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Abstract: The most promising approach for improving the electrical performance of connectors
used in semiconductor test sockets involves increasing their electrical conductivity by incorporating
one-dimensional (1D) conductive materials between zero-dimensional (0D) conductive materials.
In this study, FeCo nanowires were synthesized by electroplating to prepare a material in which
1D materials could be magnetically aligned. Moreover, the nanowires were coated with highly
conductive Au. The magnetization per unit mass of the synthesized FeCo and FeCo@Au nanowires
was 167.2 and 13.9 emu/g, respectively. The electrical performance of rubber-based semiconductor
connectors before and after the introduction of synthetic nanowires was compared, and it was found
that the resistance decreased by 14%. The findings reported herein can be exploited to improve
the conductivity of rubber-type semiconductor connectors, thereby facilitating the development of
connectors using 0D and 1D materials.

Keywords: semiconductor test sockets; rubber sockets; FeCo nanowires; Au coating; electrodeposition

1. Introduction

The demand for integrated-circuit (IC)-type semiconductor devices is accelerating to
permit the fabrication of numerous electric and electronic components for use in fields
such as information technology; biotechnology; automotive, industrial, medical, and
defense industries; as well as in domestic and mobile communication devices, such as
smartphones and tablets. Typically, semiconductor device packages are subjected to final
electrical performance tests. However, the demand for high-bandwidth and small-form-
factor packages is growing [1–3]. Therefore, semiconductor inspection—a crucial aspect of
the semiconductor industry—must be targeted to provide non-defective devices [4,5].

The pogo-pin-type test socket is predominantly used for semiconductor inspection be-
cause of its high mechanical safety, rapid production feature, and low investment cost [6,7].
However, the types of semiconductors being used must change in accordance with the
expanding semiconductor market, thereby necessitating changes in the semiconductor
measurement environment. For example, high-band characteristics are required to reduce
the semiconductor size for achieving miniaturization of electronic devices and developing
miniaturized semiconductors that do not exhibit degraded performance [8–10]. To satisfy
these requirements, the test sockets used to characterize the manufactured semiconductors
must be diversified. However, the pogo-pin-type connectors have disadvantages in this
regard, such as a high manufacturing cost, limited size setting, susceptibility to the measure-
ment pressure, and material limitation in the high band. In contrast, rubber-type sockets can
permit miniaturization because the particle size of the conductive powder can be adjusted,
and the material constituting the connector can be applied at high bandwidths [2,5,11–13].

Typically, a rubber-type connector comprises a conductive material and insulating
rubber (silicone), with the former being magnetically aligned during the fabrication of
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the socket. In this process, spherical conductive powder particles have a limited electrical
conductivity because of their small contact areas. To solve this problem, the number
of routes through which electricity can be conducted can be increased by creating an
electrically conducting one-dimensional (1D) material between the zero-dimensional (0D)
conductive powder particles [14–16].

The 1D material applied to the test socket is rapidly aligned by the magnet but should
become demagnetized when the magnetic field is removed after alignment. To this end, fast
magnetization and easy demagnetization characteristics are required. Materials with these
properties are soft magnetic materials such as Fe-Si, Fe-Co, and Fe-Ni alloy, etc. Among
these materials, the material with the best magnetization is FeCo [17–19]. However, in
order to use it in the test socket, it is necessary to improve the electrical conductivity [18,20].
In order to improve electrical conductivity, it can be solved by coating highly conductive
materials, such as Cu, Ag, and Au, on the surface [21–24].

Inspired by these approaches, materials with high conductivity and strong magnetism
were synthesized in this study to lengthen the electron transport path between the conduc-
tive powder particles, which can minimize the electrochemical performance degradation
of silicone-rubber-type semiconductor connectors. The magnetic material was readily
synthesized using an electroplating method and then coated with a conductive material
(Au) to impart conductivity. The resistance of the test socket that was prepared using the
synthesized material was confirmed to decrease.

