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Abstract: In present paper, a novel flowable tritium breeder is prepared by mixing the Li2TiO3

micro-powders and liquid GaInSn alloy, where GaInSn alloy is used to simulate the fluid behaviors
of lithium-based liquid tritium breeder, forming a type of composite characterized by liquid-solid
dual phase. In detail, the effects of the volume fraction of ceramic micro-powders on viscosity
and conductivity of the composite in magnetic field are the focus. The XRD results prove that the
obtained Li2TiO3 micro-powders contained Li2TiO3 phase without impurities. The results shows
that once the magnetic field intensity exceeds the critical value, the viscosity of liquid GaInSn metal
becomes significantly greater than that of liquid-solid dual-phase composites. Furthermore, the
addition of Li2TiO3 micro-powders could effectively reduce the magneto hydro dynamic (MHD)
fluid effect, and the dual-phase composites exhibit comparatively lower flow resistance under the
strong magnetic field. Moreover, the conductivity of the tritium breeder composites decreases rapidly
with the addition of Li2TiO3 micro-powders. The MHD pressure-drop-increasing rate decreases
with the increase of viscosity, which indicates that the addition of Li2TiO3 micro-powders effectively
reduces the MHD effect. The conductivity of the composites increased slightly and then remained
stable after static placing for several tens of minutes. The present investigation provides a novel
insight into the fabrication strategy of tritium breeder materials with low MHD effect.

Keywords: MHD effect; liquid tritium breeder; Li2TiO3; viscosity; liquid lithium

1. Introduction

With the rapid development of social economy, the consumption of non-renewable
energy such as coal and oil has long led to increasingly serious environmental problems.
Nuclear fusion energy has become the preferred energy in the future because of its safety,
cleanliness, rich fuel resources, and other advantages [1]. In the fusion reactor, tremendous
energy is produced by nuclear fusion of deuterium (D) and tritium (T). Deuterium is
abundant in nature, whilst tritium is rare on earth and is usually prepared by neutron
irradiation with lithium-based alloys as raw materials [2–4]. In order to compensate for
the tritium consumed in D-T fusion reaction, lithium-containing materials have been used
to react with the neutron, which is the product during the reaction, thus realizing the
so-called “tritium self-sustaining” process. In this process, a tritium breeder blanket is
usually designed in the fusion reactor or fusion-fission hybrid reactor, where lithium-
containing materials are important tritium-producing materials, namely tritium breeder
materials. Tritium breeder materials can be generally divided into liquid tritium breeder
materials and solid tritium breeder materials. Liquid tritium breeder materials are mainly
liquid lithium and its alloys, such as Li17Pb83, Li2BeF2, Li25Sn75, etc. [5,6]. Liquid breeder
materials were first employed in breeder blankets due to their advantages of easy tritium
extraction, resistance to irradiation damage, high thermal conductivity, and easily achieved
manufacturing and specification requirements [7]. However, three major problems hinder
the wider application of liquid breeder materials: (1) magnetohydrodynamic (MHD) effects
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increase fluid resistance and reduce liquid Li mobility [8]; (2) the corrosion candle of liquid
Li on cladding structural materials [9]; and (3) the inherent volatilization of liquid Li at
operating temperatures leads to Li loss [10]. Numerical simulation is an important method
to study the MHD effect of liquid metal cladding. The cladding pipeline structure in the
practical application of nuclear fusion is very complex, but the research mainly focuses
on the straight pipeline, such as round pipe and square pipe. Wang et al. [11] studied the
induced current and velocity distribution in lithium lead square tubes and found that the
Lorentz force is very large, and the side velocity was about four times that of the center
velocity. Buhler et al. [12] studied the changes of flow velocity and Hardman number in
the closed loop and found that with the increase of Hardman number, the flow velocity
decreased rapidly. Solid tritium breeder materials include lithium silicate (Li4SiO4), lithium
titanate (Li2TiO3), lithium titanate (Li2ZrO3), and lithium oxide (Li2O) [13–15]. Among
those alloys, Li2TiO3 is recognized as one of the most promising solid tritium breeder
materials and has attracted increasing scientific interests due to the considerable lithium
atom density, low activation, excellent chemical stability, and good compatibility with
structural materials [16] combined with acceptable tritium release performance at low
temperature [14].

