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Abstract: Gallium nitride (GaN) has a wide energy band gap and a high power density, efficiency,
switching frequency, and electron carrier mobility, having broad applications in digitization. Be-
cause GaN has high potentials, this study performed a bibliometric analysis on the publications
of GaN indexed in the Web of Science database from 1970 to 2023. A performance analysis of the
15,634 publications was performed using Harzing’s Publish or Perish tool, while science mappings
were performed with VOSviewer software. The results show that there has been an uptrend in the
on-going research on GaN, especially in the past decade. Most of the documents are within the
fields of physics, engineering, and materials science. The United States has the highest number of
publications and the most impactful research. The United States is also actively collaborating with
other countries to gain deeper insights into GaN. The analysis shows that the concentration of GaN
research is slowly moving towards the development of high-voltage operations.
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1. Introduction

From germanium and silicon to gallium arsenide [1–3], researchers and practitioners
in the semiconductor industry are constantly looking for materials with greater power
density and efficiency, especially for automation, artificial intelligence, Internet of Things,
and 5G technology [4,5]. Even though silicon is inexpensive and abundantly available, it is
more suitable for technologies with lower frequencies. The performance of the silicon will
drop as the temperature rises [6]. This is a serious problem, as current and future integrated
circuits are more complex and will likely have high heat generation. Silicon also has a lower
electron mobility compared with other materials such as the III-V semiconductors [7]. For
high frequencies, gallium arsenide has been a popular option for manufacturers. However,
gallium arsenide is highly brittle as the interatomic bonds can easily break. Cracks usually
form during the nano-cutting phase as the cutting depth increases. The dicing of gallium
arsenide wafers will also cause fracture, which is costly to manufacturers [2,8].

Overall, the industry has recognized silicon as the initial generation semiconductor
and gallium arsenide as being the next generation semiconductor [9]. In Industry 4.0,
the current wave has focused on semiconductors with wide energy bandgaps of above
2.3 eV, with gallium nitride (GaN) and silicon carbide (SiC) being the most prominent
semiconductors [10]. As the latest generation of semiconductors, GaN and SiC have higher
power densities and efficiencies compared with the first and second generations. The
advantages of the current generation semiconductors include small gate capacitance, gate
drive loss, and output capacitance while also having a high switching frequency [11].

Even though GaN and SiC are the modern-day semiconductors, there are some differ-
ences between them. As a field-effect transistor, GaN does not have body diode. Therefore,
GaN does not have reverse recovery loss [12]. The switching energy is also lower in GaN
compared with SiC, which means GaN has smaller loss in the power factor correction

Materials 2023, 16, 401. https://doi.org/10.3390/ma16010401 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16010401
https://doi.org/10.3390/ma16010401
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7766-9170
https://orcid.org/0000-0002-9850-4850
https://orcid.org/0000-0002-9495-3392
https://doi.org/10.3390/ma16010401
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16010401?type=check_update&version=2


Materials 2023, 16, 401 2 of 18

(PFC) [13]. The switching speed of GaN can also reach 150 V/ns, which indicates a higher
efficiency [11,14]. There is also smaller dead-time loss in GaN than in SiC. The adoption
of GaN is also relatively cheap as it does not require a high number of active and passive
components [11]. The cooling capability of GaN is also excellent, which reduces the need
for cooling in a system [15]. Moreover, GaN has a higher electron saturated drift velocity of
about 2.20 × 107 cm/s and electron mobility of 990–2000 cm2/Vs as compared with SiC,
which is 650 cm2/Vs [15,16]. In short, GaN is excellent for many applications in systems
with low temperatures and high frequencies as GaN has great figures of merit (FOMs) [17].

In 1875, Paul-Émile Lecoq de Boisbaudran, a French chemist, discovered gallium
in a sample of mineral sphalerite. De Boisbaudran performed a test using spectroscopy
and found a pair of violet lines which signaled eka-aluminium. The earliest pure gallium
was then collected through electrolysis, with the measured density of 5.9 g ml−1 [18].
GaN was then produced through the reaction of metallic gallium with ammonia gas
at around 1000 ◦C in the 1930s [19,20]. The first concept of the light emitting diode
(LED) was demonstrated by Maruska et al. [21] in 1973 where a high voltage of about
160 V was needed to obtain the violet luminescence. Currently, GaN-based LEDs, with
sizes of smaller than 100µm, have high current density, high efficiency in generating blue
and green light, and high modulation bandwidth, which are highly suitable for optical
wireless communication [22,23].

GaN is hard and has a strong chemical stability and a melting point reaching up
to 1700 ◦C [24]. It also has a wide bandgap of 3.4 eV and a hexagonal P63mc wurtzite
crystal structure at atmospheric pressure [25,26]. GaN has been widely applied in 5G
technologies [25]. Due to the high chemical stability and wide bandgap, GaN is resistant to
radiation, allowing signals to be steady and accurate despite disturbance [27]. Low gate
charge and high frequency, which bring the loss of efficiency to a minimum, also help
in speeding up the switching rate for faster calculation in 5G technologies [28,29]. The
high thermal conductivity of 2.0 Wm−1K−1 and good heat dissipation imply that GaN is
suitable to be used in 5G base stations [27]. In the future, with the mass production and
wide application, the cost of using GaN can be reduced as GaN becomes an important
material in the industry.