2. Materials and Methods
2.1. Formation of FeCo Nanowires and Au Coating

To synthesize FeCo nanowires (NWs), an electrolyte was prepared by dissolving
FeSO4·7H2O (0.15 M, SamChun, Pyeongtaek-si, Republic of Korea, 98%), CoCl2·6H2O
(0.2 M, Sigma-Aldrich, Darmstadt, Germany, 98%), and L-ascorbic acid (0.01 M, Sigma-
Aldrich, Darmstadt, Germany, 99%) in deionized (DI) water. Anodic aluminum oxide
(AAO, WhatmanTM, Darmstadt, Germany, pore size: 200 nm, density: 1011/cm2) was
coated with Au and then placed in the prepared electrolyte as the working electrode of a
three-electrode system, which had Ag/AgCl and Pt as the reference and counter electrodes,
respectively. To synthesize the FeCo NWs by electroplating, the reaction was conducted
for 3 h by applying −1.1 V vs. Ag/AgCl and stirring the electrolyte at 80 rpm to ensure a
constant ion distribution inside the electrolyte during the reaction. To remove the AAO
electrode, in which the FeCo NWs were formed, the Au electrode part was initially removed
and the leftover component was placed in a NaOH solution (3 M), which was then sonicated
for 10 min. The obtained FeCo NWs were rinsed five times with DI water and then dried
at 80 ◦C.

The electrolyte for electroless plating of Au on the FeCo NWs was prepared by dis-
solving HAuCl4 (6 mM, Sigma-Aldrich, Darmstadt, Germany, 49%) in DI water. HAuCl4
(6 mM) was added to 100 mL DI water and sonicated for 5 min. The FeCo NWs were added
to the prepared Au electrolyte, dispersed using sonication and vortex-based methods (with
another system left undispersed for comparison), and then reacted at 20 ◦C for 5 min. The
resulting FeCo@Au NWs were collected by centrifugation, washed five times with DI water,
and then dried overnight at 80 ◦C. Figure 1 shows the schematic of the synthesis sequence.
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Figure 1. Schematic illustrating growth of FeCo nanowires (NWs) and their Au coating. (AAO:
anodic aluminum oxide).

2.2. Characterization of FeCo@Au NWs

The surface morphology and composition of the FeCo NWs before and after the Au
coating were assessed by scanning electron microscopy (SEM; Hitachi S-4300, Hitachi, Chiy-
oda, Japan) with an acceleration voltage of 15 kV and energy-dispersive X-ray spectroscopy
(EDS; HORIBA 7021-H, HORIBA, Kyoto, Japan). The structure of the synthesized material
was analyzed by X-ray diffractometry (XRD; SmartLab, Rigaku, Tokyo, Japan) with Cu Kα

radiation and 2θ angle from 20◦ to 85◦ with a scanning speed 2◦/min. Additionally, X-ray
photoelectron spectroscopy (XPS; K-Alpha, Thermo Electron, Illinois, USA) was performed
to confirm the changes in the sample surfaces before and after the synthesis. Data were
acquired in constant energy analyzer mode with a narrow and survey scan pass energies of
∆E = 50 and 200 eV, respectively. The magnetism of the synthesized material was analyzed
using a vibrating-sample magnetometer (VSM; VSM 7410, Lake Shore, OH, USA), where
the external magnetic field was controlled to 25 kOe.

2.3. Fabrication of Semiconductor Test Connectors

Silicone mixed with magnetic particles was injected into a mold that contained pins for
aligning them. A magnetic field was subsequently applied. The magnetic particles inside
the silicone were aligned in the direction of the applied magnetic field, forming a conductive
path through contact with the adjacent particles. A connector was manufactured by adding
the coated NWs to the magnetic-particle-incorporated silicone at a weight ratio of 20:1; a
NW-free connector was also fabricated for comparison. The resistance of each connector
was measured by applying a voltage to its top and bottom. After placing the connector on
a flat-bottomed Au substrate, voltage was applied by contacting the Au-coated probe to
the top surface of the connector.

3. Results and Discussion

A three-electrode system containing AAO, Ag/AgCl, and Pt as the cathode, anode,
and reference electrode, respectively, was used to synthesize the FeCo NWs. An acidic
solution containing dissolved Fe2+ and Co2+ was used as the electrolytic solution. To
determine the conditions for synthesizing the FeCo NW alloy, the reduction potential was
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estimated by linear sweep voltammetry (LSV), and a stable growth rate was simultaneously
achieved at −1.1 V during the plating.

The FeCo NWs synthesized using AAO were examined by SEM. The cross-section of
the AAO confirmed the growth of the FeCo NWs inside its pores (Figure 2a). Moreover,
in the cross-sectional image of Figure S1a, the elemental distributions of AAO, Fe, and Co
were confirmed to confirm that FeCo NWs were grown to a uniform length. Additionally,
an SEM image of the FeCo NWs that were obtained after removing the AAO layer was
acquired (Figure 2b), which indicated that the synthesized FeCo NWs were ~20-µm-long
~200-nm-thick cylinders with a smooth surface. EDX analysis was carried out to analyze
the elemental content of FeCo NWs; the Fe:Co ratio was confirmed as 52:47 (Figure S1b).
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Figure 2. Scanning electron microscopy (SEM) images of (a) AAO/FeCo NWs (cross-section) and
(b) pure FeCo NWs.