Conventional monophase tritium breeder materials can hardly satisfy the utilization
requirement of the fusion reactor. First, although the liquid tritium breeder materials have
the advantages of a high tritium breeding ratio and high lithium content [17], the MHD
effect can cause intense flow resistance and thus seriously affects the flow behaviors of
liquid tritium breeder materials. Further, the liquid tritium breeder materials easily corrode
the cladding structural materials. On the other hand, the solid tritium breeder materials
exhibit high chemical stability, safety, and non-corrosiveness without MHD effect [18,19].
However, the prominent problems hindering the development of these solid breeder
materials include low lithium density, poor tritium release and heat transfer performance,
easy blockage of tritium transport gas channel, and complex cladding structure.

In order to overcome the disadvantages of monophase liquid or solid tritium breeder
materials, a novel flowable dual-phase tritium breeder material is prepared in present
study for the first time, to the best of authors’ knowledge. The proposed flowable tritium
breeder material fabricated by mixing liquid metal and solid ceramic micro-powders can
not only suppress the MHD effect of the existing liquid metal or molten salt tritium breeder
agent but also eliminate the problems of low tritium release efficiency, low heat transfer,
fragility, and carrier gas channel blockage caused by lithium volatilization of the solid
tritium breeder materials. In this paper, liquid GaInSn alloy is used to simulate the fluid
behavior of lithium-based liquid tritium breeder, which is mixed with various volume
fraction of Li2TiO3 ceramic micro-powders to form a liquid-solid dual-phase tritium breeder
composite. The aim of the present study is to elucidate the effects of volume fraction of
ceramic micro-powders on viscosity in magnetic field and on the conductivity of tritium
breeder composites. The present study mostly concentrates on numerical simulation of
liquid tritium breeders to study its MHD effect. In this paper, the relationship between
viscosity and magnetic flux density of composite fluid under magnetic field is innovatively
studied by experiments, and the linear relationship between MHD pressure drop and
kinematic viscosity is explored. The result may provide direction to completely solve the
problem of liquid and solid tritium breeder materials, which is beneficial to the future
development of tritium breeder materials.

2. Experimental
2.1. Preparation of Li2TiO3 Micro-Powders

A novel sol-gel-hydrothermal method, which was developed on the basis of con-
ventional sol-gel method and hydrothermal method, was used to prepare the Li2TiO3
micro-powders. The main procedures are as follows: (1) heating the 100 mL ethylene glycol
at 140 ◦C oil bath and mixing 6.72 g LiOH.H2O with the above solution and stirring for a
period of time, followed by cooling in air; (2) mixing the C16H36O4Ti (tetrabutyl titanate)
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with the above cooled solution by maintaining the molar ratio of 1:2.25; and (3) stirring the
mixed solution until white gel precipitated. The hydrothermal reaction was performed in
the hydrothermal reactor at 160 ◦C for 10 h, followed by drying in oven at 60 ◦C. Finally,
the Li2TiO3 ceramic micro-powders were obtained by calcining at 600 ◦C for 1 h.

2.2. Preparation of Flowable of Liquid-Solid Dual-Phase Tritium Breeder Composite

Different certain volume fractions of Li2TiO3 micro-powders and liquid GaInSn alloy
were mixed, crushed, and stirred repeatedly to obtain a uniform liquid-solid dual-phase
tritium breeder composite.

2.3. Construction of Magnetic Field Viscosity Device

Referring to McTague et al. [20], a testing device for determining the variation of the
viscosity in the applied magnetic field with different magnetic flux density was set up as
shown in Figure 1. In Figure 1, the capillary tube is put in an external magnetic field, which
is generated by the excitation coil. A maximum magnetic flux density of 2305 GS can be
achieved. By measuring the time required for a certain volume of fluid to flow through the
capillary under its own gravity, the kinematic viscosity (η), which is used to evaluate the
fluidity of flowable tritium breeder, is calculated from Equation (1) [21]:

η =
πr4gh
8VL

t, (1)

where r is the inner diameter of the viscometer, g is gravitational acceleration, h is the
height difference between the two tubes of the viscometer, V is the volume of the fluid,

and L is the length of the capillary. πr4gh
8VL could be regarded as a constant; r is measured

as 0.4 mm. t represents the time for a certain volume fraction of fluid flowing through the
capillary under its own gravity.
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Figure 1. Schematic diagram of the magnetic field viscosity testing device (B is magnetic flux density).

