than concrete with GF [76]. It can be concluded that BF decreased the
UPV value due to internal porosity caused by a lack of flowability.

9. Alkali Resistance

The challenge of excessive alkalinity from the adjacent material is a major problem
when the fiber reinforced concrete components are buried in the concrete using the near-
surface mounting technique. As concrete is alkaline, the alkali resistance of BF used
in concrete is crucial. The research findings on BF’s alkali resistance are contradictory.
According to research, BF has strong alkali resistance at both low and high temperatures [77].
Similar research established that BF’s alkali resistance is superior to its acid resistance [78].
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The SEM images of the fibers after dipping at different mediums are shown in
Figures 14–16. Under alkaline conditions, it was found that both BFs and GFs dramat-
ically dropped volume. As the immersion duration lengthened, reaction products formed
on the surfaces of these two fibers and disintegrated, reducing the sound portion or volume
of the fibers. These reaction products were thought to be the result of the reaction among
the alkali solution and the fibers’ SiO2 content. No such reaction product was seen in the
CF, and the projected volume decrease after 28 days of immersion was less than 20%. The
strength fluctuated in relation to the duration of immersion. Over 28 days, the capacity
of the glass and BF decreased by more than 80%. After the CF had been submerged for
28 days, a strength drop of roughly 13 percent was recorded.
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According to the research [34], BF is more resistant to corrosion in saltwater than CF
and GF. Contrary to these observations, some researchers noted that BF’s alkali resistance
was low. According to Lee’s research, up to 40% of the mass may be lost in strong alkaline
solutions. The strength loss rate of BF after 90 days of being saturated in an alkaline mixture
might reach 80% [35].

Figure 17 displays SEM pictures of the reaction products that formed on the fibers’
surface at a temperature of 30 K. The effects were not found in the CF, but the basalt and the
GFs exhibited plate-shaped structures. This structure seems to be susceptible to the solution
flow, allowing for the continual growth and accumulation of products on the surface. The
basalt and GFs seem to have comparable deteriorating attributes and lose capacity and
volumetric constancy more quickly than the CF in a critical alkali situation, according to
this alkali-resistance experiment.

Materials 2023, 16, x FOR PEER REVIEW 18 of 22 
 

 

 
Figure 17. Alkali reaction product of (a) BF, (b) CF, and (c) GF [30]. 

Assessments of the tensile capacity of various fibers after 66 days of exposure are 
displayed in Figure 18. Figure 18 demonstrates that whereas the tensile capacity of the BFs 
subjected to the acid and alkaline solutions was virtually totally reduced, the tensile ca-
pacity of the CFs subjected to all kinds of solutions remained unchanged. The GFs had 
substantially greater acid resistance than the BFs, although they degraded much more 
quickly in water and salt solutions. It can be concluded that BF shows comparable re-
sistance to water, salt, and alkaline corrosion, but weaker resilience to acid corrosion than 
GFs and CFs. 

 
Figure 18. Tensile strength retention of different fibers after degradation: Source [34]. 

Figure 19 shows how basalt, carbon, and GFs subjected to water and salt solutions 
retain their high modulus properties similarly. While the modulus of the CFs exposed to 
the acid and alkaline mixtures was almost unaffected, the modulus of the basalt and GFs 
degraded in a manner comparable to how their tensile capacity degraded after being sub-
jected to the solutions. 

0

20

40

60

80

100

120

Water Salt Acid Alkaline

Te
ns

ile
 st

re
ng

th
 re

te
nt

io
n 

(%
)

Basalt Fiber Corbone Fiber Glass Fiber

Figure 17. Alkali reaction product of (a) BF, (b) CF, and (c) GF [30].

Assessments of the tensile capacity of various fibers after 66 days of exposure are dis-
played in Figure 18. Figure 18 demonstrates that whereas the tensile capacity of the BFs
subjected to the acid and alkaline solutions was virtually totally reduced, the tensile capacity
of the CFs subjected to all kinds of solutions remained unchanged. The GFs had substantially
greater acid resistance than the BFs, although they degraded much more quickly in water and
salt solutions. It can be concluded that BF shows comparable resistance to water, salt, and
alkaline corrosion, but weaker resilience to acid corrosion than GFs and CFs.
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Figure 19 shows how basalt, carbon, and GFs subjected to water and salt solutions
retain their high modulus properties similarly. While the modulus of the CFs exposed
to the acid and alkaline mixtures was almost unaffected, the modulus of the basalt and
GFs degraded in a manner comparable to how their tensile capacity degraded after being
subjected to the solutions.
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10. Conclusions

Basalt fibers (BFs) may help to enhance the pore size distribution of concrete. Concrete
durability properties are therefore significantly increased by BF, which may minimize
fractures and stop water or hazardous ions from infiltrating concrete. In this analysis, the
effects of BFs on the durability assets of concrete are summarized. The detailed conclusions
are given below.

• The apparent density and ultra-sonic pulse velocity exhibit a decreasing trend with
increasing BF volume content.

• Shrinkage declined with the addition of BF. It is owing to the crack’s prevention and
higher elastic modulus of BF.

• Surface resistivity boosted with BF up to 0.3%. However, beyond the accumulation of
BF, the results declined in surface resistivity due to a lack of flowability.

• The rapid chloride ions penetrability of concrete increased with the addition of BFs
due to a weak fiber-matrix interfacial transition zone (fiber-ITZ) with extreme perme-
ability. However, the addition of mineral admixture decreased the rapid chloride ions
penetration up to some extent due to pozzolanic and micro fill-up cavities. Though
data are fewer, and additional details analyses are necessary.

• The freezing and thawing resistance of concrete was boosted with the addition of
BF. The highest resistance was detected at a 0.02% addition of BF. However, further
addition of BF resulted in a decrease in freezing and thawing resistance due to a lack
of flowability.

• BFs show comparable resistance to water, salt, and alkaline corrosion, but weaker
resilience to acid corrosion than GFs and CFs. However, the statement is not clear, as
some studies conclude that the BF is more corrosion resistant than carbon and GFs.
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Overall, less knowledge is accessible on the durability characteristics of BFs-reinforced
concrete. Furthermore, some studies claim improvements in durability assets of concrete
reinforced with BF, while other findings claimed decreased durability properties of concrete
reinforced with BF. Thus, the review suggests a detailed study on the durability aspects of
BFs-reinforced concrete. Additionally, no information is available on the creep properties of
BFs-reinforced concrete. Finally, the review also suggests a detailed study on the corrosion
resistance of BF by adjusting the matrix and the coupling agent to enhance the corrosion
endurance of BF-reinforced concrete.
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