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Abstract: Suspenders are the crucial load-bearing components of long-span suspension bridges,
and are sensitive to the repetitive vibrations caused by traffic load. The degradation of suspender
steel wire is a typical corrosion fatigue process. Although the high-strength steel wire is protected
by a coating and protection system, the suspender is still a fragile component that needs to be
replaced many times in the service life of the bridge. Flexible central buckles, which may improve
the wind resistance of bridges, are used as a vibration control measure in suspension bridges and
also have an influence on the corrosion fatigue life of suspenders under traffic load. This study
established a corrosion fatigue degradation model of high-strength steel wire based on the Forman
crack development model and explored the influence of flexible central buckles on the corrosion
fatigue life of suspenders under traffic flow. The fatigue life of short suspenders without buckles
and those with different numbers of buckles was analyzed. The results indicate that the bending
stress of short suspenders is remarkably greater than that of long suspenders, whereas the corrosion
fatigue life of steel wires is lower due to the large bending stress. Bending stress is the crucial factor
affecting the corrosion fatigue life of steel wires. Without flexible central buckles, short suspenders
may have fatigue lives lower than the design value. The utilization of flexible central buckles can
reduce the peak value and equivalent stress of bending stress, and the improved stress state of
the short suspender considerably extends the corrosion fatigue life of steel wires under traffic flow.
However, when the number of central buckles exceeds two, the increase in number does not improve
the service life of steel wire.

Keywords: suspender; high-strength steel wire; corrosion fatigue; flexible central buckle;
bending stress

1. Introduction

With the rapid development of highway transportation, long-span suspension bridges
are constructed across mountains, valleys, and rivers for their good mechanical characteris-
tics and excellent spanning performance. The construction of early large-span suspension
bridges was limited by experience and technology, and structural vibration control mea-
sures were relatively lacking, leading to obvious vibration responses under external load.
The longitudinal vibration displacement of structures caused by external load may lead
to the fatigue of expansion joints and other ancillary components. Traffic load has been
proven to be one of the main reasons causing the longitudinal vibration displacement of
structures. Such vibration may cause the fatigue of expansion joints and other ancillary
components [1,2]. Suspenders are key load-bearing components of suspension bridges, of
which the degradation is the result of the comprehensive action of corrosion and fatigue,
and the corrosion accelerates the generation of fatigue cracks. The corrosion degradation
of components seriously affects the reliability of bridge operation [3]. The propagation
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of fatigue cracks is easily affected by vibrations under traffic load; thus, it has been an
important research goal to evaluate the stress and service life of short suspenders. Flexible
central buckles were set up in the midspan for long-span suspension bridges recently to
enhance wind resistance performance with low cost and construction convenience, but the
studies on them were limited and mainly focused on wind resistance and the vibration char-
acteristics of the structure itself. Actually, flexible central buckles also play a contributing
role to the suspenders’ response under traffic flow that may reduce the fatigue degradation
of suspenders, but the influence mechanism on the structural vibration under traffic load
remains unclear. Thus, the control effect of flexible central cables should be investigated to
optimize the designation of the flexible central buckle.

Corrosion fatigue is the phenomenon of crack formation and propagation under the
interaction of alternating load and a corrosive medium that leads to a reduction in fatigue
resistance [4]. Scholars have studied the corrosion fatigue degradation process of high-
strength steel wires in bridge engineering. The surface of the suspender steel wire is
provided with a coating to enhance the corrosion resistance. The damage to the coating’s
passive film is accompanied by pitting corrosion. Roffey indicates that the pit corrosion of
the steel wire develops into vertical cracks inside, resulting in the decline of the bearing
capacity of the steel wire based on the inspection results of the Fourth Highway Bridge
in Scotland [5]. Qiao Yan divided the corrosion fatigue process of steel wire into three
stages—coating corrosion, corrosion pit development, and crack development—and gave a
calculation method for the development time of each stage [6]. Valor proposed a random
model for pitting distribution simulation which uses a non-uniform Poisson process to
simulate the generation of pits and verified it with experiments [7]. Nakamura investigated
the corrosion of steel wires in different environments for fatigue loading. The results show
that the fatigue life of steel wire in a corrosive environment decreases significantly [8].
Suzumura studied the effects of reagent concentration, ambient temperature, and humidity
on the corrosion rate of galvanized steel wire through experiments, and gave the loss rate
of zinc coating on galvanized steel wire [9]. Although the durability of galvanized steel
wire has been significantly improved, it still does not meet the engineering requirements.
The corrosion resistance of the coating can be achieved by improving the properties of the
coating, such as improving the adhesion and porosity and adding elements that can form a
passive film; it is proven that the corrosion resistance can be improved by the oxidation of
the Al element [10]. In recent years, Galfan steel wires have been gradually widely used.
The evaluation method of steel wire has been well developed, but the existing models
mainly use the Paris criterion to calculate the crack growth rate; the influence of the average
load factor and the difference in crack growth rate caused by the change in traffic flow
intensity are not considered. There is a deviation when using the parameters under the
same stress ratio to calculate the crack growth life.