2.4. Testing and Characterization

The morphology of Li2TiO3 micro-powders was observed by Hitachi scanning electron
microscope (SEM, SU-70). The phase constitution of Li2TiO3 powders was determined by
the X-ray diffractometer (XRD, Bruker D8 advance) with Cu radiation. The conductivity of
the tritium breeder composites with various volume fractions of ceramic micro-powders
was measured by conductivity meter.
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3. Results and Discussion
3.1. Micromorphology and Structural Characterization of Li2TiO3 Micro-Powders

Figure 2a shows the SEM image of Li2TiO3 micro-powders. It was found that Li2TiO3
grains tend to be complete, the particle morphology is spherical, the sphericity is high, the
boundary is very clear, and the agglomeration is light. Figure 2b shows the particle size
distribution of Li2TiO3 micro-powders prepared by sol-gel-hydrothermal method. The
spherical nanoparticles were obtained, most of which are concentrated in the size range
of 1–3 µm, with the highest distribution probability in the size range of 1.5–2.0 µm. The
average median particle size is 1.71 µm, accounting for 26.3%. The distribution of particle
size presents a standard normal distribution. The particle size distribution of Li2TiO3
powder is narrow and uniform. The particle size distribution of Li2TiO3 powder is narrow
and uniform. As shown in Figure 2c, three thin and high diffraction peaks of Li2TiO3
occurred at 2θ of 18.5◦, 43.71◦, and 63.51◦, respectively, and a pure Li2TiO3 phase with fine
crystallites was ultimately obtained after calcining at 600 ◦C for 1 h. The sample exhibited
well-defined peaks assigned to the pure β-Li2TiO3 phase (PDF card: 33-0831), indicative of
the high crystallinity of the sample. No other impurity peaks were found, indicating the
high purity of the prepared Li2TiO3 powder.
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3.2. Effect of Li2TiO3 Micro-Powders Content on the Magnetic Field Viscosity of Flowable Tritium
Breeder Composite

The Li2TiO3 micro-powders content in the tritium breeder composite is characterized
by Equation (2):

ϕs =
Vs

V
(2)

where ϕs is the volume fraction of solid micro-powders, Vs is the volume of solid micro-
powders, and V is the total volume of tritium breeder composite.

Figure 3 depicts the variation of the viscosity of flowable tritium breeder composites in
the magnetic fields with different volume fractions of Li2TiO3 micro-powders. The results
show that the flow of the materials displays an apparent MHD effect under the present
experimental condition. Firstly, without the magnetic field, the composite containing
Li2TiO3 micro-powders shows larger viscosity than that of the liquid metal. Meanwhile,