A bibliometric analysis examines the scientific performances of a specific topic in
a scholarly database [30]. Bibliometric analyses are important for studying the impacts
of scientific publications in terms of citation metrics, subject areas, geographical regions,
keywords, and authorships [31]. This type of analysis also helps to uncover the various
domains in a specific topic [32]. The outcome of a bibliometric analysis helps scholars
to identify emerging trends in the selected topic and the research gaps which could be
further explored for a more comprehensive coverage of the topic [33]. For an in-depth
understanding of the topic, a bibliometric analysis covers two important parts, which are
performance analysis and scientific mapping [34,35].

A performance analysis involves the use of citation metrics such as citation counts,
citation impacts, h-indexes, and g-indexes [36,37]. Citation counts include the total number
of citations from a set of publication, such as the total citation (TC) received from the
publications in a particular year; citation impacts study the average citations per paper
(C/P) or the citations per cited paper (C/CP). The h-index means the “h” number of
publications that has received “h” number of citations, which is used to assess the quality
of a research achievement; the g-index involves the “g” number of publications, whereby
the average citation is “g2” and above [38–40]. In short, a researcher shall receive an h-index
if the h of the researcher’s total number of papers (N) has been cited at least h times while
the remaining papers (N-h) do not have greater than h citations, respectively. A high
h-index shows that a researcher has consistently produced a high number of impactful
papers [41]. When a set of publications is ranked in descending order of the number of
citations obtained, the g-index shows the largest number of the top g papers that received
at least g2 citations together. The g-index is different from h-index, where a high h-index
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requires a high number of quality publications. However, a high g-index can be attributed
to only a small number of papers [42–44].

Meanwhile, scientific mapping shows the knowledge dynamics in the topic. Scientific
mapping shows the collaborative networks of authors and relationships among the key-
words [45,46]. For a performance analysis, Harzing’s Publish or Perish tool is used [47–50].
VOSviewer is a popular open-source program for scientific mapping, especially for network
and density visualizations [51,52]. To the best of our knowledge, there has been no biblio-
metric analysis study performed on GaN from the first indexed paper in 1970 to the latest
publications in the Web of Science database. Therefore, the aim of this study was to perform a
bibliometric analysis on GaN from 1970 to 2023 using the Web of Science database. To date,
Web of Science has more than 21,100 peer-reviewed publications, which are of high quality.
Therefore, it is highly suited for a bibliometric analysis [30,53,54]. This paper shall continue
with the historical development and applications of GaN, the data and methodology, the
results and discussions, and the conclusion in the following sections.

2. Historical Development and Applications of Gallium Nitride

Roccaforte and Leszczynski [19] summarized the historical development of nitrides
research. The important historical steps are shown as follows.

1932: The first polycrystalline GaN material was synthesized by flowing ammonia
(NH3) over liquid gallium (Ga) at around 1000 ◦C [20].

1938: The crystal structure of GaN has been studied in GaN powders [55].
1969–1971: Thin GaN layers were grown by Maruska and Tietjen [56] using hydride

vapor phase epitaxy (HVPE) on sapphire substrates.
1972: Manasevit et al. [57] and Manasevit [58] grew the first metal–organic vapor-phase

epitaxy (MOVPE) GaN layers.
1990: Matsuoka et al. [59] succeeded in the growth of the first InGaN layers, offering

access to a very wide spectral range from 0.7 eV (IR) to 3.5 eV (UV) through all wavelengths
of the visible range.

2001: Sumitomo Electric bought the patent from Tokyo Agriculture University on the
DEEP method to grow GaN single crystals on GaAs substrates using the HVPE method
and bowing dislocations in small regions [60,61].

2014: The Nobel Prize in Physics was assigned to three Japanese scientists (Isamu
Akasaki, Hiroshi Amano, and Shuji Nakamura) for the invention of efficient blue LEDs,
which has enabled bright and energy-saving white light sources [62,63].

2019: Zhang et al. [64] demonstrated 271.8 nm laser diodes (LDs) operating at room
temperature and in the pulse mode.

