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Abstract: Humic substances are constituents of organic matter that require removal from water
environments because of their adverse ecological and sanitation effects. A mixture of hydrogarnet
and poly(lactic acid) dissolved in chloroform was electrospun to prepare a composite as a adsorbent
for humic substance removal. Here, humic acid was used as the model substance for evaluating the
adsorbent’s water remediation efficiency. Despite the hydrogarnet particles being embedded in its
poly(lactic acid) fibers, the composites demonstrated a higher humic acid removal ability than the
pure poly(lactic acid) sample prepared using an electrospinning process. Pores were introduced to
the fiber surfaces of the composite by controlling the relative humidity during electrospinning, thus
enhancing their humic acid removal ability (4.6 ± 2.4 mg/g), compared to the composite consisting
of the fibers without pores (1.2 ± 0.9 mg/g).

Keywords: adsorbent; hydrogarnet; poly (lactic acid); humic acid removal; porous structure

1. Introduction

Natural organic matter formed by the decomposition of animals and biomass are a
pollutant of concern in aqueous environments. Humic substances, classified as humic
acid (HA), fulvic acid, and humin, are the major constituents of organic matter. As these
substances can cause colorization in water, and their presence has a negative effect on
the adsorption properties of other compounds [1], they should be removed from aqueous
environments. However, humic substances tend to react with oxidants used in water
purification to form carcinogenic byproducts such as trihalomethanes [2]. Hence, prin-
ciples such as adsorption, coagulation, and photocatalysis have been suggested for the
removal of humic substances from water [3,4], with adsorption processes demonstrating
economic benefits.

Materials such as activated carbon and zeolite have been investigated as adsorbents for
use in humic substance removal [5,6]. More recently, we found that hydrogarnet powders
prepared from a CaO-SiO2-Al2O3-H2O system using a hydrothermal process are excellent
adsorbers of HA. This is because of the tuning the chemical compositions of presence of
Ca3Al2(OH)12 and Ca3Al2(SiO4)3 in hydrogarnets (Ca3Al2(SiO4)3−x(OH)4x, with x = 0–3),
which gives them a stronger affinity for HA than zeolite and activated carbon [7]. It has
been reported that Ca3Al2(OH)12 exhibited phosphate adsorption performance in aqueous
solution [8]. Remediation processes that rely on hydrogarnets containing the SiO4 units
thus offer the potential for more effective humic substance removal.

In addition to its chemical composition, the morphology of an adsorbent determines
its ability to handle water remediation processes. Although fabrics with porous structures
have been proven to be a suitable shape for humic substance removal, creating such fabrics
consisting of only hydrogarnets is difficult; membranes are typically created using ceramic
processes, which can alter the structure of the hydrogarnet, (e.g., by degrading hydroxyl
groups) because of the high temperatures they require. Porous polymer membranes are
one of candidate materials for water remediation applications [9,10]. An approach to
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resolve this problem is to embed partially hydrogarnet particles into a porous polymer
matrix. Hence, this study discusses the preparation of composite adsorbents containing
hydrogarnet, for humic substance removal.

Porous polymer matrix can be created from non-woven fiber fabrics using electrospin-
ning and spun bonding processes. Many reports have been published on the preparation
of ceramic/polymer composite adsorbents using electrospinning [11,12], suggesting that
this technique is suitable for combination with hydrogarnet. Furthermore, in general, the
fiber diameters of fabrics prepared using an electrospinning process are finer than the
diameters of fabrics prepared using a spun bonding process. We thus surmise that fabrics
created using an electrospinning method are more suitable for water remediation because
of their relatively high contact area with target substances, resulting from the fine fiber
diameters. Hence, in this study, the composite adsorbents containing hydrogarnet were
prepared using an electrospinning technique. Here, poly-L-lactic acid (PLLA) was used
as the polymer phase because it is biodegradable, and more stable in water environments
than other degradable polymers. Humic acid was used as the model humic substance
for determining the composite adsorbents effectiveness in water remediation. Finally, all
water remediation tests were also performed with a pure polymer adsorbent, to distin-
guish the effect of membrane structure on humic substance removal from the effect of
hydrogarnet adsorption.

