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Abstract: Mechanical properties of open-porous materials are often described by constructing a
cellular network with beams of constant cross sections as the struts of the cells. Such models have
been applied to describe, for example, thermal and mechanical properties of aerogels. However, in
many aerogels, the pore walls or the skeletal network is better described as a pearl-necklace, in which
the particles making up the network appear as a string of pearls. In this paper, we investigate the
effect of neck sizes on the mechanical properties of such pore walls. We present an analytical and a
numerical solution by modeling these walls as corrugated beams and study the subsequent deviations
from the classical scaling theory. Additionally, a full numerical model of such pearl-necklace-like
walls with concave necks of varying sizes are simulated. The results of the numerical model are
shown to be in good agreement with those resulting from the computational one.

Keywords: aerogels; microstructure; non-linear beam bending; corrugations; scaling laws

1. Introduction

Gibson and Ashby derived scaling laws for three-dimensional (3D) open-porous
cellular materials in their seminal book on porous solids [1]. They showed that for many
properties, particularly mechanical ones, the relative density determines the property. Here,
the relative density is defined as the density of the porous material divided by that of
the pore-free material. For instance, Young’s modulus E should vary with the relative
density in a simple power law fashion E ∝ ρ2 and the plastic rupture strength σcr should
depend on the density in a similar way, namely σcr ∝ ρ3/2. While recent investigations
have asserted the importance of the pore-size distributions and pore-wall morphology,
alongside the relative density, in dictating the mechanical properties of such materials [2],
the scaling relations still hold true for a vast majority of open-porous materials. This is a
consequence of the models proposed by Gibson and Ashby, which work fine because many
porous materials exhibit a cellular structure with walls of constant cross section, and in
open-porous materials the edges of the pores, the struts, and beams can be described as
smooth quadratic bars or cylinders. The pore sizes are assumed to be constant and not
exhibiting a size distribution. In aerogels, the pore sizes range from a few ten nanometers
to even micrometers, and the struts are, for instance, in the case of silica and Resorcinol–
Formaldehyde (RF)-aerogels, better described as a pearl-necklace structure as shown with
a lot of scanning electron micrograph (SEM) pictures in the book of Ratke and Gurikov [3].
While recent models have tackled the subject of pore-size or cell-size distributions in such
materials [2,4], the effect of network connectivity and the effect of this pearl-necklace-like
morphology remains less addressed.

Some newer models described the mechanical properties of aerogels with two-
dimensional (2D) or 3D pore model of constant cross-section [5–7] taking also into account
network defects, like dead ends, dangling beams, and struts. More details on different
modeling methodologies for describing aerogels can be found in the perspective by Rege [8].
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One such model was proposed by Lei and Liu [6] to characterize silica aerogels. They used
cubic cells with struts of constant cross. The simulated loading lead for Young’s modulus to
a scaling exponent with envelope density of m = 2.04, being close to the value predicted by
Gibson and Ashby. In aerogels, not the dead-ends or a lack of their presence dictate a devia-
tion from the Gibson and Ashby exponent of m = 2, but it is rather the random connectivity
and the effect of the string-of-pearl morphology. Gelb [9] and Abdusalamov [10] have
investigated the effect of the connectivity on the mechanical properties. For a more detailed
discussion see also the book of Ratke and Gurikov [3]. The effect of the pearl-necklace-like
morphology was only recently attacked by the authors [11]. Only few authors investi-
gated the effect of inter-particle necks on the mechanical properties of porous materials.
Chen et al. [12] studied the elastic properties of porous ceramic films and showed that
the inter-particle necks and their coarsening are decisive for the mechanical properties. In
colloidal crystals or more general colloidal assemblies interparticle-necks play an important
role, since typically there are only weak bonds between the almost spherical particles
touching each other. Dargazany and Itskov [13,14] studied the mechanical behavior of
interconnected arrays of colloidal particles assuming that at the touching points the bonds
can be described as non-linear springs. In many aerogels, the network of particles consist
of moderately up to heavily connected bonds and therefore the Gibson and Ashby [1]
model has been applied for aerogels [5,15]. All studies performed so far have shown that
the pore collapse occurs as a result of a critical stress arising from buckling or bending of
the pore walls or better the connected struts. This leads to subsequent failure and crack
formation. Since the kinematics of the deformation modes are dependent on the area
moment of inertia of the pore walls, the effect of particle necks or more generally any shape
variation that may be described as corrugated beams must be significant. It was recently
shown by the authors, that modeling these struts or beams with a constant cross-section
may result in too soon of a prediction of failure due to stretching and bending, while a
delayed prediction of pore collapse is due to buckling [11]. In this study, the interparticle
necks were simplified by modeling overlapping spheres. While this may be acceptable
for qualitatively describing their effect, a quantitative description demands more accurate
modeling of these interparticle necks. This paper attempts to describe and analyze the
mechanical behavior of the pearl-necklace-like pore-walls and more generally corrugated
beams as against the one with a constant cross-section and shows how the wall thickness
variations modify the scaling laws derived by Gibson and Ashby.