There are several applications of GaN-based materials in optoelectronic devices. The
nitride-based optoelectronic devices such as LEDs and LDs are applied in lighting, commu-
nications, and quantum applications [65]. GaN LDs allow data speeds reaching 15 Gbit/s
with the combination of orthogonal frequency division multiplexing [65]. GaN LDs can
also be applied in areas of high spectral purity, such as atom cooling and optical reading
or opto-magnetic memories [66]. White LEDs have significantly decreased the energy
consumption and increased the contrast ratio and efficiency with a luminous efficacy of
more than 150 lm W−1 [22,67]. White LEDs are constructed using blue LEDs illuminating
phosphor to excite light with longer wavelengths [68,69]. Such white GaN LEDs are used as
bulbs or headlights and in computer screens [19]. GaN LEDs also contribute to smart light-
ing, which includes those used for tracking and imaging, which is a part of optical wireless
communication [23]. Moreover, GaN is also found to be promising for power conversion
applications in aerospace because of the higher slew rate, low ON resistance, and small die
size [70]. Satellites with GaN solid-state power amplifiers were also launched more than
six years ago by BeiDou Navigation Satellites and are still currently adopted. This power
amplifier has an output power of greater than 150 W and a greater than 50% efficiency [71].
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3. Data and Methodology

This paper performs a bibliometric analysis on GaN publications indexed in the Web of
Science database [72,73]. This study adopts a three-phase approach that includes: (1) search
query identification, (2) software and data extraction, and (3) data analysis, as presented
in Figure 1 [74].
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Figure 1. The three-phase approach for the bibliometric analysis on GaN.

For the initial phase, the topic of study, “Gallium nitride”, was first identified for the
bibliometric analysis. Scientific literature on GaN was then searched on the Web of Science
database because of its wide coverage and high-quality peer-reviewed papers, which also
allows for bibliographic information extraction [75]. Data were collected on 9 December
2022 with the following query: (“gallium nitride”(Topic)), which yielded 15,762 documents.
After that, the articles, proceeding papers, review articles, book chapters, early access, news
item, editorial material, books, and book reviews were included [74,76]. The final dataset
consists of 15,634 documents ranging from 1970 to 2023.

In the second phase, the data were exported in the plain text file format for the
statistical analysis of bibliometric information such as years, author names, subject areas,
document types, source titles, keywords, and countries. After that, intensive citation
analysis using Harzing’s Publish or Perish 8 and bibliometric mapping using VOSviewer
version 1.6.18 were performed [77,78]. The performance analyses of the TC, C/P, C/CP, h-
index, and g-index according to year, country, and source title were obtained with Harzing’s
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Publish or Perish [49]. Then, VOSviewer was used for science mapping, including country
co-authorship and keyword co-occurrence analyses [79].

4. Results

This section contains the results of the bibliometric analysis on GaN from 1970 to 2023 as
of 9 December 2022. Table 1 presents the breakdown of the document types of the documents
on GaN. These documents are composed of articles (11,559 documents or 67.16%), proceeding
papers (5112 documents or 29.70%), review articles (311 documents or 1.81%), book chapters
(86 documents or 0.50%), early access documents (59 documents or 0.34%), news items
(40 documents or 0.23%), editorial materials (39 documents or 0.23%), books (5 documents
or 0.03%) and book reviews (1 document or 0.01%). By comparison, articles and proceeding
papers make up more than 96% of the total documents [80].

Table 1. Document types of GaN publications.

Document Frequency Percentage (%)

Article 11,559 67.16
Proceeding Paper 5112 29.70

Review Article 311 1.80
Book Chapter 86 0.50
Early Access 59 0.34
News Item 40 0.23

Editorial Material 39 0.23
Book 5 0.03

Book Review 1 0.01

Total 17,212 100.00

4.1. Production Growth

Table 2 shows the annual production growth of GaN documents from 1970 to 2023
as of 9 December 2022. Because the initial publications are in 1970, the total annual
publication until 1990 has been very low. Based on our search query that covers all topics
of GaN, including title, abstract, author keywords, and Keywords Plus, the first three
papers indexed in Web of Science were published in 1970. The first paper by Manchon
et al. [81] performed optical studies of the photons and electrons in GaN using first-order
Raman spectroscopy and infrared reflectivity. This paper received 156 citations as of
9 December 2022. The second paper was published by Isherwood and Wickenden [82]
in 1970, which received 15 citations; this paper investigated the preparation of GaN from
gallium arsenide (GaAs). GaN was first noticed at 750 ◦C when GaAs was nitrided in 50%
ammonia–nitrogen gas. The temperature between 750 ◦C and 870 ◦C was optimal for the
formation of single-phase bulk GaN. The third paper was published by Faulkner et al. [83]
in 1970. The researchers investigated the preparation of thin-film GaN by the reaction
between gallium trichloride and ammonia.

However, according to the Scopus database, the first indexed paper was published by
Margrave [84] in 1956, which found that GaN vaporizes to become complex gaseous nitride
at 900–1000 ◦C. After that, there were two papers published in 1965 and listed in the Scopus
database. The first paper in 1965 is “Activation energy for the sublimation of gallium
nitride” by Munir and Searcy [85], which has been cited 120 times. This paper intended
to study the thermal stability in the form of the vaporization of GaN. The authors noted
that even though gaseous nitride was not observed, it can be found that GaN had a high
enthalpy of activation for sublimation. Another paper published in 1965, “Vaporization
catalysis. The decomposition of gallium nitride” by Schoonmaker et al. [86] received
69 citations as of 9 December 2022. In this paper, the researchers found that GaN has a low
vaporization coefficient because of its strong covalent bonds in the rigid wurtzite crystalline
structure, therefore it requires a high activation energy. This paper also suggested that
metallic gallium or indium has the ability to enhance the vaporization catalysis of GaN.
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Table 2. Production growth of GaN documents.