Materials 2023, 16, 406 5 of 12

the viscosity increases with the increasing volume fractions of Li2TiO3 micro-powders. This
phenomenon may be caused by the collision and the friction among the solid Li2TiO3 micro-
powders as well as between the solid Li2TiO3 micro-powders and liquid metal. Moreover,
higher volume fractions of the Li2TiO3 micro-powders lead to the greater consumption of
flow kinetic energy during collision and friction and thereby the larger viscosity. With the
external magnetic field, however, the viscosity of composites with various volume fractions
of Li2TiO3 micro-powders increases obviously. Particularly, the liquid metal viscosity has
the most remarkably increase, even far exceeding the viscosity of the composites when
the magnetic flux density reaches 2305 Gs. This result reveals two opposite influences on
the viscosity by adding solid micro-powders into the liquid metal. Firstly, the addition
of micro-powders leads to increased viscosity through collision and friction. Secondly,
it reduces the MHD effect and therefore decreases the viscosity of the composites in the
magnetic field. The above results indicate that the composite containing 10 Vol.% Li2TiO3
micro-powders, under a magnetic field with 2305 Gs intensity, shows the lowest viscosity.
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The effects of magnetic flux density on the viscosity of the flowable tritium breeder
composites were further considered, as shown in Figure 4. The results show that the
viscosity of the composite with various fractions of solid Li2TiO3 micro-powders increases
monotonously with the magnetic field intensity. As the magnetic flux density increases, the
increasing rate of the viscosity of liquid metal becomes obviously faster than that of the
composites, whilst the increasing rate of the composites gradually slows down at larger
magnetic flux density. When the magnetic flux density is greater than a certain value, the
viscosity of the liquid metal is higher than that of the composites, representing that the
addition of Li2TiO3 micro-powders can efficiently reduce the MHD effect and can keep the
composites with lower flow resistance under larger magnetic flux density. The changes of
the viscosity of the composite with 25 Vol.% Li2TiO3 micro-powders, in a magnetic flux
density reaching about 2000 Gs, gradually tend to be gentle and toward a steady state.
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When it is a pure metal, the viscosity and magnetic flux density are in a power of
2 relationship, and the fitting relationship is η = 2.31× 10−7B2 − 1.98× 10−4B + 0.43 (B is the
magnetic flux density; the fitting formula is only used to discuss the numerical relationship
of the measured curve. At present, we cannot explain the physical meaning of the formula,
so the formula does not represent a strict dimensional relationship. The following Formula
and Formula (9) only consider numerical relationship), which is consistent with the results
of Zhang Wen et al. [22]. For the relationship between viscosity and magnetic flux density
of composites with Li2TiO3 powder, the formula η = A1 Bˆ3/2 + A2 Bˆ1/2 + A3 is more in
line with the relationship between magnetic flux density and viscosity (as shown in Table 1,
A1, A2, and A3 are constant). From the different formulas obtained by fitting, it is feasible
to use this property to reduce the MHD effect by adding Li2TiO3 to change the motion of
pure liquid metal in the magnetic field.

Table 1. η = A1 Bˆ3/2 + A2 Bˆ1/2 + A3 fitting curve values.

Value
ϕl 5% 10% 15% 20% 25%

A1 1.93 × 10−6 1.58 × 10−7 8.09 × 10−7 5.82 × 10−7 7.64 × 10−7

A2 2.24 × 10−3 6.27 × 10−3 3.35 × 10−3 6.14 × 10−3 7.22 × 10−3

A3 4.09 × 10−1 3.83 × 10−1 4.84 × 10−1 5.54 × 10−1 7.36 × 10−1

R2 0.9983 0.98973 0.99475 0.99927 0.97323

3.3. Effects of Ceramic Micro-Powders on Conductivity of Tritium Breeder Composite

Magnetic fluid pressure drop (∆PMHD) is another commonly used parameter to evalu-
ate the fluidity of liquid tritium breeder in magnetic field. Considering the complexity of
the real magnetic fluid pressure drop formula, a simplified expression is used according to
the theory of Yang et al. [23]:

∆PMHD = kpσf vB2, (3)

where kp is a constant, and v is the flow rate. The conductivity σf is proportional to the ∆PMHD,
and reducing the conductivity of the tritium breeder composite is obviously the most effective
method to reduce the MHD effect [24]. As shown in Figure 5, the conductivity decreases
rapidly with the addition of ceramic micro-powders, and the decrease of conductivity follows
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a certain conductivity formula when ceramic micro-powders are added. Many researchers
have studied the conductivity of composites with dispersive second-phase distribution and
have derived the calculation formula of conductivity, including the following formulas:
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Maxwell conductivity equation [25]:

σM =
2σ2 + σ1 − 2(1− ϕ)(σ2 − σ1)

2σ2 + σ1 + (1− ϕ)(σ2 − σ1)
σ2, (4)

Wiener formulas [26]:
σM = σ11− ϕ + σ2 ϕ, (5)

Scarisbrick formulas [27]:

σM = σ2 ϕϕϕ
− 2

3 C2, (6)

where σM is the conductivity of composites, and σ1 and σ2 are the conductivity of insulator
phase and conductive phase, respectively. ϕ is the volume fraction of bulk phase, and C
represents the geometric factor of Formula (6), ϕ = 3C2 − 2C3.

