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Abstract: This paper analyzes the efficiency of shrinkage reducing additives for the shrinkage defor-
mations of ordinary Portland cement (OPC) concrete and its mechanical properties. OPC concrete
was modified with an organic compound-based shrinkage reducing additive (SRA), quicklime,
polypropylene fiber, and hemp fiber. It was found that a combination of 2.5% quicklime and 1.5%
SRA led to the highest reduction in shrinkage deformations in concrete, and the values of shrinkage
reached up to 40.0%. On the contrary, compositions with 1.5% SRA were found to have a significant
reduction in compressive strength after 100 freeze-thaw cycles. Hemp fiber did not show a significant
shrinkage reduction, but it is an environmentally friendly additive, which can improve OPC concrete
flexural strength. Polypropylene fiber can be used in conjunction with shrinkage reducing additives
to improve other mechanical properties of concrete. It was observed that 3.0 kg/m? of polypropylene
fiber in concrete could increase flexural strength by 11.7%. Moreover, before degradation, concrete
with polypropylene fiber shows high fracture energy and decent residual strength of 1.9 MPa when a
3.5 mm crack appears. The tests showed a compressive strength decrease in all compositions with
shrinkage reducing additives and its combinations after 28 days of hardening.

Keywords: concrete shrinkage; shrinkage reducing additives; quicklime; polypropylene fiber;
hemp fiber

1. Introduction

Concrete is one of the most common building materials in the world due to its afford-
able price and particularly good mechanical properties. Nowadays, wide concrete surfaces
with wide open surfaces are especially popular in the concrete industry: thin-walled struc-
tures, monolithic elements of bridges, or seamless floors. During the hardening of OPC
concrete, shrinkage deformations may occur which could lead to various undesirable cracks
and fissures. Many scientists are looking for ways to reduce or eliminate the shrinkage of
concrete without changing the main properties of concrete [1-15].

Shrinkage of concrete can be described as a decrease in volume, regardless of its
consistency, which can result from a variety of chemical reactions or a decrease in relative
humidity or a slightly saturated porous system. Deformation of materials is often divided
into chemical, plastic, carbonization, autogenous, and drying shrinkage and depends on the
initial setting time and hydration mechanism [1]. In the early stages of hydration, chemical
shrinkage occurs. It is caused by newly formed hydration products with a smaller volume
compared to the volume of initial components [2]. Plastic shrinkage is defined as the loss of
water by evaporation after the addition of fresh concrete until it becomes hard [3]. Various
chemical reactions between carbon dioxide and cement hydration products cause shrinkage
of carbonation. In some literature [2,4], autogenic shrinkage of concrete is described as the
result of self-drying and chemical processes. This drastically reduces water demand and the
water to a cement ratio that is between 0.2 and 0.42. Lack of moisture in the environment
causes internal cement dehydration and consequent drying shrinkage.

Many authors report that an effective way to reduce shrinkage deformations is to
use fibers and shrinkage-reducing additives that improve the properties of concrete [5-18].
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Ullah et al. [5] investigated early age autogenous shrinkage using different types of fibrous
materials (steel, plastic, and glass). The study found that a dose of 0.38% fiber volume
reduced autogenous shrinkage. Using this number of fibers, it was found that polypropy-
lene fibers had a better effect on autogenous shrinkage compared to steel or glass fiber.
Park et al. [6] studied high-performance cement composites containing polypropylene and
fiberglass. The findings showed that properties such as compressive strength or tensile
strength were higher when polypropylene fiber was used in cement composites compared
to glass fiber. The researchers also found that the addition of any of these fibers (>1% by
weight) would reduce the shrinkage of the cement composites. It was also found that
higher amounts of fiber led to higher efficiency.

Many studies [5-10] analyzed the performance of SRA (shrinkage reducing additives)
in concrete. Most authors concluded that even a small amount of SRA is sufficient to
reduce shrinkage deformations. Zhan and He [7] concluded that SRA is used to delay
the hydration reaction of OPC in the early stages due to organic compounds. These
compounds reduce the polarity of the OPC and increase the specific surfaces, so more water
is needed for hydration. In general, SRA is more effective than geopolymeric materials
because the cement matrix does not crack so easily; the cracks are much smaller in width;
and large pores of the OPC matrix are reduced. Saliba et al. [8] studied the long-term
shrinkage of concrete when SRA was used. The study found that the addition of SRA (1%
by weight of OPC) to the concrete reduced the long-term drying shrinkage to 56% and
31% after 7 days of curing at a water to cement ratio of 0.65 and 0.43, respectively. The
authors [11] investigated the influence of the propylene glycol effect on concrete shrinkage
and mechanical properties using different water/cement ratios. The results showed a
decrease in slump and compression with tensile strength (a higher water/cement ratio
leads to an even greater decrease). The use of SRA also reduced the free shrinkage (up to
50%) caused by drying.