Year TP Percentage Cumulative Percentage NCP TC C/P C/CP h g

1970 3 0.02 0.02 3 216 43.2 72 3 3
1971 5 0.03 0.05 5 375 75 75 5 5
1973 3 0.02 0.07 3 282 94 94 2 3
1974 11 0.07 0.14 11 279 25.36 25.36 11 11
1975 3 0.02 0.16 3 154 51.33 51.33 3 3
1976 3 0.02 0.18 3 21 7 7 2 3
1977 2 0.01 0.19 2 8 4 4 2 2
1978 7 0.04 0.24 6 250 35.71 41.67 6 7
1979 4 0.03 0.26 3 27 6.75 9 2 4
1980 7 0.04 0.31 6 209 29.86 34.83 5 7
1981 4 0.03 0.33 3 62 15.5 20.67 3 4
1982 2 0.01 0.35 2 4 2 2 1 2
1983 4 0.03 0.37 3 32 8 10.67 2 4
1984 2 0.01 0.38 2 4 2 2 2 2
1985 1 0.01 0.39 0 0 0 0 0 0
1986 6 0.04 0.43 6 1913 318.83 318.83 4 5
1987 1 0.01 0.43 1 1 1 1 1 1
1988 3 0.02 0.45 3 270 90 90 3 3
1989 1 0.01 0.46 1 332 332 332 1 1
1990 8 0.05 0.51 7 333 41.63 47.57 6 8
1991 16 0.10 0.61 16 1074 67.13 67.13 12 16
1992 19 0.12 0.74 17 4775 251.32 280.88 14 18
1993 47 0.30 1.04 45 4051 86.19 90.02 30 47
1994 64 0.41 1.45 63 10,278 160.59 163.14 39 62
1995 108 0.69 2.14 100 5944 55.04 59.44 43 75
1996 246 1.57 3.71 230 12,986 52.79 56.46 52 104
1997 322 2.06 5.77 307 16,460 51.12 53.62 54 103
1998 356 2.28 8.05 330 14,231 39.97 43.12 55 101
1999 426 2.72 10.77 407 15,534 36.46 38.17 54 90
2000 407 2.60 13.37 378 12,724 31.26 33.66 58 87
2001 351 2.25 15.62 334 11,000 31.34 32.93 51 83
2002 361 2.31 17.93 339 15,363 42.56 45.32 53 109
2003 372 2.38 20.31 352 22,034 59.23 62.6 54 131
2004 333 2.13 22.44 307 12,642 37.96 41.18 49 82
2005 393 2.51 24.95 363 12,018 30.58 33.11 51 89
2006 467 2.99 27.94 435 12,464 26.69 28.65 50 84
2007 464 2.97 30.91 422 10,877 23.44 25.77 49 74
2008 511 3.27 34.18 470 12,958 25.36 27.57 50 84
2009 453 2.90 37.07 417 11,268 24.87 27.02 43 83
2010 416 2.66 39.73 377 10,718 25.76 28.43 41 84
2011 496 3.17 42.91 462 10,414 21 22.54 48 72
2012 573 3.67 46.57 516 13,137 22.93 25.46 46 86
2013 592 3.79 50.36 532 12,529 21.16 23.55 52 80
2014 698 4.46 54.82 630 13,317 19.08 21.14 45 77
2015 684 4.38 59.20 615 12,743 18.63 20.72 47 74
2016 786 5.03 64.23 708 13,647 17.36 19.28 50 73
2017 838 5.36 69.59 747 14,336 17.11 19.19 50 73
2018 838 5.36 74.95 731 14,406 17.19 19.71 51 78
2019 890 5.69 80.64 758 11,970 13.45 15.79 46 65
2020 1177 7.53 88.17 1002 13,654 11.6 13.63 44 61
2021 1091 6.98 95.15 825 7502 6.88 9.09 46 13
2022 742 4.75 99.89 328 1747 2.35 5.33 19 28
2023 17 0.11 100.00 2 30 1.76 15 2 5

TOTAL 15,634 100 373,603

From 1991 to 1999, there has been an increase in the number of papers, from 16 docu-
ments in 1991 to 426 documents in 1999. Even though there were fluctuations in the number
of publications from 2000 to 2009, the number of publications increased from 2010 (with
416 publications) and the number of publications peaked in 2020 with 1177 documents.
There was a slight drop in the number of papers in 2021 with 1091 publications. Even
though there are only 740 publications listed in 2022, 17 papers have been published for
2023 as of 9 December 2022, which clearly show there is ongoing research on GaN.