Figure 5 presents the calculated and experimental conductivity values according to For-
mulas (4)–(6). It indicates that the conductivity of the composite decreases with the increase of
ceramic micro-powders fractions although the calculated values are greater than the measured
ones. Formulas (4) and (5) are applied to the case where dispersed insulating particles are
added into the conductive matrix, and Formula (6) is mainly applied to the case where conduc-
tive particles are added to the insulating matrix. However, all of above formulas are mainly
concerned with the cases where the addition of the second particle is in low volume fraction.

In this paper, however, the insulating particles are added to the conductive matrix in a
large amount, so the conductivity values calculated by the above formulas are somewhat
much larger than that of experimental ones. By adding Li2TiO3 micro-powders, the conduc-
tivity of tritium breeder composites decreases rapidly from 3.4 × 106 S m−1 to 1.62 × 105 S
m−1, indicating that a much more pronounced effect on the conductivity, compared to that
described in Formulas (4)–(6), occurs after adding insulating Li2TiO3 micro-powder. When
measuring the resultant conductivity with different volume fractions, the conductivity
of tritium breeder composites achieves the largest value of 9.43 × 105 S m−1, while the
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maximum electrical conductivity of the liquid metal droplets wrapped with polysaccharide
microgel is 4.8 × 105 S m−1 [28]. Actually, in this investigation, the amounts of insulating
particles are large, forming a great deal of interfaces between solid particles and liquid
metal. These interfaces are of great importance in carrier scattering. Nevertheless, only
the contribution of contact between conductive particles and conductivity of conductive
particles is considered in Formulas (4)–(6), while the role of ceramic micro-powder and
interface effects are ignored.

3.4. Analysis of the Relationship between the Magnetic Fluid Pressure Drop and Kinematic
Viscosity of the Flowable Tritium Breeder

Hua et al. [24] calculated the functional relationship between the magnetic fluid
pressure drop of the rapidly changing magnetic field and Ha−1, fitted the experimental
results, and obtained the empirical formula of the magnetic fluid pressure drop:

∆PMHD = Ha−1σvB2l, (7)

Ha = Ba
√

σv, (8)

where σ and v are the conductivity and average velocity of the fluid, B is the intensity of
the external magnetic field, l is the length of the pipe wall, Ha is the Hardman constant that
can be calculated from Formula (8), and a is 1

2 of the channel height parallel to the direction
of the magnetic field.

The relationship between η and ∆PMHD of the volume fraction of different ceramic
micro-powders is shown in Figure 6. As can be seen from Figure 6, the MHD pressure
drop of pure liquid metal is significantly greater than that of the fluid composites. The
addition of Li2TiO3 micro-powder does reduce the MHD pressure drop, and Figure 5
shows that to reduce the conductivity leads to the MHD pressure drop. With the increase of
Li2TiO3 micro-powder, the maximum MHD pressure drop of different volumes of powder
decreases gradually. In order to further reveal the relationship between the MHD pressure
drop ∆PMHD and kinematic viscosity η, the curves of the MHD pressure drop ∆PMHD
versus the kinematic viscosity η were fitted. The fitting results are found to conform to the
fitting formula:

∆PMHD = mη + n, (9)

where m and n are fitting constants.
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∆PMHD shows a linear relationship with kinematic viscosity (when ϕs is 0, the fitting
degree is poor, but when ϕs is greater than 5 Vol.%, the fitting correlation coefficients is
good), and ∆PMHD increases with the increase of kinematic viscosity, and d∆PMHD/dη
decreases with the increase of the proportion of micro-powder fractions (shown in Table 2).
This indicates that the ∆PMHD increasing rate decreases with the increase of viscosity, which
indicates that the addition of Li2TiO3 micro-powders effectively reduces the MHD effect.

Table 2. Parameters related to fitting curve of magnetic fluid pressure drop ∆PMHD and kinematic
viscosity η.