Furthermore, the axial stress and bending stress fluctuations caused by relative dis-
placements between the girder and cables easily damage the short suspenders along with
fatigue degradation [11,12]. To reduce the fatigue damage of short suspenders, appropriate
vibration control facilities are utilized to control bridge vibration [13,14]. The central buckle
is a vibration control measure for long-span suspension bridges, which includes a flexible
central buckle and a rigid central buckle. Previous research focuses on the influence of rigid
central buckles on the dynamic characteristics of bridges [15]. Wang analyzed the influence
of rigid central buckles on the wind-induced buffeting response of long-span suspension
bridges and pointed out that rigid central buckles can suppress buffeting vibration [16].
Wang investigated the working and mechanical characteristics of the rigid central buckle of
the Runyang Yangtze River Bridge under vehicle load based on measured results and finite
element modeling [17]. Liu investigated the effects of central clamps in the midspan (i.e.,
rigid central buckle) on the fatigue life of short suspenders, and the results revealed that
short suspenders were more prone to fatigue than others because of large bending stress,
and central clamps can effectively improve their lifespan [18]. In addition to a rigid central
buckle, a flexible central buckle cable was set up in the midspan to enhance wind resistance
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performance. Wang studied the influence of flexible central buckles on the displacement of
stiffening girders. The results showed that the flexible central buckle remarkably reduces
the longitudinal amplitude of the stiffening girder and increases its vibration frequency [19].
The influence of flexible buckles on structural vibration under random traffic flow remains
unclear. The control effect of flexible buckles under random traffic flow should be studied.

Traffic flow is an important vibration source in the suspender stress response. Sus-
pension bridges are a flexible system and structural deformation is evident under the
action of traffic flow, which varies with traffic density. Characteristics such as traffic flow
parameters, vehicle type, and vehicle weight generally have random distribution [20,21].
The load effect of traffic flow can be well considered by a macro traffic flow simulation
method [22,23]. Thus, in this study, the influence of flexible central buckles on the stress
response and corrosion fatigue life of suspenders under traffic flow were analyzed by
numerical modeling. First, the corrosion fatigue of high-strength steel wire based on the
Forman criterion was established. Then, the response of suspenders with flexible central
buckles was calculated with consideration of the load effect of traffic flow at different levels.
Finally, the fatigue life of suspender steel wires and the influence of flexible central buckles
were evaluated. This research can provide a reference for the design and maintenance of
long-span suspension bridges.

2. Prototype Bridge
2.1. Bridge Information

This study takes the Zhixi Yangtze River Bridge as the research object. The bridge is a
single-span steel–concrete composite girder suspension bridge. The section layout is shown
in Figure 1. The span of the main cable is arranged as 250 + 838 + 215 m, and the sagittal
span ratio of the midspan main cable is 1/10. The standard distance between the adjacent
lifting points of stiffening girders is 16 m, and the suspender adopts a ϕ5.0 mm galvanized
aluminum alloy (i.e., Galfan coating) high-strength steel wire. To improve the vibration
resistance of the bridge, two flexible central buckles are set near both sides of the middle
span of each main cable to form a cable–beam connection. The entire bridge has a total
of eight central buckles. The stiffening girder adopts a steel–concrete composite structure
in which the steel beam is combined with the concrete deck through shear nails. The half
section of the stiffening girder is shown in Figure 2. The full width of the stiffening girder is
33.2 m, the center height is 2.8 m, and the central transverse spacing of the two main cables
in the midspan is 26.0 m. The small longitudinal beams are arranged longitudinally at the
center line of the girder and the top surface is flush with the top surface of the steel beam.
The bridge deck is reinforced concrete with a full width of 25.0 m and a thickness of 0.22 m.
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Figure 1. Layout of the prototype bridge.
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As a common vibration control measure, central buckles are used to improve the
vibration response of suspension bridges. These buckles are generally installed in the
middle span; examples include the Runyang Yangtze River Bridge and the Sidu River
Bridge, in which the rigid central buckle is installed in the middle span. Existing research
indicates that the rigid central buckle can improve the structure frequency and reduce
the longitudinal displacement response of the girder [24]. In the Zhixi Yangtze River
Bridge, flexible central buckles that differ from traditional rigid central buckles are set in
the middle of the main span of each main cable to coordinate with short suspenders, as
shown in Figure 3. The flexible central buckle is composed of an inclined cable connected
to a short suspender, forming a cable–girder connection to control the vibration response of
the structure.
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2.2. Finite Element (FE) Model