2. Materials and Methods
2.1. Preparation of the Samples

To prepare the hydrogarnet using our previously reported method [13], calcium
hydroxide (Ca(OH)2, Fujifilm Wako Pure Chemical Corp., Osaka, Japan), γ-alumina (Al2O3,
Taimei Chemicals Co., Ltd., Kamiina-gun, Nagano, Japan), and silica gel (SiO2, Fuji Silysia
Chemical Ltd., Kasugai, Japan) powder were mixed in a 3:2:1 molar ratio of Ca:Al:Si.
Distilled water was added to this mixture to prepare a slurry with a 1:5 solid-to-liquid
ratio. The slurry was stirred and hydrothermally treated at 150 ◦C for 8 h. Following
treatment, the slurry was filtered, and the resulting solids were dried at 60 ◦C for 12 h.
The solids were pulverized to form a powder by ball milling at 400 rpm for 10 min in
methanol. The average particle size (D50) of the pulverized powder was determined to be
approximately 1.7 µm using a laser diffractometer, as shown in Figure 1a. In addition, XRD
of the powder demonstrated that ball milling had no influence on the crystalline phase of the
hydrogarnet (Figure 1b).
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Crystalline PLLA (170 kDa) obtained from Mitsui Chemicals, Inc., LACEA was dis-
solved in chloroform (Wako Pure Chemical Industries, Ltd., Richmond, VA, USA) to a
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concentration of 12 mass%. Here, chloroform was selected as the solvent because of its
favorable evaporation properties [14]. The pulverized powder was added to the PLLA
solution in a 1:4 mass ratio of hydrogarnet to PLLA, and the mixture was stirred at 50 rpm
for 24 h. It is well known that non-woven fiber fabrics can be obtained by controlling the
solution and process parameter. To ensure the composite samples were reproducible, the
optimal solid/liquid ratio for the hydrogarnet/PLLA mixture used in the electrospinning
process was determined based on a trial-and-error approach. The solid/liquid ratio of
the resultant slurry was 3/17. The mixture was poured into a glass syringe with an 18 G
stainless steel needle. Electrospinning was performed by applying a 20 kV voltage to the
needle. The mixture was extruded from the needle for 210 s at a feed rate of 0.05 mL/h. The
fibers were collected on a grounded plate covered with aluminum foil located 15 cm from
the needle. Electrospinning was conducted at a relative humidity of approximately 20%,
regulated using silica gel. The pure polymer sample was prepared from a PLLA solution
without additives using the same procedure.

2.2. Characterization of the Samples

The morphologies and electron mappings of the samples were observed using scan-
ning electron microscopy (SEM) incorporating an energy-dispersive spectrometer (EDS)
with an accelerating voltage of 5 or 10 kV. The crystal phases of the samples were ana-
lyzed using X-ray diffraction (XRD) in the range of 20◦ to 45◦ with 0.015 deg/s of the
scanning rate. The fiber diameter of a sample was calculated from the average of at least
50 fibers using ten SEM images. The samples were analyzed via attenuated total reflectance
(ATR)-Fourier transform infrared (FT-IR). The static contact angle immediately after the
water droplet (1 µL) attached to the surface of the samples was measured using a contact
angle analyzer.