Value
ϕs 0 5% 10% 15% 20% 25%

m 235.30 557.81 556.65 534.58 321.98 319.62

n 34.64 −216.46 −250.93 −265.67 −200.45 −265.09

R2 0.5462 0.98773 0.98748 0.99688 0.99277 0.93173

d∆PMHD/dη 235.30 557.81 556.65 534.58 321.98 319.62

3.5. Stability Evaluation of Flowable Tritium Breeder

Considering that the prepared tritium breeder is composed of liquid GaInSn alloy
and ceramic Li2TiO3 micro-powders, ceramic particles flowing onto the surface may occur
during holding. In this point of view, the variation of the conductivity with time is used as
the criterion to judge the stability of the dispersion uniformity. If the conductivity of the
fluid remains unchanged with time, obviously, it is indicated that the fluid can be seen as in
a stable state. On the contrary, if the conductivity changes with time, then it is considered
that ceramic particles flowing onto the surface has occurred. Figure 7 shows the variation
of the conductivity of the composite with holding time. When ϕs is 0, no obvious change
of the conductivity can be found, indicating the considerably high stability of the liquid
tritium. When ϕs is 5 Vol.%, the conductivity remains stable within the first 105 min and
achieves a stable state after increasing to a certain extent. The above results indicate that
the micro-powders can maintain a good mixing state with the liquid metal within 105 min.
After that, there are ceramic particles flowing onto the surface, which then continues to
maintain a stable state, indicating that a small amount of micro-powders precipitated, but
the remaining micro-powders can still maintain a good mixing state with the liquid metal.
When volume fraction ϕs continued to increase to 20 Vol.%, the conductivity remained
stable for a certain period of time, and then, after a certain period of time, the conductivity
remained unchanged, indicating that there is a certain amount of powder flowing onto
the surface. Increasing the ϕs to 25 Vol.%, it was found that the conductivity increases
significantly after maintaining for the first 45 min and then remains stable, indicating that
as the volume fraction of added micro-powders is achieved to a certain extent, the mixed
liquid becomes unstable. Interestingly, once the mixed materials are stirred by ultrasonic
treatment, it can reach the suspended state again and achieve the initial conductivity,
indicating a recycling use in practical application.
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4. Conclusions

In the present study, Li2TiO3 ceramic micro-powders mixed with liquid GaInSn com-
posite were prepared, in which GaInSn alloy was used to simulate the flow behavior of
lithium-based liquid tritium breeder. The effects of volume fraction of ceramic micro-
powders on the viscosity and conductivity of the composites in magnetic field were dis-
cussed in detail. The main conclusions are as follows:

1. The morphology of Li2TiO3 micro-powders prepared by sol-gel-hydrothermal method
is spherical with high sphericity. The XRD results prove that the obtained Li2TiO3
micro-powders contain Li2TiO3phase without impurities;

2. The addition of Li2TiO3 micro-powders exhibits apparent influence on the viscosity
of tritium breeder composite. When Li2TiO3 powder is added, the fitting formula is
η = A1 × Bˆ3/2 + A2 × Bˆ1/2 + A3, and Li2TiO3 powder changes the motion of pure
liquid metal in the magnetic field so that it is feasible to use this characteristic to
reduce the MHD effect under the strong magnetic field;

3. The conductivity of the liquid tritium breeder composites decreases rapidly with
the addition of Li2TiO3 micro-powders. By testing the relationship between the
conductivity of the composites with different volume fractions powder and time,
it was found that the conductivity of the composites increased slightly and then
remained stable after static placing for tens of minutes. A small amount of micro-
powders precipitate during holding for several of several ten minutes, whereas the
remaining micro-powders maintain a uniform distribution with the liquid metal for a
long time. However, when the content of micro-powders is large, the conductivity
increased with time, indicating that the stability of the mixed fluid is reduced;

4. There is a linear relationship between the magnetic fluid pressure drop ∆PMHD and
kinematic viscosity η for different volume fraction of ceramic micro-powders, while
the increasing trend of MHD decreased with the increase of viscosity.

In this paper, it is proven that adding Li2TiO3 powder to liquid tritium breeder could
effectively reduce the magnetic fluid effect and form a flowable tritium breeder with low
flow resistance under the strong magnetic field, which provides a new idea for the research
and development of tritium breeder materials. The study in this paper may point to a way
to completely solve many serious problems of tritium breeder materials.
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