Many authors [12-16] agree that CaO expansive additives are an excellent way to
compensate for concrete shrinkage deformations. CaO additives are a great way to deal
with cracks in concrete due to their ability to expand (~90%) by reacting with water.
According to Zhao et al. [12], the addition of a CaO additive enriches the hydration process
of the cement, especially when a 2% dose is used. The hydration process of the cement
intensifies by increasing the temperature of the mixture due to the exothermic reaction of
CaO hydration. Polat et al. [13] showed that after 28 days of hardening, the autogenous
shrinkage of the concrete was reduced by 42%, 47%, and 80% using an expansive CaO dose
of 2.5%, 5.0%, and 7.5% (wt. of cement), respectively. Previous studies [15,16] show that
expansive additives such as CaO led to faster hydration, resulting in rapid expansion in
the early stages, but much slower in the later stages. Therefore, the use of MgO additives
reduces shrinkage at a later stage due to the slow rate of hydration, which results in long-
term slow expansion. For this reason, magnesium oxide additives are a better choice for
long-term shrinkage compensation. Wang et al. [17] investigated extremely high-quality
concrete based on various expansive additives such as highly reactive magnesium oxide,
moderately reactive magnesium oxide, and calcium oxide. The study shows that CaO
additives better compensate for autogenous shrinkage because they are less sensitive to
moisture compared to MgO-based additives.

Comak et al. [18] studied hemp fibers in reinforced cement mortars with different
ratios (0, 1, 2, and 3% by volume of the mix) and lengths (6, 12 and 18 mm). Studies show
that 2% of hemp fiber has a significantly higher effect on the mechanical properties of
cement mortars. The authors concluded that the best results are obtained using 12 mm long
and 2-3% (wt. of mix volume) hemp fiber.

The aim of this study was to investigate the effectiveness of various additives and their
combinations in monitoring the influence of shrinkage deformations on concrete mixtures
and its mechanical properties. OPC concrete was modified with SRA (organic compound
shrinkage reducing additive), quicklime, polypropylene, and hemp fiber to determine the
effect of different additives on the properties (density, consistency, air content) of the fresh
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concrete mix and mechanical properties and durability of hardened concrete (compressive,
flexural strength, freeze-thaw resistance, and porosity parameters).

2. Materials

Ordinary cement CEM I 42.5 R with the fineness of 390 m?/kg was used. The powder
of quicklime CL 90 with the fineness of 300 m?/kg and reactivity class R5 was incorporated.
The amount of quicklime was 1.5% and 2.5% (wt. of OPC) The chemical composition of
OPC and quicklime is presented in Table 1.

Table 1. Oxide compositions of OPC and calcium quicklime powder, %.

Oxide CEMI425R CL90 Q
CaO 63.2 95.91
Si0; 20.4 0.52
AL, O3 4.0 0.06
Fe, O3 3.6 0.05
MgO 2.4 0.29
K,O 0.9 -
Na,O 0.2 -
SO3 3.1 -
Loss on ignition (%) 2.15 1.04

This experimental study was performed using hemp and polypropylene fibers, and
liquid phase shrinkage reducing agents (SikaControl —50) as well. In all mixtures, the same
water/cement ratio of 0.53 was applied.

Coarse aggregate gravel (fr. 4/16 mm) was used with its particle density of 2600 kg/m?,
while fine aggregate sand (fr. 0/4 mm) with its particle density of 2650 kg/m?> was incor-
porated. In all concrete mixtures, the same amounts of coarse and fine aggregates were
added (1006 kg/m? and 870 kg/m?3, respectively). The particles size distribution of concrete
aggregate is shown in Figure 1 (curve in red). The granulometric curve of the mixture for
aggregates was formed, and it was determined that the curve did not exceed the Lithuanian
Standard LST 1974:2012 [19] requirements.

A16, B16 and C16 - Lithuanian 932
standard requirements.

Percentage passing %

0 0125 025 05 1 2 4 8 16

Particle size, mm
Figure 1. Granulometric curve of concrete aggregates mix.

To reduce the amount of water in concrete, polycarboxylate polymer-based SP (super-
plasticizer) was used. The admixture has the density of 1.06 & 0.02 kg /1, pH of 4.4 £ 1, total
chloride ion content of <0.1%, and equivalent sodium oxide content of <0.4%. The dosage
of superplasticizer was 0.5% (wt. of OPC). SRA based on organic compound has the density
of 0.935 £ 0.02 kg/L, total chlorine ion content of <0.1%, and equivalent sodium oxide
content of <0.5%. The dosage of SRA was 0.5% and 1.5% (wt. of OPC). Two types of fiber
(polypropylene and hemp) were incorporated in the concrete. The density of polypropylene
fiber was 0.91 g/cm?, melting point of 160-170 °C, tensile strength of 500 MPa, tensile
modulus of elasticity of 5.2 GPa, length of 38 mm, and diameter of 0.7 mm. Hemp fiber
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has a density of 0,16 g/cm?, melting point of 140 °C, length of 30-60 mm, and diameter of
0.6 mm. For this research, 3 kg/m? of each fiber were used in concrete.