Figure 3 shows SEM images that were acquired while optimizing the dispersion
method used for coating the conductive material, which helped impart electrical conductiv-
ity to the surface of the FeCo NWs. As the conductive material, Au, which has excellent
electrical conductivity and high stability because it does not react with other materials, was
used [25,26].
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dispersion. (c) shows images of the undispersed mixture for comparison.

Additionally, the effects of the external energy required to activate the surface reaction
had to be determined. Therefore, three methods were compared in this regard, with two
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involving dispersion and one used for comparison [27,28]. Sonication is a method that
utilizes intense sound waves to disperse nanomaterials and organic materials [29–31]. In
the vortex-based method, the solution is physically agitated to form a dispersion-enabling
vortex [32,33]. To investigate the effects of each method, the reaction time and solution
concentration were maintained constant. The SEM image of the FeCo@Au NWs synthesized
by sonication (Figure 3a) reveals excessive formation of Au on the surface of the FeCo
NWs, which was present as circular aggregates rather than as a coated film. The SEM
image of the FeCo@Au NWs synthesized using a vortex (Figure 3b) suggests that Au
was coated relatively evenly on the surface of the sample; this coating was more uniform
that that obtained using the sonication method. The SEM image of the system realized
when the FeCo NWs were added to the Au-containing solution and left undispersed
(Figure 3c) confirmed that Au existed as particles or random shapes films on the surface of
the FeCo NWs. In addition, the EDX analysis of the elemental distribution of Au, Fe, and
Co confirmed that the distribution of Au was widely and evenly distributed in the other
two methods (Figure S2). In contrast, the undispersed mixture confirmed the high surface
exposure of FeCo NWs. Here, Au was present in the form of a few particles and a thin
film, despite the synthesis being achieved under conditions identical to those employed
in the other two methods. This was evidently due to the difference in the energy of the
method used for the dispersion. Because more energy was transferred to the sample
during sonication than in the vortex-based method, the deposition based on the conversion
of Au3+ to Au0 was promoted, yielding overgrown Au. According to classical nuclear
growth, the size of the generated nucleus increases with increasing free energy [34,35].
Therefore, a stronger energy than that in the vortex-based method was supplied during
sonication, resulting in a high free energy; moreover, because the generated critical nucleus
for additional growth was considerable in size, large Au particles were formed on the
NW surfaces. Overall, these results indicate that the vortex-based method was optimal for
coating Au on the FeCo NWs.

The structures of the synthesized FeCo and FeCo@Au NWs were subsequently ana-
lyzed by XRD (Figure 4). The uncoated FeCo NWs were found to have no other impurities,
and the analysis revealed the body-centered cubic (bcc) structure of FeCo with intense
peaks representing the (110), (200), and (211) crystal orientations as the three parts of the
deflection peak. Additionally, the lattice parameter was estimated to be a = 2.849 Å, thereby
confirming the existence of a similar structure to that of bulk FeCo [36–38]. The particle
size was calculated using the Scherrer equation to be 14.37 nm [39].

The analysis of Au-coated FeCo NWs revealed the face-centered cubic (fcc) structure
of Au indexed as (111), (200), (220), and (311). Additionally, in the XRD results of the
Au-coated sample, since the angles at which the (200) and (220) planes of Au and (110) and
(200) planes of FeCo are detected are similar, it seems that only Au overlapped [40–43].