Table 2 shows the citation metrics with regards to the annual production of GaN
documents. Total publication (TP) refers to the number of published papers that are
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indexed in the particular year. Total citation (TC) explains the total number of times the
publication has been cited by other papers. Out of the total publications (TP) in a year, the
number of papers that have been cited by other papers is reflected by the number of cited
papers (NCP). The maximum total citation (TC) of 22,034 citations was recorded for 2003.
This was mostly contributed by the top one and top seven cited documents, titled “One-
dimensional nanostructures: synthesis, characterization, and applications” by Xia et al. [87]
with 8010 citations and “Band parameters for nitrogen-containing semiconductors” by
Vurgaftman and Meyer [88] with 2312 citations. The production and citation trends of GaN
documents were also described in Figure 2. For citation impact, the highest citation per
paper (C/P) and citation per cited paper (C/CP) were recorded in 1989 with 332 citations
per paper and 332 citations per cited paper. This is because there were 332 citations from
only one total publication (TP) in 1989. The paper titled “Growth of cubic phase gallium
nitride by modified molecular-beam epitaxy” by Paisley et al. [89] received 332 citations
as of 9 December 2022. The highest h-index (h) of 58 was recorded for 2000. This means
that there were 58 documents that have received at least 58 citations. The highest g-index
(g) of 131 was recorded for 2003. This implies that there are 131 documents with at least
17,161 citations in 2003.
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4.2. Subject Area

The 15,634 publications have been categorized into various subject areas. Most of
the GaN publications are under physics (8250), engineering (6634), and materials science
(5197). GaN is also related to chemistry (1607), science technology and other topics (1528),
optics (1337), crystallography (827), telecommunications (805), computer science (762), and
energy fuels (716). The top 20 subject areas are tabulated in Table 3.
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Table 3. Subject areas of GaN publications.

Subject Area TP

Physics 8250
Engineering 6634

Materials Science 5197
Chemistry 1607

Science Technology and Other Topics 1528
Optics 1337

Crystallography 827
Telecommunications 805

Computer Science 762
Energy Fuels 716

Instruments Instrumentation 446
Metallurgy Metallurgical Engineering 244

Electrochemistry 221
Nuclear Science Technology 179
Automation Control Systems 171

Imaging Science and Photographic Technology 113
Remote Sensing 105

Thermodynamics 85
Geochemistry/Geophysics 74

Mechanics 58
Microscopy 54

4.3. Contribution by Country

Researchers from more than 100 countries have contributed to the literature of GaN
from 1970 to 2023 as of 9 December 2022. The top three countries with the highest TP are
the United States (4685), China (2808), and Japan (1531). Among the 373,603 total citations
received from all 15,634 documents, the United States received 158,750 citations, which
was more than 42% of the total citations. Documents from researchers in the United States
were also the most impactful, as the documents have the highest C/P of 33.88 and C/CP
of 38.93. Moreover, the United States also had the highest h-index (h) and g-index (g) of
162 and 292, respectively. This implies that there were 162 documents that have been cited
162 times or more while there were also 292 documents with a total citation of 85,264. Even
though China had the second highest contribution in terms of the TP value, China had
small C/P and C/CP values of only 13.72 and 16.60, respectively, which lagged behind
Japan, England, Germany, Poland, France, and Taiwan. Table 4 lists the top 10 countries
that contribute to the GaN literature.

Table 4. Top 10 contribution by country.

Country TP NCP TC C/P C/CP h g

United States 4685 4078 158,750 33.88 38.93 162 292
China 2808 2320 38,518 13.72 16.60 72 130
Japan 1531 1315 34,338 22.43 26.11 79 146

Germany 1314 1137 26,899 20.47 23.66 77 124
South Korea 971 857 13,798 14.21 16.10 50 85

France 724 597 13,356 18.45 22.37 50 94
India 695 513 6668 9.59 13.00 36 56

Taiwan 686 565 11,494 16.76 20.34 47 86
England 659 567 14,438 21.91 25.46 50 100
Poland 550 466 10,332 18.79 22.17 45 84

Authors may collaborate with researchers across countries to produce better quality
publications from impactful research for greater insights. Scientific collaboration, which
is an intellectual cooperation, allows for knowledge, resource, and technology sharing
among researchers in different regions. The synergy from these collaborations can be
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studied with a co-authorship analysis using VOSviewer software version 1.6.18 [90]. In
the country co-authorship network diagram, the node size is proportional to the number
of co-authored documents with other countries. When a country has high collaboration
with other countries, the node size of that country will be large [91]. The color indicates
the clustering of the node [90]. The thickness of the node between two countries signals
the link strength between them. Link strength is explained by the number of documents
co-authored by researchers in two countries, while the total link strength denotes the
strength of a country’s collaborations with other countries [91].

Table 5 presents the top 10 countries with the most co-authorships with other countries.
The United States had 4685 publications with a TC of 158,750 and the highest total link
strength of 1343. China, with 2808 publications and 38,518 TC, had the second highest
total link strength of 749. Germany had the third highest total link strength of 667 with
1314 publications and 26,899 TC. The other countries with high total link strengths were
England (476), Japan (456), France (448), Italy (357), South Korea (317), Poland (296), and
Canada (205). Figure 3 depicts the country co-authorship network in GaN publications.
The United States has the largest node because of its high total link strength. The highest
link strength of 245 was observed between the United States and China as the line between
these two countries is the thickest. The second highest link strength was between the
United States and South Korea with a link strength of 131, followed by the link strength
between the United States and Japan with a link strength of 121.