Under the laboratory conditions, various mixtures (Table 2) were made to examine the
efficiency of different additives and their combinations while observing the influence on
the shrinkage deformations in concrete mixtures as well as the mechanical properties.

Table 2. The mixtures of initial materials for 1 m® concrete mixtures.

Fiber, k Additives, (% wt. of OPC
Notation CEM Y125 Water, L (ﬁfg)" o Sand 04, cL90 Q, kg 8 ( )
s X8 » Kg ] Polypropylene =~ Hemp SP SRA
Reference 319 169 1006 870 - - - 0.5
POL3.0 319 169 1006 870 - 3.00 - 0.5
CNB3.0 319 169 1006 870 - - 3.00 0.5
SR0.5 319 169 1006 870 - - - 0.5 0.5
SR1.5 319 169 1006 870 - - - 0.5 15
Calb 319 169 1006 870 4.79 - - 0.5
Ca2.5 319 169 1006 870 7.98 - - 0.5
Cal.55R1.5 319 169 1006 870 4.79 - - 0.5 1.5
Ca2.55R1.5 319 169 1006 870 7.98 - - 0.5 1.5
POL3.0Ca2.55R1.5 319 169 1006 870 7.98 3.00 - 0.5 1.5
CNB3.0Ca2.55R1.5 319 169 1006 870 7.98 - 3.00 0.5 1.5

By combination of initial materials, 11 different mixture compositions with the same
water/cement ratio (0.53) were prepared (Table 2).

3. Experimental Procedure

The granulometry of aggregates was performed according to EN 933-1 (Figure 1).

Three fresh concrete tests were made: the slump was determined following standard
EN 12350-2, air content of compacted fresh concrete according to standard EN 12350-7, and
the density of fresh concrete according to standard EN 12350-6.

The concrete mixtures were prepared in the “Zyklos” concrete mixer. The specimens
were formed following standard EN 206. The sizes of specimens were standard cubic
(100 x 100 x 100 mm) and prism (75 x 75 x 250 mm) which compacted on the vibrational
table. The specimens were hydrated for about 20 h in the molds, and, after that they were
demolded, cubic specimens were cured in water for 28 days, while prism specimens were
cured in air for 90 days.

Six hardened concrete tests were made: the density of hardened concrete specimens
was determined according to standard EN 12390-6, the compressive strength of hardened
concrete according to following standard EN 12390-3, and the flexural strength of hardened
concrete according to standard EN 12390-5. Concrete fracture energy was calculated
according to CMOD (crack mouth opening displacement) curves. Areas under the CMOD
curves were found by using the “Originpro” software [20]. The shrinkage measurement of
concrete was determined according to standard EN 12390-16. The concrete prisms length
was measured after 3, 7, 14, 28, 56, and 90 days of hardening (Figure 2). Concrete shrinkage
strain was calculated following Equation (1):

ees(t tg) = M; 1)
0
where: e.5(t, fp) is the total shrinkage strain of the specimen at the time ¢; L is gauge length;
I(tp) is the initial length at the time to; Is(t) is the length at time ¢.
The concrete prism weight was evaluated after 3, 7, 14, 28, 56, and 90 days of hardening,
and the change in mass of concrete was calculated according to the following Equation (2):

WCS(t) - W(tO).

Xes = ;
Cs W(to)

@

where: X, is total change in mass of the specimen at the time t; Wes(f) is the initial weight
at the time t; W(tp) is the weight at time ¢.
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(b)

Figure 2. Images of prism length measurement after 90 days; (a) setting zero; (b) length measurement.

Freeze-thaw resistance of concrete was determined by volumetric freezing after im-
mersion in water following Lithuanian standard LST 1428.17:2016 [21]. This test method
was used to find out the effect of 100 freeze-thaw cycles on the compressive strength of
concrete when different shrinkage reducing additives were incorporated. The freeze-thaw
resistance test lasted about 35 days. The porosity parameters were set by measuring the
kinetics of water adsorption according to Russian standard GOST 12730.4-78 [22]. This test
method was used to find out total, open, and closed porosity of the concrete (Figure 3).

(d)

Figure 3. Images of measuring the kinetics for water adsorption; (a) dry specimens; (b) wet specimens;
(c) specimen weight measurement; (d) specimen weight measurement in water.
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Freeze-thaw resistance and porosity parameters test methods are very well described
in the literature [23].

The microstructures of fibers and hardened cement pastes were determined according
to scanning electron microscopy with a high-resolution scanning electron microscope
(ZEISS EVO MA10).

4. Results
4.1. Fresh Concrete Test Results

Test results showed an obvious change in the workability of fresh concrete properties
(Table 3) when different additives are incorporated.

Table 3. Fresh concrete properties.