2.3. Analysis of the Water Remediation Ability of the Samples

HA adsorption tests were performed batchwise, by soaking a 10 mm × 10 mm sample
in 10 mL of a HA solution at pH = 7 adjusted by 0.1 mol/L NaOH and HCl with an initial
concentration of 5 ppm, which was the similar value to the HA concentration of spring
water in the Tsuruma park (Nagoya, Aichi). HA was not adsorbed on all samples after 6 h
of immersion. This solution was stirred at room temperature for 24 h during the adsorption
tests. Following immersion, the test solution at least four different specimens was analyzed
using a UV-Vis spectrometer, by monitoring the change in absorbance at 250 nm. HA in
solution was proportional to color measured at around 250, 270 and 410 nm absorbance [15].
In each adsorption test, the absorbance of a blank cell without a sample was measured as a
reference. The HA concentration of the resultant solution was determined from the linear
equation prepared by plotting the absorbance at 250 nm against the HA concentration in
the in the range of 0–5 ppm. The uncertainly was evaluated as the standard deviation of
the measurements. The experimental scheme is shown in Figure 2.
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3. Results
3.1. Characterization of Samples

A range of characterization analyses were conducted on the polymer and composite
samples prior to HA adsorption tests, to verify successful electrospinning. The thicknesses
of the samples were evaluated based on the averages and standard deviations of ten
measurements obtained using a micrometer. The thicknesses of the polymer and composite
samples were 154 ± 24 µm and 118 ± 31 µm, respectively, indicating that combining
hydrogarnets with PLLA has little effects on the thickness. Figure 3 shows the XRD
patterns of the samples. Although crystalline PLLA was used as the starting material,
none of the samples generated diffraction peaks at angles below 20◦. This indicates that
following electrospinning, the PLLA in the samples exists in the amorphous phase, which
agrees with the literature [16]. Peaks corresponding to hydrogarnet were observed in the
XRD pattern of the composite samples, confirming its successful combination with PLLA.
There were almost the same ATR-FT-IR spectra in the polymer and composite samples,
as shown in Figure 4. This implies that chemical bonds of PLLA would have no change
even after adding hydrogarnet. Thermogravimetric analysis conducted in our previous
work clarified that following thermal decomposition of PLLA fiber membranes, weight
loss occurred between 300 ◦C and 400 ◦C [17]. In this study, the hydrogarnet content of
the composite sample was estimated to be 12.0 mass% based on the weight of the residue
obtained after heat treatment at 450 ◦C. This value is approximately half of the preparation
composition, suggesting that the hydrogarnet powder was not dispersed homogeneously
in the PLLA mixture.
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Pictures and SEM micrographs of the samples are shown in Figure 5. The SEM images
confirm that each sample consists of micrometer-sized fibers. There was absence of particles
on the surfaces of the fibers of the composite sample. Al, Ca and Si elements, which are
components of hydrogarnet, were detected like overlapped with the fibers by EDS analysis,
as shown in Figure 6. These indicate that the hydrogarnet is embedded within the fibers.
Fine fibers can also be observed with the composite sample, which were not observed
in the polymer sample. The distribution of the fiber diameters estimated from the SEM
images are shown in Figure 7. This figure indicates that the polymer sample consists of a
more monodisperse population of fibers, with diameters ranging from 6 µm to 8 µm. In
contrast, the diameters of the fibers in the composite sample ranged from 1 µm to 20 µm.
It has been reported that the viscosity and surface tension of the polymer solution used
in electrospinning affect fiber diameter [18,19]. The introduction of hydrogarnet powder
to the PLLA solution affects these properties, resulting in the heterogeneity of the fiber
diameters in the composite sample.
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3.2. Humic Acid Adsorption Proerty of the Samples

The polymer sample did not adsorb any HA. A 1.2 ± 0.9 mg/g concentration of HA
was adsorbed onto the composite samples after 24 h of immersion. Spherical activated
carbon for liquid phase (As Ones Corp.) used as the comparison material, provided
1.1 mg/g of HA adsorption by soaking a 10 mg in 10 mL of a HA solution with an initial
concentration of 5 ppm. This means that the composite sample has equivalent potential to
HA adsorption properties of materials used as a adsorbent. The polymer and composite
samples indicated their contact angles of 128.8 ± 1.4◦ and 126.1 ± 1.2◦, respectively. The
introduction of hydrogarnet into the PLLA matrix has no influence on the contact angles.
Our preliminary experiments indicated that a composite sample prepared using a mixture
with 1:5 mass ratio of HG:PLLA did not adsorb HA even after 24 h of immersion. This
implies that the hydrogarnet content of a composite sample must exceed a minimum
amount for it to be able to remove HA from effluent.