2. Description of Pore Walls as Corrugated Beams

Particles form in a gel solution by different mechanisms resulting in the formation
of the porous network of silica, resorcinol–formaldehyde (RF) and other polymeric aero-
gels. For instance, polycondensation reactions lead to entangled polymers, which may be
regarded as particles or the particles form via phase separation (nucleation, spinodal de-
composition), while the state point of the polymerizing system passes a stable or metastable
miscibility gap [3,16]. Once the particles touch, they establish bonds and build particle
clusters by various aggregation mechanisms. The connected particles further grow, since
the surrounding solvent is still rich in monomers and oligomers. At the circular contact line
surrounding the area of contact, they preferably condense since the effect of concave curva-
ture increases the condensation or attachment rate. This growth leads to necks between the
particles. Figure 1 shows an SEM of an RF-aerogel clearly depicting a pearl-necklace-like
structure. The almost spherical particles with different diameter are connected by necks
with a concave curvature.
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Figure 1. SEM picture of an RF-aerogel with a pearl-necklace microstructure. Picture provided by M.
Schwan, DLR.

After gelation and drying, the aerogel microstructure looks as if the particles would
overlap, the spheres would have been penetrated into each other and the necks have a
concave curvature. In a simplified manner, one can then describe the network of particles
as an arrangement of simple cubic boxes, whose edges consists of spheres with radius R.
If these spheres overlap by a small amount ξ = h/R, meaning they interpenetrate by an
amount of h ≤ R this overlap affects the porosity, the solid fraction and the mechanical
properties as recently shown in [11,17]. The elastic and plastic response of the full box or the
whole network can be analyzed by considering the mechanical behavior of a beam (strut)
located at the box edges. Figure 2 shows a box made with cylindrical edges compared to a
box having strings of overlapping pearls at the edges.

Figure 2. Scheme of possible edges of simple cubic boxes making a porous body. The cylinder in the
left upper corner is replaced by string of spheres with increasing overlap to the right bottom corner.

However, these spherical particles overlapping in Figure 2 do not consider the devel-
opment of necks with a concave curvature. Thus, for further calculations, we use another
description, which also allows to mimic the interparticle necks. We can describe the geome-
try of such an array of spherical particles with necks as a rod with cosinusoidal corrugations
shown schematically in Figure 3. Then, the radius varies in one direction like

R(x) = R0(1− α cos2(
nπ

L
x)) (1)

with L the length of the rod, n the number of wave maxima, and α = ∆R/R0, the amplitude
of the corrugations. Formally, 0 ≤ α ≤ 1. We will use later Equation (1) to calculate the
bending of corrugated beams and compare the results with a full finite element calculation
of a string-of-pearls with necks, see Section 5.
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Figure 3. Surface of revolution of a rod with a cosinusoidal corrugations mimicking a chain of spheres
connected by necks. In this figure, R0 was set to 0.05 and n = 10. From upper left to lower right, α

varies from 0.2 to 0.4, to 0.6 to 0.8.

3. A Simple Estimate of Buckling Strength

Gibson and Ashby discuss several failure modes of open-porous foams. The first is
the elastic failure, occurring, once the critical buckling load of a strut or beam making up
the pore wall of the foam is passed. In their model, they construct the foam as being made
up by rectangular beams building a cube of edge length ` and the beams have a thickness t.
The beams buckle once the critical load is reached. According to the linear Euler buckling
theory, a critical force

Fc =
η2π2Es I

`2 (2)

must be overcome to buckle a beam. In this expression, η is a factor, which accounts for the
type of constraints at the beam end (order 1), Es is Young’s modulus of the beam material,
I is the second moment of the beam area. The critical stress is then calculated as

σc ∝
Fc

`2 ∝
Es I
`4 . (3)

The second moment of the area is I ∝ t4 and since the volume fraction of solid in a
unit cube of edge length ` is given as φs ∝ (t/`)2 we have the scaling relation for elastic
failure of a foam as