To simulate the structural characteristics, a three-girder model of a prototype bridge
was established using ANSYS 18.0. The FE model is shown in Figure 4. The stiffening girder
of the bridge is a steel-composite girder with an open section, and the longitudinal beams
on both sides are the main bearing structures of the stiffening girder. Thus, the BEAM4
element was used to simulate the main stringer, small stringer, steel beam, and main tower.
The LINK10 element was used to simulate the cable components. A total of 1836 BEAM4
elements for the girder, 82 BEAM4 elements for the pylon, and 279 LINK10 elements for the
main cable and suspender were found. The bridge deck pavement contributes minimally
to the stiffness of the stiffening girder; thus, only its mass was considered, and the stress
stiffening of the LINK element was conducted in accordance with the measured cable force.
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The theoretical material properties and cable force vary from the actual state of the
structure; thus, the FE model was modified according to the measured material properties
and cable force in construction. Then, the structure frequency was calculated by the modal
analysis module of ANSYS software, and the Block Lanczos feature solver based on the
Lanczos algorithm was used in modal analysis. When calculating the natural frequencies
of a certain range contained in the eigenvalue spectrum of a system, the Block Lanczos
method is particularly effective for extracting modes. The frequencies of the FE model were
compared with measured structure frequency to validate the FE model. The research team
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undertook the monitoring of the structural state during the bridge’s construction. After
construction, the actual vibration mode and frequency of the bridge were measured through
the modal test analysis system. Figure 5 shows the modal analysis results and the test
results; the modes of vibration are consistent with the test results. The first-order frequency
L1 is 0.113 hz and smaller than other bridge types, which is determined by the flexibility
characteristics of the suspension bridge. The error of L1 is 2.7%, and the maximum error
is 5.2% in L2. The errors are within the acceptable range, which preliminarily proves the
simulation effect of the FE model.
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Besides the modal test, the vehicle loading experiment was conducted to test its
deformation performance under external load. Figure 6 shows the layout of the static and
running tests of the bridge. The loading vehicle is a 35 t three-axle truck. The static test has
four loading trucks in each row and eight rows in total. A comparison of the maximum
girder vertical deflection of the static test is given in Table 1. The computing value and
measured value are close, and the error is within 3%. The running test condition is that
two 35 t loading vehicles drove through the bridge at a constant speed of 60 km/h, and
the vertical dynamic deflection of the main girder in 1/2 L is measured. A comparison
between the measured results and the FE model is shown in Figure 7; the results are in
good agreement. The model can reflect the dynamic response of the bridge and satisfy the
requirements of subsequent analysis under traffic flow.
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Table 1. Comparison of stiffening girder vertical deflection under static test.

L/8 3L/8 L/2 5L/8 7L/8

Measured
Value (mm) 175 606 1093 615 180

FE model
(mm) 181 624 1120 630 185

Error (%) 0.03 0.03 −2.02 0.02 0.03
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Figure 7. Comparison of midspan dynamic strain under running test.

3. Corrosion Fatigue of Suspender Steel Wire
3.1. Corrosion Fatigue Mechanism

The stress of long-span bridge suspenders is caused mostly by dead load; thus, the
amplitude of stress change caused by vehicle load and other live loads is relatively small
and is far lower than the fatigue limit of steel wire. Therefore, the degradation process is
a typical corrosion fatigue process; that is, the corrosion defects on the steel wire surface
develop into initial crack damage. The entire steel wire degradation process can be divided
into stages of the development of corrosion and crack propagation, as shown in Figure 8.
The tiny corrosion defects on the steel wire surface become the crack initiation site. When
the corrosion defects transform into cracks, they continue to develop until destroyed under
the action of load cycles. This degradation process can be simulated by the corrosion
fatigue theory.
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3.2. Uniform Corrosion and Pitting Corrosion

The corrosion of steel wire includes uniform corrosion and pitting corrosion. Uniform
corrosion describes the degree of average corrosion of the steel wire surface, which directly
causes the reduction in the diameter of the steel wire, and the extent of diameter reduction
is assumed to stay unchanged along the steel wire length [25]. The steel wire parameters
adopted in this study are shown in Table 2. The surface of high-strength steel wire is usually
protected by a coating for corrosion resistance. In the prototype bridge, the suspender
consists of Galfan-coated steel wires. The Galfan coating should not be less than 300 g/m2

due to the specification of bridge designation [26]. According to the survey of relevant
cable manufacturers, the coating quality is usually controlled within 350 g/m2. Thus, the
depth of a Zn-Al alloy coating can be calculated according to its density (6.58 g/cm3) and
ranges from about 29 µm to 34 µm.
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Table 2. Parameters of steel wire samples.