Notation Slump, mm Density kg/m? Air Content, %
Reference 180 2356 3.4
POL3.0 110 2354 3.2
CNB3.0 60 2303 5.4
SR0.5 190 2349 3.8
SR1.5 190 2368 3.3
Cal.5 170 2344 4.1
Ca2.5 160 2345 3.7
Cal.5SR1.5 190 2365 3.1
Ca2.55R1.5 180 2356 3.2
POL3.0Ca2.55R1.5 120 2345 3.1
CNB3.0Ca2.55R1.5 70 2310 4.5

A reference mixture slump value was 180 mm, resulting in the high workability of
the 54 slump class. Most of the batches with earlier mentioned additives have the same or
lower slump value than the reference mixture. The slump increased to 190 mm for concrete
mixtures with 0.5% and 1.5% (wt. of OPC) of SRA. SRA slightly improved the workability
of the concrete mixture because this additive reduces surface tension of the mixing water
in the liquid stage, and free water appears in the fresh mixture. A similar explanation
is provided in a previous study [5]. The slump slightly decreased in the concrete with
1.5% and 2.5% (wt. of OPC) of quicklime powder; also the workability of the concrete
mixture slightly decreased. It was assumed that small amounts of quicklime powder do
not significantly affect the slump class, but higher amounts (>2.5% wt. of OPC) of this
additive could reduce the slump, because the hydration process of quicklime requires
additional water in concrete. Similar observations were made in this study [24]. Concrete
with polypropylene fiber decreased the slump value to 110 mm, resulting in the high
workability of the S3 slump class. Concrete with hemp fiber decreased slump even more,
to 60 mm, resulting in the medium workability of the 52 slump class. The reduction in
workability could be explained by the high porosity of the fibers, which could absorb water.
Similar observations were made by authors [25,26]. In addition, most of the specimens
had acceptable slumps, and there was no detected concrete bleeding or segregation during
the experiment.

The fresh concrete density for a reference mixture was 2356 kg/m?; air content was
3.4%. Compared to the reference mixture, most of the selected shrinkage reducing additives
did not have a significant influence on fresh concrete density. The highest density was
obtained in concrete with 1.5 (% wt. of OPC) SRA, and the lowest in concrete with 3.0 kg / m3
hemp fiber. The highest air content was also obtained in concrete with 3.0 kg/m3 hemp fiber.
High air content leads to an assumption that hemp fiber creates interaction between fresh
concrete density and air content. The following study [23] explains hemp fiber influence on
fresh concrete density and air content. The authors concluded that incorporation of hemp
fibers in concrete mixtures notably increases voids’ content under the effect of entrapped
air, particularly when the amount of fiber was increased. High air content could be related
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Compressive strength, MPa

to the high fiber content, which creates a lot of pores and reduced density and content of
pulp in the fresh state as well as poor dispersion of the fibers while the amount of fiber
is high. Moreover, a formation of hemp balls is probable, causing heterogeneous parts in
the cement matrix and preventing water from entering the concrete, this way making the
composite less porous. The densities and air content of all other compositions remained
quite similar to the reference mixture.

4.2. Hardened Concrete Test Results
4.2.1. Compressive Strength of Concrete

The change in compressive strength of concrete modified with different additives (SRA,
quicklime, polypropylene, and hemp fiber) and their combinations is given in Figure 4.
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Figure 4. The compressive strength of concrete after 7 and 28 days.

The experiment revealed that the modification of concrete with additives had a sig-
nificant effect on the compressive strength of the concrete. Reference specimens (CNTRL)
without additives had the average compressive strength of 42.5 and 45.5 MPa after 7 and
28 days, respectively. The used additives led to the decrease in compressive strength after 7
and 28 days of hardening. Polypropylene fiber slightly reduces the strength of concrete
after 7 and 28 days when compared with the reference mixture. Specimens with 3.0 kg/m?3
polypropylene fiber (POL3.0) reduced compressive strength by 2.8% and 0.9% after 7 and
28 days, respectively. Similar results were obtained in the study [27] where polypropylene
fibers do not particularly affect the compressive strength of concrete.

Specimens with 3.0 kg/m3 hemp fiber (CNB3.0) reduced compressive strength by 6.1%
and 7.9%. The following study [26] observation confirmed that hemp fibers do not improve
concrete compressive strength, which decreases when the addition surpasses 0.25% due
to the heterogeneous dispersion of the fibers in the form of balls. The highest decrease
in compressive strength, when compared with the reference mixture, was obtained for
specimens with the combination of 3.0 kg/m? hemp fiber, 2.5% quicklime, and 1.5% SRA
(CNB3.0Ca2.55R1.5). Compressive strength was reduced by 15.3% and 16.9%.

Specimens with 0.5% shrinkage reducing admixture (SR0.5) reduced compressive
strength by 10.1% and 5.3% after 7 and 28 days, respectively. Specimens with 1.5% shrinkage
reducing admixture (SR1.5) decreased compressive strength by 12.2% and 7.9%. It can be
assumed that the more SRA admixture that is in the concrete, the greater the reduction
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in compressive strength. the observation was made that SRA slows concrete hydration
reactions; in this way, slow formation of calcium silicate hydrate (C-5-H) causes a decrease
in compressive strength [11].