σel
c

Es
∝ φ2

s . (4)

As described in the previous sections, not all particulate aerogels can be described
by simple overlapping spheres, since touching particles develop necks at their point of
contact with a radius of curvature defined by several growth mechanisms as sketched
above. In principle we could take a unit cell with pore walls like an array of particles
with interparticle necks and load it at the top and ask, how they bend. Figure 4 shows a
sketch of a box made with spherical particles and a string of spheres with necks is taken
out exhibiting a simulated deformation. The forces at the top and bottom of the box lead
to a bending of the string of pearls at each edge. The spherical particles will resist such a
deformation and stresses will develop at their necks, much larger than the stress in a full
circular bar. The necks act as local stress raisers, which one could describe by a notch factor.
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Figure 4. Scheme of a box made with overlapping spheres rotated such that at the top and bottom
they can be loaded with a force F. This leads to a bending of the string of pearls at each edge, which is
shown in the right figure (a finite element simulation discussed in Section 5). The spherical particles
will resist such a deformation and stresses will develop at their necks. The necks act as local stress
risers, which can be described by a notch factor.

For mathematical modeling of the neck between two particles, consider the schematic
illustrated in Figure 5. From the sketch, one can derive the following relation for the
neck radius,

(R + ρ)2 = (x + ρ)2 + R2 (5)

leading to

ρ =
x2

R(1 + x
R )

. (6)

We now calculate the bending of such a string of connected pearls using a notch factor.
The notch factor can be expressed by the following relation

Kn = 1 + 2
√

c
ρ

. (7)

This equation would, for instance, give a circular hole punched into a sheet, c = ρ, a
notch factor of 3, which is exact for such a case. For a very small neck radius of curvature,
the notch factor would be very large and one would expect, that the failure stress is much
lower, compared with a circular bar of radius x. The second moment of area is now

I ∝ x4. (8)

With the same calculations as above, we come to an equation of the buckling strength

σc ∝ φ2
s /Kn. (9)

This is not exact since the solid fraction is only proportional to x2/`2. The proportion-
ality factor depends on the chosen network model. At this point, we will first neglect this
and instead take a closer look at the notch factor. The notch depth c can be calculated easily,
x + c = R, and from the given geometry we obtain for x � R

Kn ≈ 1 +
R
x

. (10)

Therefore, we finally have
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σc ∝
φ2

s

1 + R
x

. (11)

Making a series expansion up to second order in x around x = 0, and inserting
x/R = 1− α, see Equation (1), leads to

σc ∝ φ2
s (1− α + α2). (12)

The larger the amplitude of corrugations, the smaller the buckling strength.

Figure 5. Scheme of two overlapping particles, which built a neck with a radius of curvature ρ during
growth. The neck diameter, which can be measured for instance from SEM pictures (see [3]), is
denoted as 2x.

4. Bending of Corrugated Beams

In the previous section, we neglected that a varying cross-section of a chain of spheres
might change the Euler buckling analysis. In the following, we try to calculate the Euler
buckling of a chain of spheres. The general equation describing bending of a rod with
varying second moment of area I(x) is according to Landau and Lifshitz [18]

d2

dx2

(
I(x)

d2u
dx2

)
+

P
E

d2u
dx2 = 0. (13)

In this equation, u(x) is the displacement perpendicular to the rod axis, P is the load
acting at the ends of the rod, and E is the Young’s modulus. Integrating two times leads to

I(x)
d2u
dx2 +

P
E

u = C1x + C0, (14)

where C1, C0 are the two constants of integration. Writing u(x) = w(x) + ax + b and
inserting leads to a simple equation for the displacement w(x)

I(x)
d2w
dx2 +

P
E

w = 0, (15)

with a = E/PC1 and b = E/PC0. We aim to solve Equation (15) for buckling of a string of
pearls. For a rod with radius R(x) the second moment of area is

I(x) =
R(x)4

4
. (16)
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4.1. Approximate Analytical Solution

Insertion of Equation (1) into Equation (16) leads to a new expression for the second
moment of area as

I(x) =
R4

0
4
(1− α cos2(

nπ

L
x))4 = I0(1− α cos2(

nπ

L
x))4. (17)

Insertion into Equation (15) unfortunately leads to an equation that cannot be solved
analytically. We therefore rewrite this equation as

d2w
dx2 +

P
EI(x)

w = 0. (18)