Nominal
Diameter

(mm)

Tensile
Strength

(MPa)

Yield
Strength

(MPa)

Modulus of
Elasticity

(GPa)

Coating
Quality
(g/cm2)

Coating
Depth
(µm)

Galfan steel wire 5.25 1926 1775 2.08×105 337 31.05

The uniform corrosion of high-strength steel wire undergoes a two-stage corrosion
process; that is, the corrosion of the coating and the corrosion of the steel wire substrate.
The corrosion rate can be described as Equation (1).

au(t) =
{

dc(t) t ≤ tc
ds(t) + dc(t) t ≥ tc

(1)

where au(t) is the depth of uniform corrosion, dc is the corrosion depth of the zinc–
aluminum alloy coating, ds is the corrosion depth of the steel wire, t is corrosion time,
and tc is the time when the coating is totally corroded.

According to the preliminary work of the research team, the corrosion process of
Galfan steel wire is measured by an accelerated corrosion test and can be simulated by
parabola distribution as Equation (2) [25]. The corrosion rate decreases gradually. The
oxidation products of aluminum in the coating form a passive film, which slows down the
corrosion rate.

au(t) = 0.04431t− 0.000014t2 (2)

where t is corrosion time.
In service conditions, the corrosion rate of Galfan coating is significantly different

because of the exposure environment. As is well known, field exposure tests are difficult to
conduct due to the high cost of time, and it is also difficult to find exactly matched field
exposure test results. Thus, the time conversion scale was determined by the field exposure
test of Galfan coating by Aoki and Katayama, in which a hot-dipped Galfan-coated steel
plate with a 25 µm coating was investigated [27,28]. Assuming that the influence of coating
thickness and surface shape on the corrosion rate is negligible, and the test results are
applicable to the conversion time scale, it is suggested that 1 h of the accelerated corrosion
test corresponds to 0.033~0.052 years in a rural environment, 0.018~0.024 years in an
industrial environment, 0.019~0.028 years in a marine environment, and 0.014~0.022 years
in a severe marine environment.

When the metal material surface has a passive or protective film, the pitting pit on
the substrate surface appears after the protective layer is consumed, greatly affecting the
characteristics of the steel wire. Pitting corrosion occurs randomly, accompanied by uniform
corrosion [29]. Given the stress concentration effect, pitting corrosion is the site where
steel wire fatigue fracture may occur. The pitting pit with the largest depth determines
the working state of the steel wire; thus, the pitting pit with the largest depth is the key
analysis point in corrosion fatigue analysis. Pitting pit depth can be calculated by uniform
corrosion depth and pitting coefficient.

∧ (t) = ap(t)/au(t) (3)

where ap(t) and au(t) denote the depth of pitting corrosion and uniform corrosion.
The distribution of the maximum pitting coefficient conforms ∧(t) to the Gumbel

distribution [7], which can be expressed as

F(∧(t)) = exp{−exp[− (∧(t)− β0)

α0
]} (4)

where F(∧(t)) is the cumulative probability density function; ∧(t) is the maximum pitting
coefficient; and α0 and β0 are the distribution parameters.
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Then, the distribution parameter of any wires with different lengths and diameters
can be calculated by Equation (5):

βk = β0 +
1
α0

ln(
Ak
A0

), αk = α0 (5)

where Ak is the surface area of the analysis target, and A0 is the surface area of the wire
with a 125 mm length and 8 mm diameter.

3.3. Corrosion Fatigue Crack

Stress concentration happens due to the shape characteristics of the corrosion pit. As
the depth of the corrosion pit increases, a crack will occur when the stress intensity reaches
a critical value. The transition process from pitting to cracking can be determined by two
methods: (1) the growth rate of the fatigue crack exceeding that of the corrosion pit and
(2) the stress intensity factor of the corrosion pit reaching the critical threshold of fatigue
crack propagation. This study adopts the former method. The steel wire crack dominates
when the development speed of the pitting pit depth exceeds that of the crack.