The addition of 1.5% quicklime powder (Cal.5) reduced compressive strength by 4.5%
and 6.2% after 7 and 28 days, respectively. Specimens with 2.5% quicklime (Ca2.5) reduced
compressive strength by 6.8% and 8.1%. It is assumed that a small amount of quicklime
does not cause a huge loss in compressive strength but overdosing (>2.5% wt. of cement)
can be expected to reduce the compressive strength quite sharply. The slowdown in the
growth in compressive strength may be due to the high expansion stress generated by the
hydration of quicklime [11].

The combination of quicklime and SRA reduced compressive strength even more.
When 1.5% of quicklime and 1.5% of SRA (Cal.55R1.5) were used, compressive strength
after 7 and 28 days was reduced by 12.9% and 10.3%, respectively. Moreover, when 2.5%
of quicklime and 1.5% of SRA (Ca2.55R1.5) were used, compressive strength after 7 and
28 days was reduced by 14.1% and 12.3%. It can be assumed that SRA and quicklime acting
together can have an even greater negative effect on the compressive strength of concrete
than acting alone.

During the analysis of the densities of the concrete specimens used for the compressive
strength test, the average densities of all compositions remained similar. The highest
average density of 2423 kg/m3 was recorded in the composition SR1.5 and the lowest of
2307 kg/ m? in the composition CNB3.0Ca2.55R1.5. Observing that the densities of the
specimens containing 3.0 kg/m3 of hemp fiber were lower, it was decided to determine the
relationship between the specimen density and fresh concrete air content (Figure 5).
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p % 20.
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2250 2R Z 4. 00
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Figure 5. Relationship between specimen density after 28 days and air content.
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It is assumed that the more air involved in the fresh concrete, the lower the density of
the hardened concrete specimen. It was also observed that the specimens with the lowest
densities had the lowest compressive strengths. Thus, a correlation between the following
indicators occurs: high amount of air content in fresh concrete leads to low density hardened
concrete, this way leading to a lower compressive strength. Moreover, there is a possibility
that the small differences between the densities could happen technologically due to the
potentially unequal compaction times.

4.2.2. Flexural Strength of Concrete

The change in flexural strength of concrete modified with different additives (SRA,
quicklime, polypropylene, and hemp fiber) and their combinations is given in Figure 6.
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Figure 6. The change in flexural strength of concrete.

Reference specimens (CNTRL) without additives had the average flexural strength of
7.7 MPa. The incorporation of polypropylene fibers in concrete had contradictory results.
Specimens with a combination of 3.0 kg/m?> polypropylene fiber, 2.5% quicklime, and
1.5% SRA (POL3.0Ca2.55R1.5) showed the highest increase in flexural strength of 11.7%.
Meanwhile, specimens only with 3.0 kg/m? polypropylene fiber (POL3.0) showed the
lowest values of flexural strength results; it decreased by 18.1%. At the design stage of
the concrete compositions, an increase in flexural strength was expected to be seen in
both compositions with polypropylene fiber, as in the study [25]. A decrease in flexural
strength could be related to the poor dispersion of fibers. The interfacial transition zone
of polypropylene fibers with OPC paste was investigated by using Scanning Electron
Microscope (SEM) analysis (Figure 7a). It was determined that the surface of polypropylene
fiber is relatively smooth and homogeneous which could be the reason for the reduction in
flexural strength [28].
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Figure 7. The morphology of polypropylene and hemp fibers; (a) surface of polypropylene fiber;
(b) surface of hemp fiber.

The use of hemp fibers in concrete had a positive impact on flexural strength results.
Specimens with 3.0 kg/m? hemp fiber (CNB3.0) increased flexural strength by 6.5%. The
surface of hemp fiber is rougher than the surface of polypropylene fibers (Figure 7b). The
reason for the increase in flexural strength could be an increased adhesion between the
fiber and OPC-based matrix, due to its rough surface [28].

The SRA shrinkage reducing admixture for 0.5% led to a slight increase in flexural
strength by 1.1% when compared with reference specimens, although specimens with 1.5%
shrinkage reducing admixture (SR1.5) reduced flexural strength by 9.1%. It is assumed that
a small amount of SRA does not negatively affect flexural strength but overdosing (>1.5%
wt. of OPC) can negatively affect concrete flexural strength. Similar flexural strength results
were obtained with quicklime powder. Specimens with 1.5% quicklime (Cal.5) increased
flexural strength by 2.6%, and a large amount (2.5%) of quicklime (Ca2.5) decreased flexural
strength by 3.9%.

Concrete potential against fracture was determined by calculating fracture energy,
according to study [20]. In this research, fracture energy was calculated to estimate hemp
and polypropylene fiber toughness. Fracture energy can be calculated by finding an area
under a flexural stress-strain curve until failure. An area under the curve shows the concrete
ability to absorb energy. A larger area signifies that concrete can absorb more energy before
failure. Area under the CMOD curve was found with software “Originpro” (Figure 8).