Insertion of the full expression of the second moment of inertia still would lead to an
equation that cannot be solved analytically. However, a series expansion of the inverse of
the second moment of inertia to second order yields the following equation

d2w
dx2 +

P
EI0

(1 + 4α cos2(
nπ

L
x))w = 0. (19)

This differential equation can be solved directly. The solution fulfilling the boundary
conditions w(0) = 0 and w(L) = 0 are Mathieu functions of odd parity, named here
Ms(a, q, x), with a, q suitable constants (One can imagine this using the identity cos2(x) =
1/2(1 + cos(2x)), which transforms the square of the cosine and then one looks into
textbooks on differential equations to see that the resulting equation is Mathieu’s equation.
For details on Mathieu functions, see [19,20]).

w(x) = w0Ms

(
4L2P(1 + 2α)

En2π2 I0
,− L2Pα

EI0n2π2 ,
nπ

L
x
)

. (20)

In the case of a rod without corrugations, we have α = 0 and then the Mathieu function
becomes a simple sinus

w(x) = w0 sin

n
L

√
L2P

EI0n2 x

. (21)

Using the boundary condition at x = L leads to

sin

√ L2P
EI0

x

 = 0 (22)

The sine is zero at all multiple of π, namely at mπ, m = 0, 1, 2, 3, ... and thus, we get
the Euler criterion for buckling

P0 =
m2π2EI0

L2 =
m2π2ER4

0
4L2 . (23)

The simplest mode of buckling is at m = 1. At least for vanishing corrugations, the
result is in agreement with the simple solution of the bending equation. We can make use
of this result to simplify Equation (20) to

w(x) = w0Ms

(
4(1 + 2α)

n2
P
P0

,− α

n2
P
P0

,
nπ

L
x
)

. (24)

At the boundary x = L, we should have w(L) = 0, and thus

Ms

(
4(1 + 2α)

n2
P
P0

,− α

n2
P
P0

, nπ

)
= 0. (25)
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The solution of this equation yields the buckling mode of a corrugated rod. Unfor-
tunately there is no analytical expression for the zeros of Mathieu’s function available.
Defining χ = P/P0, we can solve Equation (25) numerically looking for the relative buck-
ling load χ as a function of α at fixed n for instance. A result of such a calculation is
shown in Figure 8 as the upper dashed line with full circles using n = 10 in Equation (1).
Although the result shows the expected trend, namely a reduction of the buckling load
with increasing amplitude of the corrugations, one should not overstress the result. The
series expansion of the inverse second moment of area made above is only valid until
approximately α ≤ 0.1. For larger corrugations or smaller neck areas, one has to solve the
bending of a string of overlapping pearls numerically.

4.2. Nonlinear Bending-Numerical Solution

Under non-linear bending, Equation (15) writes

I(x)
(1 + w′(x)2)3/2 w′′ +

P
E

w = 0. (26)

Before continuing, we define the dimensionless variables: ξ = x/L as a dimensionless
coordinate, w = w/L as a dimensionless deflection. Again using the expression for the
second moment of area given in Equation (1), we obtain a new differential equation

(1− α cos2(nπξ))4

(1 + w2
ξ)

3/2
wξξ + kcw(ξ) = 0, (27)

with

kc =
PL2

EI0
and wξξ =

d2w
dξ2 . (28)

The boundary conditions read w(0) = w(1) = 0. We solve this equation with an
implicit Runge–Kutta method using a Mathematica™notebook. In the numerical solution,
interestingly, one only gets bending if the value of kc is above a threshold value. Below
this value, the numerical solutions are always close to zero and if the value of kc is much
larger the curve often has more than one extreme. Determining the smallest value of kc
(threshold) for which we get a simple bending curve, should be the smallest possible value
of the critical load Pc needed to buckle the beam, given that all other parameters L, E, I0
are constants. We always used a value of n = 10. At larger values of α, beyond 0.7, no
stable solution could be obtained. Higher values of α do not make sense, because at very
small necks the bonding between the particles becomes important and this leads to new
effects [21,22]. The full line with open circles in Figure 8 shows the results of the numerical
solution of Equation (27) using for the variation of the beam radius expression as given
in Equation (1). The relative buckling load, Pc/P0 decreases with the amplitude of the
corrugations α. P0 is the critical load of the α = 0-case.