XPS measurements were subsequently conducted to confirm the surface characteristics
of the synthesized FeCo NWs (Figure 5). An XPS survey scan (Figure 5a) was performed to
obtain information on peaks according to the binding energy of the materials constituting
the sample. The Au 4f peak appeared in the spectrum of the coated specimen in the region
between 80 and 98 eV, thereby confirming the Au coating [44]. Co 2p XPS analysis revealed
Co 2p3/2 and Co 2p1/2 peaks at 780.38 and 795.98 eV, respectively, and the Fe 2p XPS
analysis revealed Fe 2p3/2 and Fe 2p1/2 peaks at 710.98 and 724.38 eV, respectively. These
are presumed to correspond to atmospherically oxidized Co and Fe based on the binding
energies of Co2+ and Fe2+, respectively. [38,45–47].
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The FeCo NWs were then prepared to form a conductive path by placing them be-
tween Au-coated magnetic particles and silicone for semiconductor socket inspection. A
certain level of magnetic force was required to enable this investigation. Thus, the magnetic
properties of the synthesized material were analyzed using a VSM (Figure 6). The magneti-
zation per unit mass (Ms) of the uncoated FeCo NWs was 167.2 emu/g, which is similar
to the results obtained in several previous studies (Table 1). Moreover, the corresponding
M–H curve exhibited typical soft magnetic characteristics, as observed previously [48–56].
The low Ms values of the NWs or tubes listed in Table 1 were presumably caused by the
dimensions of the synthetic material [57,58]. After the Au coating, the sample exhibited
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a magnetization per unit mass of 13.9 emu/g, which was considerably lower than that
of the uncoated FeCo NWs. This is because the weight of the sample for VSM analysis
includes the magnetic material and the coating material, which is due to the increase in the
content of the non-magnetic material [59–61]. However, the coercivity (Hc) values were
found to be similar. The coercivity is a performance-related parameter that is closely related
to the crystallite size of a magnetic material and can determine the magnetic interactions
between crystallites and microstructural changes [62–64]. The coercivity of the FeCo and
FeCo@Au NWs were determined to be 122.2 and 151.3 Oe, respectively, indicating the lack
of Au-coating-induced microstructural changes in the FeCo NWs. Hc slightly increased
after the plating because it varies according to the vertical and horizontal directions of
the applied magnetic field for wire-shaped magnetic materials [42], that is, because of the
difference in the alignment of the FeCo@Au NWs.

Figure 6. Hysteresis loops of (a) FeCo and (b) FeCo@Au NWs acquired using a vibrating-sample
magnetometer (VSM).

Table 1. Magnetic properties of previously reported FeCo alloy specimens.

Method Morphology Fe:Co [at.%] Ms [emu/g] Refs.

Chemical method (such as
co-precipitation and chemical reduction)

Powder 50:50 207 [45]

Nanocubes 50:50 211.9 [46]

Hollow
spheres 48:51 169.35 [47]

NWs 60:40 92 [48]

Laser additive manufacturing (such as
laser-engineered net shaping)

Film 40:60 201.7
[50]

Film 30:70 199.3

Electrodeposition
Nanotubes 50:50 100 [51]

NWs 49:51 176 [52]

Electrodeposition
(Present study) NWs 46:54 167.2

Consequently, it was confirmed that the magnetization per unit mass measured after
Au electroless plating varied as the Au coating layer was formed. Nevertheless, the strategy
reported herein can be applied to silicone rubber for semiconductor inspection because the
magnetic force can be maintained after the Au coating.

A prototype sample was then fabricated for applying the synthesized FeCo@Au NWs
to a socket for semiconductor testing (Figure 7). An empty space was present between
the conductive powder particles prior to introducing the NWs. Because this space is
occupied by rubber—an insulator—the movement of electrons, which causes electron loss
and increases the internal resistance. In contrast, the presence of the FeCo NWs in the space
between the conductive metals reduces the internal resistance by increasing the electron
movement pathway and facilitating electron motion.
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The pristine and NW-containing samples exhibited resistances of 34.5 and 31 mΩ,
respectively, indicating that the resistance was reduced by approximately 14%. The resis-
tance obtained by introducing NWs showed better characteristics than conventional IC
rubber-type test sockets [65,66]. Therefore, the electrical properties of a socket prepared
using the synthesized FeCo@Au NWs for semiconductor analysis was improved, and
the industrial application potential of this approach was confirmed through stabilized
material synthesis.

4. Conclusions

In this study, a method for improving the electrical properties and performance of
sockets used for semiconductor inspection was investigated by constructing narrow elec-
trical paths between the conductive powder particles. Compact electrical routes can be
realized by exploiting both magnetic and conductive properties. The magnetic material
was synthesized by electroplating FeCo NWs using a three-electrode method, and three
dispersion methods were investigated to achieve uniform Au plating. The vortex-based
method resulted in the formation of the most uniform coating layer among the investi-
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properties. In addition, the resistance of the socket before and after application of the
synthesized FeCo@Au NWs was 34.5 and 31 mΩ, respectively. The synthesized FeCo@Au
NWs were confirmed to decrease the resistance of a socket via the construction of electrically
conductive paths between the conductive powder particles.
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