To improve the HA adsorption capacity of the composite sample, the hydrogarnet
content of the precursor polymer mixture can be increased. However, this increased hy-
drogarnet content increases the polymer solution’s viscosity, leading to electrospinning
failure. An alternative solution is to construct a composite sample with porous fibers, as
the inclusion of pores enables easier penetration of effluent into the fibers, and subsequent
contact with the hydrogarnet particles. It has been reported that performing electrospinning
in a relatively high humidity environment generates pores in the fibers of the resulting
samples [20,21]. Hence, in this study, to improve the composite sample’s HA adsorption,
the relative humidity during the electrospinning process was regulated to approximately
75% using an NaCl-H2O mixture. This increased humidity had minimal effect on the thick-
ness of the resulting sample (112 ± 16 µm) and its fiber diameter distribution, as shown in
Figure 8. Similarly, peaks corresponding to hydrogarnet were observed in the correspond-
ing XRD pattern (Figure 9) indicating that the humidity did not affect the combination of
hydrogarnet with PLLA. However, numerous pores appeared on the surfaces of the fibers.
The hydrogarnet content in the composite sample consisting of porous fibers was estimated
to be 9.0 mass%, which is similar to that of the sample consisting of non-porous fibers.
The contact angles of the composite sample consisting of porous fibers were determined
to be 129.4 ± 1.9◦, which is almost the same as that with non-porous fibers, indicating
that both samples have similar contact areas with HA. However, the composite sample
consisting of porous fibers adsorbed 4.6 ± 2.4 mg/g of HA after 24 h of immersion, as
shown in Table 1. This value is much higher than the HA concentration adsorbed by the
composite sample with non-porous fibers. Given their similar hydrogarnet content and
contact angle, this result indicates that the existence of pores on a fiber surface enhances the
HA adsorption capacity of a composite sample by enhancing the ability of HA to penetrate
inside the fibers and react with hydrogarnet. In addition, the composite samples consisting
of porous fibers maintained their shape even after humic acid removal tests. The ther-



Materials 2023, 16, 336 7 of 9

mally activated coal-based carbons with and without acid wash treatment showed around
3–20 mg/g of the amount adsorbed HA at equilibrium at pH = 7, dependently of a function
of the nonadsorbed HA per unit carbon mass [22]. The maximum sorption capacity of
goethite, which was commercially available, was reported to 3.8–5.6 mg/g at different
pHs [23]. The composite sample consisting of porous fibers seems to have a similar poten-
tial as the previous reported adsorbents for HA removal. Recently, we have successfully
improved the HA adsorption properties of hydrogarnet by heat treatment [24]. Intro-
duction of the treated hydrogarnet into the composite would enhance the HA adsorption
properties. The pH of the HA solution and dose of the adsorbents influence their adsorption
properties [25]. Investigation with respect to the effect of the pH, the adsorbent dose and
its reusable performance are in progress to discuss the HA adsorption properties of the
composite sample more in-depth.
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4. Conclusions

This study demonstrated the creation of composite hydrogarnet/poly(lactic acid) ad-
sorbents for humic substance removal using an electrospinning technique. An combination
of hydrogarnet with electrospun PLLA sample was required for the adsorbents to demon-
strate humic acid removal. Controlling the humidity during electrospinning introduced
pores on the fiber surfaces of the samples, which enhanced their humic acid removal. This
study suggested that hydrogarnet/PLLA composite consisting of porous fibers, which
was similar potential as the previous reported adsorbents, is a promising adsorbent for
HA removal.
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