Corrosion cracks expand until failure under the stress cycle caused by an operating
live load. The Forman formula is used to analyze the growth rate of a metal corrosion
fatigue crack, as shown in Equation (6).

da

dN
= C(∆K)m/[Kc(1− R)− ∆K] (6)

where da
dN

is the growth rate of the crack, a is the depth of the crack, C and m are the
parameters of the Paris criterion [30], Kc is the fracture toughness of the material, ∆K is the
stress intensity factor range, and R is the stress ratio of alternating load.

The stress intensity factor ∆K is given by Forman, as follows:

∆K = Fa

( a
b

)
∆σa
√

πa + Fb

( a
b

)
∆σb
√

πa (7)

where Fa
( a

b
)

denotes a coefficient related to axial stress, Fb
( a

b
)

denotes a coefficient related to
bending stress, a is the crack depth, b is the diameter of the steel wire, ∆σa is the equivalent
axial stress amplitude, and ∆σb is the equivalent axial stress amplitude.

F
( a

b
)

is calculated by Equation (8) [31].
Fa
( a

b
)
= 0.92· 2

π ·
√

2b
πa ·tan πa

2b ·
0.752+1.286( a

b )+0.37(1−sin πa
2b )

3

cos πa
2b

Fb
( a

b
)
= 0.92· 2

π ·
√

2b
πa ·tan πa

2b ·
0.923+0.199(1−sin πa

2b )
4

cos πa
2b

(8)

where a is the crack depth, and b is the diameter of the steel wire.
To consider the effect of daily traffic flow on the structure comprehensively, a crack

depth development model is established on the basis of daily traffic flow operation accord-
ing to the traffic load investigation, as shown in Equation (9).{

ai = ∆a + ai−1
∆a = C∑ ejNj(∆Kj)

m/[Kc(1− R)− ∆K]
(9)

where ai is the depth of the crack at time i; ∆a is the increment of the crack; ej is the
operating time of traffic flow with different intensities; ∑ ej = 24 h; and ∆Kj and Nj are the
stress intensity factor range and the number of cycles, respectively. Mayrbaurl pointed out
that the critical relative crack depth conforms to the lognormal distribution with an average
value of 0.390 and a coefficient of variation of 0.414. Based on the test, the maximum critical
relative depth is 0.5, which is used as the judgment standard for steel wire failure.
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4. Traffic-Induced Stress Responses of Suspenders
4.1. Vehicle Bridge System

Vehicles can be classified into different types according to axle distance, axle number,
vehicle load, etc. Vehicle subsystems are commonly simplified as a car body, wheels, a
shock mitigation system, and a damping system. The corresponding dynamic models
are established on the basis of the hypothesis that the mass of the damper and spring
components are ignored. For example, a three-axle vehicle is shown in Figure 9 [32]. The
longitudinal vibration of the vehicle is neglected for its few effects on the bridge; thus,
the longitudinal degree of freedom is ignored in the analysis [33]. Thus, five degrees of
freedom (vertical, horizontal, head nodding, side rolling, and head shaking) are considered
for the integral vehicle. The vehicle dynamic models are also classified into five types, and
the corresponding dynamic models are constructed.
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Figure 9. Dynamic model of a three-axle vehicle.

Vehicle wheels always keep contact with the deck; the bridge deformation caused
by an external load leads to the vibration response of the vehicle and bridge subsystems;
the dynamic response is influenced by the overall total mass matrix, damping matrix, and
the overall stiffness matrix of the subsystem; and the road surface roughness is the main
excitation source. Therefore, the interaction force between the vehicle and bridge system is
a function of the vehicle–bridge system’s motion state and road roughness, which can be
analyzed in the established vehicle–bridge analysis system [34]. The road surface roughness
is described by a power spectral density function, which can be generated through Fourier
inversion [35]. Fv = Fvi

(
Zv,

.
Zv,

..
Zv, Zb,

.
Zb,

..
Zb, i

)
Fb = Fbi

(
Zv,

.
Zv,

..
Zv, Zb,

.
Zb,

..
Zb, i

) (10)

where Zv denotes vehicle displacement, Zb denotes bridge displacement, and i denotes
road surface roughness.