Table 4 shows the calculated area according to study [29] for respective specimens.
The reference mixture fracture energy is 132-166 N/m. The highest fracture energy was
obtained in specimens with 3.0 kg/m3 polypropylene fiber: (POL3.0)646and 741 N/m,
(POL3.0Ca2.55R1.5)871 and 1050 N/m. The specimen (POL3.0Ca2.55R1.5) reached the
maximum flexural strength (8.5 MPa), and the specimen cracked but did not experience
rapid rupture and continued to withstand the flexural load. The specimen withstood
26.7% of the maximum flexural load at the 0.5 mm crack and 27.2% at the 3.5 mm crack.
This phenomenon is explained by the fact that, when the specimen is no longer able to
withstand a high flexural load, a crack appears. Under continued loading, the width of
the crack gradually increases, but as the crack opens, polypropylene fibers in the concrete
structure engage and prevent the specimen from flexing completely. Thus, for this reason,
specimens with polypropylene fiber have a residual flexural strength and a high fracture
energy. Polypropylene fiber is a great choice to protect concrete from sudden cracking. This
fiber is evenly distributed in the concrete, thus creating a kind of 3D grid, so it has excellent
reinforcement properties of concrete, which help to take over concrete tensile stresses. Sud-
den cracking was observed in specimens with 3.0 kg/m3 (CNB3.0 and CNB3.0Ca2.55R1.5)
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hemp fiber. The specimens did not reinforce concrete properly, and fracture energy was
minimal. It is assumed that in order to avoid sudden concrete breakdown, it is advisable to
choose polypropylene instead of hemp fiber, because polypropylene fiber absorbs tensile
stresses and has a high fracture energy.

—1.CNTRL —2.POL30
7 3.CBN30 4.5R05
——5.5R15 —6.Cal5
] ¢ 7.Ca5 —8.Cal55R15
;g 5 9.CR25SR15 10. POL3.0 Ca2 5SRL5
‘g ——11. CNB3.0Ca2 5SR15
-l

Figure 8. The function of stress and CMOD of concrete.

Table 4. Fracture energy used to break the specimens.

Residual Residual
Notation Work, J Fractulisrinergy, Stlle::;tr;lat S’E‘f:;:;lat
0.5 mm, MPa 3.5 mm, MPa

CNTRL ﬁg 122 8 8

POL3.0 oe 66 155 13
CNB3.0 o 205 007 0
SR0.5 ﬁg 1?2 8 8
SR1.5 ﬂg S}L o.%5 g
Cal5 }jig ﬁi’ 027 8
Ca25 125 129 bie 0
Cal.55R1.5 }22 }éﬁ 8:(1)[1l g
Ca2.5SR1.5 (1)2? 18749 o.%s 8

POL3.0Ca2.55R1.5 T P 7 7
CNB3.0Ca2.55R1.5 }ég ﬁg 8:3111 8
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4.2.3. Drying Shrinkage of Concrete

A free-drying shrinkage test was performed on all the specimens, as shown in Figure 9.
Length of the specimens was measured at intervals of 1, 3, 7, 14, 28, 56, and 90 days. The
tests showed that the reference specimen (CNTRL) average free-drying shrinkage was
0.410 mm/m. It was observed that mostly shrinkage occurs in the early stage of hardening.
During the first 28 days, 79.5% of all contractions appeared. Meanwhile, during the rest
of the test (29-90 days), the shrinkage of the samples was negligible. The largest concrete
shrinkage deformations occur during the first 28 days, as during these days the OPC
hydration is most intense. The intensive formation of the hydration products (calcium
silicate hydrate) causes a sudden change in the structure of the concrete pores, which
becomes the cause of shrinkage. Analyzing the shrinkage results after 90 days of curing, a
reduction in shrinkage was observed in all concrete compositions when compared to the
reference composition.
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Figure 9. Free-drying shrinkage after 90 days of concrete hardening.

The percentages of shrinkage reduction, when compared to reference specimen results,
after 7, 28, and 90 days are given in Table 5.

Table 5. The shrinkage reduction of concrete specimens after 7, 28, and 90 days.

Shrinkage Reduction (%) After:

Notation
7 Days 28 Days 90 Days

CNB3.0 8.5 129 5.9
POL3.0 9.9 8.6 9.3
Calb 18.3 14.7 12.7
SR0.5 28.2 21.5 18.0
Ca25 19.7 18.4 21.5
CNB3.0Ca2.55R1.5 31.0 25.2 27.3
SR1.5 36.6 30.1 28.3
Cal.55R1.5 42.3 33.7 32.7
POL3.0Ca2.55R1.5 59.2 38.0 38.5

Ca2.55R1.5 62.0 39.3 40.0
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After analyzing the obtained research results, it could be stated that SRA and quick-
lime had a significant impact on concrete free-drying shrinkage reduction. It is assumed
that a small amount of SRA (0.5-1.5% wt. of cement) in the concrete could significantly
reduce concrete free-drying shrinkage to 28.3%. Similar experimental results are shown
in study [7-11]. Meanwhile, a small amount of quicklime (1.5-2.5% wt. of cement) in the
concrete can reduce shrinkage up to 21.5%. Both additives, depending on the amount
applied, rapidly reduce the shrinkage of the concrete, and when combined, can show even
better results and reduce shrinkage by as much as 40.0%. Theoretically, these two additives
could reduce concrete shrinkage even more, but it should be very carefully considered
whether too much of these additives would not affect the other mechanical properties of
the concrete. Thus, the practical implementation of this idea would require further research,
with larger dosages of additives. The use of hemp and polypropylene fiber to reduce
concrete shrinkage was not as effective as expected. The use of these fibers alone can reduce
shrinkage by only 5.9 and 9.3%. In order to obtain more detailed results, further studies
should be performed with different fiber characteristics and dosages.