Table 5. Country co-authorship in GaN publications.

Country Document Total Link Strength

United States 4685 1343
China 2808 749

Germany 1314 667
England 659 476

Japan 1531 456
France 724 448
Italy 539 357

South Korea 971 317
Poland 550 296
Canada 370 205
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There are eight clusters in total. 19 countries, including Bangladesh, Belarus, Canada,
Egypt, India, Iran, Iraq, Kazakhstan, Lebanon, Malaysia, Nigeria, Pakistan, Saudi Arabia,
Thailand, Tunisia, Turkey, and the United Arab Emirates are in a similar cluster (red).
The second cluster (green) consists of Algeria, Austria, Czech Republic, France, Germany,
Greece, Israel, Jordan, Moldova, New Zealand, Romania, and Slovakia. The third cluster
(blue) consists of Argentina, Brazil, Columbia, Cuba, Denmark, Mexico, South Africa, and
Spain. The fourth cluster (yellow) is made up of countries such as Belgium, England,
Ireland, Italy, North Ireland, Serbia, Switzerland, and Wales. The fifth cluster (purple)
includes countries such as Indonesia, Japan, Morocco, Philippines, South Korea, Taiwan,
the United States, and Vietnam. Croatia, Lithuania, the Netherlands, Poland, Portugal,
Scotland, and Ukraine make up another cluster (light blue). The brown cluster consists of
China and Singapore.

4.4. Source Title

There are about 210 source titles that have published papers related to GaN. Table 6
shows the top 10 source titles that have published GaN documents. The journal impact factor
(JIF) computed by Clarivate shows the annual average number of citations of papers published
in the previous two years in a journal [92]. The journal citation indicator (JCI) is the mean
category normalized citation impact (CNCI) for all publications in a journal in the past three
years. For the JCI 2021, the analysis is from 2018 to 2020. A JCI of 1.00 reflects average citation
impact while values greater than 1.00 are higher than the average citation impact. On the
other hand, a JCI of below 1.00 indicates a below average citation impact [93]. The CiteScore
calculates the citations received in a year over the number of indexed publications in the past
three years. The CiteScore 2021 shows the number of citations received in 2021 to the number
of indexed publications from year 2018 to 2020. The SCImago journal rank (SJR) measures the
impact of the journals by considering the number of citations and the performances of the
cited journals. The source normalized impact per paper (SNIP), which is used to show the
journal impact, is presented in Table 6 [94]. All indexes are in 2021. Journal of Crystal Growth
published 626 papers, followed by Applied Physics Letters (624), Journal of Applied Physics (506),
IEEE Transactions on Electron Devices (339), Proceedings of SPIE (312), Physical Review B (205),
IEEE Access (201), IEEE Electron Device Letters (194), Thin Solid Films (193) and Materials Research
Society Symposium Proceedings (187).

Table 6. Source titles in GaN publications.

Source Title TP % TC Publisher JIF JCI Cite Score SJR SNIP h

Journal of Crystal Growth 626 4.01 14,171 Elsevier 1.830 0.51 3.5 0.43 0.839 155
Applied Physics Letters 624 3.99 28,938 AIP Publishing 3.971 0.80 6.6 1.025 1.119 452

Journal of Applied Physics 506 3.24 26,238 AIP Publishing 2.877 0.57 4.7 0.668 0.964 331

IEEE Transactions on
Electron Devices 339 2.17 7831

IEEE-Institute of
Electrical and Electronics

Engineers Inc.
3.221 0.75 5.3 0.695 1.364 191

Proceedings of SPIE 312 2.00 813 SPIE N/A N/A N/A 0.184 N/A 179

Physical Review B 205 1.31 18,086 American Physical
Society 3.908 0.76 N/A 1.537 N/A 460

IEEE Access 201 1.29 1653
IEEE-Institute of

Electrical and Electronics
Engineers Inc.

3.476 0.93 6.7 0.927 1.326 158

IEEE Electron Device Letters 194 1.24 5657
IEEE-Institute of

Electrical and Electronics
Engineers Inc.

4.816 1.25 8.5 1.13 1.649 159

Thin Solid Films 193 1.24 2240 Elsevier Science SA 2.378 0.42 4.3 0.468 0.772 199
Materials Research Society
Symposium Proceedings 187 1.20 945 Materials Research

Society N/A N/A N/A N/A N/A 60

4.5. Most Cited Publications

Table 7 presents the top 10 most cited GaN publications. The most cited document
“One-dimensional nanostructures: synthesis, characterization, and applications” by Xia
et al. [87] received 8010 citations. This paper presented an overview on a variety of
chemical methods that have been developed for generating nanostructures with 1D mor-
phologies. The second most cited paper “Candela-class high-brightness InGaN/AIGaN
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double-heterostructure blue-light-emitting diodes” by Nakamura et al. [62] received 3307
citations. Candela-class high brightness InGaN/AIGaN DH blue LEDs with the lumi-
nous intensity were fabricated for the first time. The third most cited paper by Strite
and Morkoc [95] presented the performance of several device structures that have been
demonstrated in GaN material. Bernardini and Fiorentini [96] studied the spontaneous
polarization, piezoelectric constants, and dynamical charges of the III-V nitride semicon-
ductors AIN, GaN, and InN. The following most cited paper by Morkoc et al. [97] discussed
the device-oriented research and applications of SiC, GaN, and ZnSe.