4.2. Traffic Load Simulation

The vehicle load data monitored in a region is used to further evaluate the degradation
process of suspenders under traffic load. The data were collected from the traffic load of
a long-span bridge for one month by a weigh-in-motion (WIM) system. Figure 10 shows
the hourly traffic volume results of the traffic flow, which are divided into five levels
based on the range of traffic volume, including level 1 (<300 passenger car unit (pcu)/h),
level 2 (300~600 pcu/h), level 3 (600~900 pcu/h), level 4 (900~1050 pcu/h) and level 5
(>1050 pcu/h). The error bar of the hourly traffic volume proves that the traffic volume is
relatively stable. Although the standard deviation of peak traffic volume is larger than the
trough period, the overall distribution is consistent, which does not affect the division of
traffic intensity. The time proportions are 0.25, 0.21, 0.165, 0.21, and 0.165, respectively. The
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established random traffic flow simulation method is used to generate traffic flow loads of
different strengths for loading [34], so as to obtain the impact of traffic flow level on the
stress response of the suspenders.
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Figure 10. Average traffic volume from WIM data.

5. Numerical Analysis
5.1. Analysis Conditions

As a tensioned component, flexible central buckles cannot support the vibration
response of the midspan main beam or cable as the rigid central buckles, but they can still
affect the overall response of the structure by changing the fastening force. The connection
system formed by the central cable and the suspenders changes the distribution of the force
of the suspender near the midspan under traffic load. Traffic load is the main inducement
of the bridge vibration response. To study the improvement effect of central buckles on
bridge vibration, this study analyzes the response of bridges under conditions such as no
central buckle and settled flexible central buckles. The detailed analysis conditions are
shown in Table 3.

Table 3. Analysis conditions of the FE model.

Condition Description Schematic

N-C No central buckle
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5.2. Evaluation Process

The fatigue life of suspender wires can be predicted by the corrosion fatigue theory,
and the detailed prediction process is shown in Figure 11. Considering the traffic density
variation, the contribution of the corresponding stress cycle times to crack depth is calcu-
lated on the basis of the hourly occupancy rate of different traffic flows in one year, and the
change law of crack depth and crack development rate with time is obtained. The process
includes the following steps: (1) analyzing the characteristics of traffic flow parameters and
generating random traffic flow samples on the basis of the WIM data; (2) taking traffic flow
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into the vehicle bridge coupling analysis system and obtaining the time history results of
suspender stress; (3) simulating the uniform corrosion process of steel wire and generating
random samples of pitting corrosion; (4) calculating crack propagation by integrating
vehicle flow effects of different levels until failure.
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Figure 11. Simulation process of wire life.

5.3. Result Discussion

The dynamic test under truck load in Figure 6 is used to analyze the dynamic response
of the bridge structure with or without the central buckle. First, the suspender response of
the running test is shown in Figure 12 to analyze the difference between suspenders. The
suspender bears axial stress and bending stress due to the relative movement between the
main cable and the stiffening beam. The bending stress of the suspender cannot be directly
obtained by the LINK10 element. Thus, the Wyatt theoretical formula is introduced to
calculate bending stress according to computed axial stress and the angle caused by relative
movement between the main cable and the stiffening girder [36]. The Wyatt theoretical
formula can only be applied to an object that is a round wire, which is not suitable for a
set of strands such as the prototype bridge. Kondoh proposed that the bending stress in
this kind of suspender at the joint was assumed to be 60% of the theoretical Wyatt formula
based on the experimental results as Equation (11) [37]

σb = 1.2 tan θ ·
√

σaE (11)

where σa is axial stress, E is the elasticity modulus of steel wire, and θ is the angle caused
by the relative movement between the main cable and the stiffening girder.
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Figure 12. Comparison of suspender stress. (a) Bending stress; (b) axial stress.

Only the bending stress and axial stress of partial suspenders are shown due to layout
constraints. The variation of the axial stress of short suspenders is small, whereas the length
of short suspenders near the midspan is too small to release stress; the bending stress is
greater than long suspenders. The influence of bending stress cannot be neglected in the
analysis of suspender degradation. The settlement of flexible buckles considerably reduces
the bending stress of suspenders but has minimal effect on the axial stress. The bending
stress of short suspenders near suspender no. 26 (midspan) slightly decreases, whereas the
long suspenders are almost unaffected. Thus, short suspenders nos. 21–26 are selected as
analysis objects.

The traffic load is divided into different levels according to traffic density and then
used for loading to calculate the structural dynamic response under traffic conditions.
Figure 13 shows the suspender stress under the traffic flow at level 5. The time history
of axial stress is consistent for different conditions, and the bending stress presents a
remarkable difference in that the peak values are greatly reduced.
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Figure 13. Time history of suspender stress (level 5). (a) Axial stress; (b) bending stress.