While performing the free-drying shrinkage test, the changes in the mass of concrete
specimens were observed, as shown in Figure 10.

7 After 3 days After 28 days After 90 days

Change in mass, %

Figure 10. The changes in mass of concrete after 3, 28, and 90 days.

Test results showed that after 90 days of hardening, neither concrete composition lost
more than 2% of the weight. The change in mass of the reference specimens after 9 days
was 1.59%. The highest change in the weight of concrete was observed in the first days;
as much as 34.0% of the total weight loss occurred during the first 3 days, and as much as
81.8% after 28 days of hardening. It is assumed that in the first days, the highest amount of
free water evaporates from the concrete structure, resulting in the largest changes in the
mass of the concrete.

After noticing that most of the changes in length and weight occur during the first
28 days, it was decided to graph the relationship between these indicators. In the graph
(Figure 11), all compositions of concrete mixes are arranged in descending order of shrink-
age after 28 days.
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Figure 11. Relationship between shrinkage and change in mass after 28 days.

The relationship between the shrinkage and change in mass showed that as soon as
shrinkage decreases, the change in mass increases. It is assumed that the more shrinkage
deformations are reduced, the greater the change in mass can occur.

4.2.4. Freeze-Thaw Resistance of Concrete

The freeze—thaw resistance of concrete is important for concrete structures which are
used in cold countries. The performance of concrete modified with different additives
(SRA, quicklime, polypropylene, and hemp fiber) and their combinations after 100 freezing-
thawing cycles was investigated. All mixtures’ results were compared with the reference
concrete. After 100 cycles, the samples were visually inspected (Figure 12a-k).

(k)

Figure 12. Images of the degradation for concrete specimens after 100 freeze-thaw cycles; (a) CNTRL;
(b) POL3.0; (c) CNB3.0; (d) SR0.5; (e) SR1.5; (f) Cal.5; (g) Ca2.5; (h) Cal.5SR1.5; (i) Ca2.55R1.5;
(j) POL3.0Ca2.55R1.5; (k) CNB3.0Ca2.55R1.5.
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Examination of freezing-thawing affected specimens showed a tendency for specimens
containing 1.5% SRA to crack (Figure 12j,k) or to decompose completely (Figure 12e,h,i).
This phenomenon is explained by the fact that a large amount of SRA prevents free water
from escaping from the concrete, so when the freeze-thaw cycle occurs, the free water in
concrete capillaries freezes and gradually destroys the structure of the specimen, weakening
its mechanical properties. The compressive strength of the specimens was tested after
100 freezing and thawing cycles. Figure 13 illustrates compressive strength results after
100 freeze-thaw cycles.

55.0
50.0
45.0
40.0
35.0
30.0
250
20.0
15.0
10.0

B After 28 days After 100 freeze-thaw cycles

L7 409 418,490 408
o=21 P 26

iPa

o M

Compressive strength, M

o
o

o
o

Figure 13. The change in compressive strength of concrete after 100 freeze-thaw cycles.

During the analysis of the compressive strength results after 100 freeze-thaw cycles,
it was observed that in nine of the eleven compositions, a decrease in the compressive
strength occurs compared to the initial compressive strength after 28 days of hardening.
The tests showed that the reference specimen (CNTRL) increased by 3.7% (47.2 MPa) from
the initial compressive strength (45.5 MPa). POL3.0 specimens increased compressive
strength by 10.6%. The hemp fiber (CNB3.0) led to the decrease in compressive strength by
8.8%. Specimens with 1.5% and 2.5% quicklime (Cal.5 and Ca2.5) decreased compressive
strength by 4.2% and 4.3%, respectively. Specimens with 0.5% SRA (SR0.5) compressive
strength decreased by 6.7%. Moreover, specimens with hemp fiber, quicklime, and SRA
(CNB3.0Ca2.55R1.5) lost 12.2% of their initial strength. The highest decrease in compres-
sive strength was obtained in specimens with 1.5% SRA, but POL3.0Ca2.55R1.5). SR1.5,
Cal.55R1.5, Ca2.55R1.5 specimens lost 100% of compressive strength due to complete degra-
dation of specimens. Specimens (POL3.0Ca2.5 SR1.5) lost 44.3% of their initial compressive
strength. It is assumed that none of aforementioned additives increases concrete resistance
to freezing-thawing cycles. High SRA (>1.5% wt. of cement) content can cause concrete
cracking and deterioration of its mechanical properties. In order to use concrete with SRA
in places where freezing-thawing cycles occur, it is advisable to incorporate systems that
increase freeze-thaw resistance, such as air entrainers or prefabricated air bubbles.