Table 7. Top 10 most cited GaN publications.

Title Year TC Source Title

One-dimensional nanostructures: synthesis,
characterization, and applications [87] 2003 8010 Advanced Materials

Candela-class high-brightness InGaN/AlGaN
double-heterostructure blue-light-emitting diodes [62] 1994 3307 Applied Physics Letters

GaN, AlN and InN: A review [95] 1992 2636 Journal of Vacuum Science
& Technology B

Spontaneous polarization and piezoelectric constants
of III-V nitride [96] 1997 2500 Physical Review B

Large band gap SiC, IIIV nitride, and IIVI ZnSe-based
semiconductor device technologies [97] 1994 2452 Journal of Applied Physics

First-principles calculations for defects and
impurities: Applications to III-nitrides [98] 2004 2396 Journal of Applied Physics

Band parameters for nitrogen-containing
semiconductors [88] 2003 2312 Journal of Applied Physics

Two-dimensional electron gases induced by
spontaneous and piezoelectric polarization charges in

N- and Ga-face AlGaN/GaN heterostructures [99]
1999 2230 Journal of Applied Physics

Graphene photodetectors for high-speed optical
communications [100] 2010 1860 Nature Photonics

Metalorganic vapor phase epitaxial growth of a high
quality GaN film using an AlN buffer layer [101] 1986 1856 Applied Physics Letters

The sixth most cited paper by De Walle and Neugebauer [98] presented the state-of-
the-art computational methodology for determining the structure and energetics of point
defects and impurities in semiconductors as well as examples of defects and impurities
in nitride semiconductors. The seventh most cited paper by Vurgaftman and Meyer [88]
presented a compilation of band parameters for all of the nitrogen-containing III-V semicon-
ductors. The following most cited paper by Ambacher et al. [99] investigated the formation
of 2DEGs at the interfaces of pseudomorphic wurtzite and heterostructures involving GaN.
Mueller et al. [100] mentioned that GaN-based materials enable light emission at blue and
ultraviolet wavelengths. An asymmetric metallization scheme was adopted to break the
mirror symmetry of the internal electric-field profile in conventional transistor channels,
which allows for efficient photo detection. Amano et al. [101] mentioned that the quality of
GaN thin films grown by MOVPE using AlN buffer layers is shown to be excellent in terms
of morphological, crystalline, and optical properties.

4.6. Keyword Analysis

The keyword co-occurrence map of VOSviewer studies the connections among the
keywords. An advantage of the keyword co-occurrence map is that it allows researchers
to identify key concepts and how these key concepts are connected to form sub-domains
that may be the hotspots of research [102]. Table 8 displays the top 20 indexed keywords
with the respective total link strengths. The keyword “gallium nitride”, with 5881 TP
has the highest total link strength of 19,651. This implies that “gallium nitride” appeared
the most with other keywords. GaN (8905) and growth (6233) also have high total link



Materials 2023, 16, 401 12 of 18

strengths. Figure 4 depicts the keyword co-occurrence map of GaN publications. The
keyword “gallium nitride” most often appeared with “GaN” because it has the thickest
line and highest link strength of 1018. “Gallium nitride” also has a high link strength with
“growth” (753) and “films” (505).

Table 8. Indexed keywords.