Figure 14 shows the peak values of bending stress and axial stress. The suspender
stress response under different traffic flows is different, and the axial stress is slightly influ-
enced by different traffic flows, whereas the bending stress is greatly reduced by flexible
central buckles. The settlement of flexible central buckles has a certain influence on the
axial stress and bending stress of short suspenders. The axial stress peak values vary under
different conditions. F-C-1 has an improvement effect on suspender no. 26, whereas F-C-2
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has an improvement effect on suspender no. 25; these results are related to the position of
buckles. The settlement of buckles shares the axial stress of the suspender between inclined
cables. In terms of bending stress, the flexible central buckle can remarkably reduce the
peak value of short suspenders, but the weakening effect is not significantly improved with
the increase in the number of buckles.
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Figure 14. Comparison of peak values of stress. (a) Axial stress; (b) bending stress.

The generation of pitting corrosion is a random process, and the maximum pitting
depth directly affects the generation of cracks and fatigue life. In order to reflect the
difference in steel wire life, the corrosion fatigue degradation of steel wire under different
working conditions was simulated. A total of 150 samples for each analysis condition
were sampled based on randomly generated maximum pitting coefficients, and then the
transition from pitting corrosion to cracking and the crack development were calculated on
the basis of the proposed predicting process. Figure 15 shows the crack development of the
steel wire samples of suspender nos. 21–26. Under the N-C condition, the average crack
development in the steel wire samples of suspender nos. 24–26 is remarkably faster than
that of suspender nos. 21–23, satisfying the service requirements. Although the corrosion
resistance of the aluminum alloy steel wire is better than that of the galvanized steel wire,
once the steel wire coating is consumed, the crack growth rate caused by the substrate
pitting pit mainly depends on the stress response of the suspender. The bending stress of
the short suspender under the N-C condition is larger, but the steel wire fatigue life remains
lower than the design life of the bridge. Figure 16 shows the crack speed of the wires of
suspender no. 26; the settlement of flexible central buckles substantially improves their
fatigue life, and the improvement effect is similar to that of the rigid central buckle [17].
However, the increase in the number of buckles does not considerably weaken the crack
growth rate. The fatigue lives were fitted, and the results are shown in Figure 17; all of
them obey a normal distribution. The mean values of the fatigue lives of suspender nos. 24,
25, and 26 have small differences because the length of these suspenders is close. The 5%
fractiles are taken as the characteristic service life, in which the service life of the steel wire
has a 95% assurance rate. The service life of the short suspender is 20.04, 21.02, and 24.18,
respectively. All of them are lower than expected, but the service life can be significantly
improved by increasing the length of the steel wire; that is, reducing the bending stress.



Materials 2023, 16, 290 14 of 17

Materials 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

the steel wire samples of suspender nos. 21–26. Under the N-C condition, the average 
crack development in the steel wire samples of suspender nos. 24–26 is remarkably faster 
than that of suspender nos. 21–23, satisfying the service requirements. Although the cor-
rosion resistance of the aluminum alloy steel wire is better than that of the galvanized 
steel wire, once the steel wire coating is consumed, the crack growth rate caused by the 
substrate pitting pit mainly depends on the stress response of the suspender. The bending 
stress of the short suspender under the N-C condition is larger, but the steel wire fatigue 
life remains lower than the design life of the bridge. Figure 16 shows the crack speed of 
the wires of suspender no. 26; the settlement of flexible central buckles substantially im-
proves their fatigue life, and the improvement effect is similar to that of the rigid central 
buckle [17]. However, the increase in the number of buckles does not considerably weaken 
the crack growth rate. The fatigue lives were fitted, and the results are shown in Figure 
17; all of them obey a normal distribution. The mean values of the fatigue lives of sus-
pender nos. 24, 25, and 26 have small differences because the length of these suspenders 
is close. The 5% fractiles are taken as the characteristic service life, in which the service life 
of the steel wire has a 95% assurance rate. The service life of the short suspender is 20.04, 
21.02, and 24.18, respectively. All of them are lower than expected, but the service life can 
be significantly improved by increasing the length of the steel wire; that is, reducing the 
bending stress. 

 
Figure 15. Development of average crack depth.  

 
Figure 16. Crack speed of wire samples (suspender No. 26). 

0 20 40 60 80 1000

1000

2000

3000

4000

5000

Cr
ac

k 
de

pt
h(

μm
)

Average 
lifespan

Analysis condition：N-C

Time(year)

 No.21  No.22
 No.23  No.24
 No.25  No.26

0 40 80 120 160 200

Cr
ac

k 
sp

ee
d 

(u
m

/y
ea

r)

Analysis condition: N-C

Analysis condition: F-C-1

Analysis condition: F-C-2

Time (year)

Analysis condition: F-C-3
0

50

2500

50

50

0

0

0

Figure 15. Development of average crack depth.
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Figure 17. Distribution of steel wire life under the N-C condition. (a) Suspender no. 24; (b) suspender
no. 25; (c) suspender no. 26.