The critical load decreases rapidly with the amplitude and a comparison with the
approximate analytical solution of the linear bending equation shows a good agreement up
to α = 0.1. Let us now compare the result with the solution given in Equation (11). The
amplitude of the corrugations relates to the relative neck radius such as

α = 1− x/R, (29)

since at α = 0 there are no corrugations and the neck radius equals the particles radius. At
α = 1, the neck radius is zero. Inserting into Equation (11) and dividing the result by the
expression for the buckling strength as noted in Equation (4) yields

σc

σunc
≈ 1− α, (30)
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where σunc is the strength of an uncorrugated beam as derived by Gibson and Ashby.
Performing a least square fit to the numerical results shown in Figure 8 yields an interesting
result. The data can be fitted almost perfectly by the following quadratic equation for α

Pc

P0
= 1− 2.15579α + 1.106α2. (31)

Besides the quadratic term, the numerical solution fits very well to the simple estimate
given above with the notch factor (there is the important difference, that the nonlinear
bending gives not simply the expression 1− α but the decrease of buckling strength is
greater by a factor of around 2). It also shows, that the scaling solution, meaning the
proportionality to the square of the fraction solid, is not modified, just the prefactor is much
smaller and depends on the amplitude of the corrugations. The thinner the necks, the
smaller the buckling strength.

5. Finite Element Modeling of the Pore Walls with Particle Necks

In our previous study [11], a finite element model of pore walls modeled with overlap-
ping spheres representing particles with necks was described. While overlapping spheres
appear like particles having necks, these are, strictly speaking, not an accurate description.
Particle necks can be more accurately represented by the geometry shown in Figure 5.
In this section, we use this approach for computationally designing model pore walls with
varying neck sizes (x/R). Figure 6 exhibits these model pore walls with x/R ∈ [0.2, 1.0]
in the reference state. An x/R of 0.2 shows very small necks, while increasing this factor
results in wider necks ultimately resulting in a fiber-like array of particles having a constant
cross-section. The illustrations shown in Figure 6 give an accurate description of evolving
neck sizes in aerogels. These models were generated in ABAQUS and simulated for their
buckling behavior using a perturbation analysis. We used a linear elastic model, in which
the solid material has a Young’s modulus of 1.5 GPa and a Poisson ratio of 0.3. Solid
element type C3D8R was used, which is a general purpose brick element with reduced
integration. This element type avoids the phenomena.

The results from the buckling analysis are illustrated in Figure 7. While visually, the
deflection of all the pore walls appears similar, quantifying the relative critical buckling load
Pc/P0 for each case shows significant deviations. This Pc/P0 for varying neck sizes x/R
represented as α (see Equation (29)) are plotted in Figure 8. The numerical solution from
Equation (27) agrees well with these computational results. The small difference between
the computational results and the FEM data are probably a result of the geometrical
difference between a beam corrugated by a cosinusoidal function and the more realistic
shape used in the FEM calculations. In both cases, it was observed that the smaller the
neck sizes, the higher the stress-concentration at the necks and the smaller is the buckling
strength. This result can be applied to understand the fragility in aerogels and subsequent
quantification of their mechanical strength upon, e.g., aging. Mechanical strengthening of
silica aerogels by aging was investigated by Einarsrud et al. [23,24]. They showed that with
increasing aging time, the strength increases as a result of neck thickening. Unfortunately,
they did not measure the neck radius and the particle radius explicitly. Moreover, one can
observe that Pc/P0(α) for different particle radii coalesce. This shows that the critical load
is independent of the particle size.
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Figure 6. Computational models of the model pore walls in the reference state for different x/R ratios.

Figure 7. Finite element simulation results for the displacement states of the model pore walls in the
deformed state under buckling for different ratios of neck size x to particle radius R, x/R.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

amplitude α

P
c
/P
0

Figure 8. Critical buckling load as it depends on the amplitude of corrugations or the neck size. The
full line with open circles is the result of the corrugated beam, see Equation (27). The dashed line with
the full circles is the analytical result of the linear Euler theory, see Equation (25) and the long-dashed
line with the full squares presents the result of the FEM calculations of a string of pearls with concave
necks. This curve is also the result for three different particle radii. They all coalesce and thus only
the value of α is important.

6. Conclusions

In this paper, an accurate mathematical and computational description of the pearl-
necklace-like pore walls with interparticle necks, as observed in aerogels, is presented. The
pore walls are modeled as corrugated beams and their bending and buckling solutions,
including their nonlinear analysis, are presented. These numerical solutions are then
validated by presenting a full finite element calculation of such pore walls with varying
interparticle necks. It was observed that the smaller the interparticle neck sizes, the higher
the stress-concentration at the necks and smaller the buckling strength. This poses a
possible explanation for the fragility in silica or RF aerogels.
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