Keyword TP Total Link Strength

Gallium Nitride 5881 19,651
GaN 2537 8905

Growth 1376 6233
Films 833 3981

Molecular Beam Epitaxy 642 3146
Light Emitting Diodes 677 3040

Photoluminescence 597 2901
Sapphire 507 2630

Semiconductors 521 2307
AlN 454 2253

Thin Films 448 2127
Optical Properties 424 2115

Silicon 446 2063
Chemical Vapor Deposition 406 2017

Vapor Phase Epitaxy 391 1932
Layers 368 1769

Temperature 362 1693
Nanowires 350 1629

HEMTs 359 1556
Defects 330 1549
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From Figure 4, the keywords are grouped into five clusters made up of red, green,
blue, yellow, and purple colors. The first cluster (red) has 59 keywords such as AlGaN,
breakdown voltage, conductivity, current collapse, efficiency, electron mobility transistor,
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field effect transistors, high electron mobility transistors (HEMTs), III-V semiconductors,
logic gates, modulation-doped field-effect transistor (MODFETs), metal oxide semicon-
ductor field effect transistor (MOSFET), ohmic contacts, performance, power amplifier,
Schottky diodes, sensors, switches, silicon, silicon carbide, and wide band semiconduc-
tors. The green cluster consists of the keywords of aluminium nitride, ammonia, crystals,
dynamics, electronic properties, epitaxial growth, GaAs, gallium nitride, hexagonal GaN,
high pressure, III-nitrides, indium nitride, molecular beam epitaxy, native defects, optical
properties, photons, Raman scattering, spectroscopy, temperature dependence, thin films,
wurtzite, and zinc blende. The blue cluster has the keywords carbon, catalytic growth,
chemical vapor deposition, electroluminescence, emission, fabrication, gallium nitride
nanowires, graphene, heterostructures, indium gallium nitride, light emitting diodes, lu-
minescence, nanoparticles, nanostructures, nanotubes, photoluminescence, polarization,
quantum dots, quantum wells, and ultraviolet. The fourth cluster (yellow) has the key-
words buffer layer, cathodoluminescence, density, diodes, dislocations, hydride vapor
phase epitaxy (HVPE), laser diodes, metal-organic chemical vapor deposition (MOCVD),
morphology, metalorganic vapor phase epitaxy (MOVPE), nucleation, quality, reduction,
sapphire, strain, threading dislocations and X-ray diffraction. The final cluster (purple)
consists of activation, bond, doped GaN, doping, hydrogen, ion implantation, Mg-doped
GaN, n-type GaN, oxidation, p-type GaN, and yellow luminescence.

The trend of the GaN publication can be viewed with the overlay visualization map. In
this map, the node color reflects the period the documents with the keyword was published.
Darker colors imply that the key concepts (sub-domains) have been a long focus in the GaN
research [103]. Figure 5 illustrates the overlay visualization map of GaN publications. The
keywords in yellow are the recent focus of researchers. They include aluminium gallium
nitride, HEMTs, wide band semiconductors, logic gates, power amplifier, power electronics,
Schottky diodes, MOSFET, sensors, switches, converter, high efficiency, and MODFETs.
This shows that researchers are paying a lot of attention in applying GaN in next generation
devices. Due to its high efficiency, power density, carrier mobility in two-dimensional
electron gas channels and critical electric fields, GaN is increasingly being studied for
sensors, switches, and power electronics to handle high-voltage operations [104].
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4.7. Citation Metrics

Citation metrics of the 15,634 documents on GaN publications from 1970 to 2023 as of
9 December 2022 have been extracted from Harzing’s Publish or Perish tool and tabulated
in Table 9. Based on the 15,634 documents, 373,603 total citations have been received with
the average of 23.90 citations per paper and an h-index of 188.

Table 9. Citation metrics.

Items Metrics

Extraction Date 9 December 2022
Number of Documents 15,634

Total Citations 373,603
Period of Analysis 52
Citations per Year 6806.04

Citations per Paper 23.90
Citations per Author 93,337.41
Papers per Author 4045.49
Authors per Paper 5.25

h-index 188
g-index 310

5. Conclusions

This paper presents a bibliometric analysis of the scientific literature of GaN listed in
the internationally recognized Web of Science database from 1970 to 2023 as of 9 December
2022. The first three papers indexed in 1970 are titled “Optical studies of the photons
and electrons in gallium nitride” by Manchon et al. [81], “Preparation of single phase gal-
lium nitride from single crystal gallium arsenide” by Isherwood and Wickenden [82], and
“Gallium nitride formed by vapour deposition and by conversion from gallium arsenide”
by Faulkner et al. [83]. The largest production of GaN publications were found in 2020
with 1177 total documents. The highest cited document is “One-dimensional nanostruc-
tures: synthesis, characterization, and applications” by Xia et al. [88] which has received
8010 citations since its publication and indexing in 2003.

The scientific literature of GaN are mostly articles (67.16%) and proceeding papers
(29.70%). Publication has been largely centered in the United States with 4685 total docu-
ments, 158,750 total citations, 33.88 citations per paper, and 38.93 citations per cited paper.
The top source title that publishes GaN papers is the Journal of Crystal Growth published by
Elsevier with TP of 626, impact factor of 1.830, citation indicator of 0.51, CiteScore of 3.5,
and h-index of 155.

The country co-authorship network found that the United States has the largest total
link strength of 1343, which implies that the United States is actively collaborating with
other countries on GaN research areas. The highest link strength (245) is found between
China and the United States. The keyword co-occurrence map is represented by five
clusters. The first cluster is of high importance as the first cluster is also having the darkest
color in the overlay visualization map, which implies that the first cluster has long been a
focus in GaN research.

It is important to note that even though ongoing research has been performed on
the thermostability and electronic properties of GaN, there is an increasing concentration
on the application of GaN in next generation devices, especially for satellites and 5G
technologies and beyond. GaN is often studied for its applications in the areas of power
electronics, power amplifier, wide band gap semiconductors, sensors, and switches that
have high potential to drive digitization and further industrialization. The outstanding
properties of GaN as a semiconductor make it attractive to be applied in these areas for
future advancement.
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