4.2.5. Porosity Parameters of Concrete

By measuring the kinetics of water adsorption, concrete porosity parameters were
determined. Total, open, and closed porosity is calculated by using the water adsorption
test [30]. The reference specimen adsorbed 4.81% of water after 48 h (Table 6).
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Table 6. Durability parameters of hardened concrete.
Notation Water Concrete K Predicted
Adsorption, %  Density, kg/m? f Cycles

CNTRL 4.81 2274 4.58 715
POL3.0 5.38 2258 3.57 573
CNB3.0 5.85 2188 5.12 770
SR0.5 5.55 2260 2.94 468
SR1.5 5.56 2283 2.14 327
Calb5 5.00 2279 3.79 609
Ca25 451 2306 413 658
Cal.5SR1.5 4.75 2319 2.80 445
Ca2.55R1.5 5.35 2289 2.40 376
POL3.0Ca2.55R1.5 5.37 2270 3.14 503
CNB3.0Ca2.55R1.5 5.44 2236 4.31 683

CNB3.0 specimens adsorbed the highest amount of water 21.6%, and Ca2.5 specimens
adsorbed the lowest amount of water 6.2% by comparing with the reference composition.
The relationship between specimen densities and water adsorption was observed. It
assumed that concrete with higher densities has the lowest water adsorption. Thus, the
lower the density of the concrete specimens, the easier it is for the concrete to adsorb water,
so it is necessary to increase the density of the concrete or the closed porosity to reduce the
water adsorption.

The types of concrete for porosity results are illustrated in Figure 14. The total porosity
of the reference specimen is 15.45% of which 70.9% is open porosity and 29.1% is closed
porosity. CNB3.0 specimens had the highest porosity: total 18.68%, open 12.79%, and closed
5.89%. Compared to the reference specimen porosity, concrete with hemp fiber (CNB3.0)
increased total porosity by 20.9%, open by 16.8%, and closed by 30.6%. It can be assumed
that hemp fiber is a light, low-density material that tends to adsorb water, resulting in
high porosity. The lowest total porosity of 13.79% was obtained in the specimen with
a combination of 1.5% quicklime and 1.5% SRA (Cal.5SR1.5) compared to the reference
concrete total porosity that was decreased by 10.7%. The lowest open porosity of 10.4%
was obtained in the specimen with 2.5% quicklime (Ca2.5); open porosity was decreased by
5.0%. The lowest closed porosity of 2.44% was obtained in the specimen with 1.5% SRA
(SR1.5); closed porosity was decreased by 45.9%. After analyzing the obtained research
results, it could be stated that concrete specimens with high open porosity are able to
adsorb the highest amount of water, and specimens with higher closed porosity are able to
withstand a greater number of freeze-thaw cycles.
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Figure 14. Total, open, and closed porosity of concrete.

5. Conclusions

The following conclusions were drawn from the research:

The results of the experiment showed a significant reduction in concrete shrinkage
when local quicklime powder is used as a shrinkage reducing additive. It was found that a
small amount of local quicklime powder (>2.5% wt. of OPC) can reduce concrete shrinkage
up to 21.5%. In addition, interactions with other shrinkage-reducing additives, such as
SRAs based on organic compounds, can achieve even better shrinkage-reducing results.
The combination of 1.5% SRA and 2.5% quicklime, which reduced shrinkage deformations
up to 40%, was recommended. The drying shrinkage is closely related to physical and
mechanical properties of concrete as well.

The compressive strength test showed a strength decrease in all investigated com-
positions after 28 days of hardening. The highest decrease about 16.9% was obtained in
composition (CNB3.0Ca2.55R1.5) and the lowest 0.9% in composition (POL3.0). Flexural
strength tests showed the highest strength increase (11.7%) in concrete with 3.0 kg/m?
polypropylene fiber. Meanwhile, the lowest strength had (POL3.0Ca2.5SR1.5) specimens
with the 2.5% quicklime and 1.5% SRA addition. Moreover, this concrete had the highest
fracture energy and residual strength of 1.9 MPa when a 3.5 mm crack appeared.

The parameters of water adsorption kinetics show that concretes with higher densities
adsorb less water, while concretes with high closed porosity withstand higher amounts of
freeze-thaw cycles. The water adsorption property of hemp fiber has been found to have a
significant effect on the properties of concrete. Compared to the reference concrete, the use
of 3.0 kg/m? hemp fiber reduced concrete workability, but increased air content, which
is the main factor in the increase in closed porosity of hardened concrete. Compositions
with 1.5% SRA were found to have a significant reduction in compressive strength after
100 freeze-thaw cycles. This observation is closely related to the morphology of hemp fibers.
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