Table 4 shows the comparison of the equivalent stress amplitude and fatigue life of
the steel wires of suspender nos. 24–26. With consideration of the responses under traffic
flow of five levels, the fatigue life of the steel wire after setting buckles meets the service
requirements, but the increase in the number of buckles has hardly improved the life of
the suspender steel wire. The 95% confidence interval results of fatigue life are shown in
Table 4. When the number of samples is sufficient, the confidence interval length is small.
The length of the confidence intervals of N-C steel wire is less than 1.5 years, and those
of F-C are all less than 8 years. The average life of steel wire tends to be stable, thus the
sampling results are proven to be reliable. The setting of buckles can considerably improve
the extreme value of bending stress and the equivalent stress replication. When two buckles
are settled, the extreme value and the equivalent stress amplitude of the steel wire tend
to be stable, and increasing the number of buckles is unnecessary. The equivalent stress
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amplitude of axial stress is unaffected, and the suspender stress of long-span suspension
bridges is determined by the dead load.

Table 4. Fatigue life of suspender wire under different analysis conditions.

Suspender
Number
(Length)

Analysis
Condition

Maximum
Bending

Stress (MPa)

Equivalent
Bending

Stress (MPa)

Equivalent
Axial

Stress (MPa)

Fatigue Life (Year)

µ σ
Confidence

Intervals
(95% CI)

24
(2.75 m)

N-C 208.31 37.30 10.23 35.2 5.51 (34.3,36.1)
F-C-1 70.52 14.19 9.60 179.3 19.31 (176.2,182.4)
F-C-2 54.14 11.38 9.51 178.5 19.54 (175.4,181.6)
F-C-3 54.67 12.46 9.45 181.3 19.59 (178.2,184.4)

25
(2.45 m)

N-C 238.91 44.32 9.63 27.6 3.29 (27.1,28.1)
F-C-1 77.16 15.68 10.12 177.8 19.32 (174.7,180.9)
F-C-2 50.81 11.62 10.33 177.9 20.39 (174.6,181.2)
F-C-3 50.79 11.81 9.38 181.1 20.10 (177.9,184.3)

26
(2.41 m)

N-C 274.10 46.66 10.03 27.2 3.58 (26.6,27.8)
F-C-1 72.17 14.38 10.17 174.2 19.49 (171.1,177.3)
F-C-2 50.68 11.93 8.98 178.1 21.35 (174.7,181.5)
F-C-3 46.85 12.07 9.30 179.4 20.60 (176.1,182.7)

6. Conclusions

The influence of a flexible central buckle on suspension bridge vibration was remark-
able, but the control effect on short suspenders is still unknown. This study established the
corrosion fatigue degradation model of high-strength steel wire based on traffic composi-
tion and explored the influence of flexible central buckles on the corrosion fatigue life of
suspenders under traffic flow. To improve the consideration of traffic flow, the WIM data
were processed according to traffic density and used to analyze the suspender response
under traffic flow of different densities. The fatigue life of short suspenders without buckles
and with different numbers of buckles was analyzed based on monitoring traffic data. The
following conclusions were drawn:

1. The intensity of traffic flow greatly influences the stress response of suspenders. The
bending stress of short suspenders is considerably greater than that of long suspenders.
The setting of flexible central buckles can effectively reduce the peak value of bending
stress, but when the number of central buckles exceeds two, the increase in number
does not remarkably weaken the bending stress. In addition, the buckles can share
the axial stress of the suspender between inclined cables, and the weakening effect is
affected by the setting position.

2. According to numerical analysis results, the fatigue life of short suspender wires
under traffic load is remarkably lower than that of the other suspenders due to large
bending stress (about 27–35 years). The setting of buckles can effectively reduce
the equivalent bending stress amplitude, but the equivalent axial stress amplitude
does not remarkably decrease. The improved stress state of the short suspenders
considerably extends the fatigue life of the steel wires under traffic flow (about
174–179 years); by contrast, the increase in the number of buckles has a minimal effect
on steel wire life and extreme stress values.

The dynamic motion of the bridges is complex for diverse loads. Moreover, the fatigue
behavior of short suspenders and the vibration control effect are influenced by other loads,
such as wind, earthquakes, and other special conditions. The optimal design of flexible
central buckles should be studied further.
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