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Abstract: With the development and wide application of nickel-based single-crystal superalloys,
the effect of Ru on the microstructure stability and high-temperature properties of superalloys is
becoming increasingly important. In this study, the effect of Ru on the evolution of the γ′ phase in Ni-
Al-Ru ternary alloys during aging treatment was analyzed, using a scanning electron microscope and
transmission electron microscope, combined with energy-dispersive spectroscopy. The relationship
between chemical partition behavior and γ/γ′ lattice misfit was investigated in detail. During the
aging process, Ru addition suppressed the growth rate and rafting process of γ′ precipitates, while
the effect of Ru on hindering γ′ phase growth was reduced when the Ru content was over 3 at%. Ru
preferentially partitioned to the γ phase, and its partitioning ratio to the γ phase increased with a
variation in Ru content from 1 at% to 3 at% and decreased for the NiAl6Ru alloy. Additionally, the
lattice misfit of all alloys was positive and reduced with the increase in Ru content, which hindered
the Ru atoms to diffuse into the γ phase and promoted the shape of γ′ precipitates to change from
cubic to spherical.

Keywords: ruthenium; microstructure evolution; partitioning behavior; lattice misfit

1. Introduction

Nickel-based single-crystal superalloy has been extensively used in turbine blades
due to its outstanding ability to retain strength and withstand creep, as well as oxidation at
high temperatures. These superior high-temperature properties are mainly attributed to its
complex composition, with 10 or more alloying elements, e.g., Al, Ti, Ta, Re, W, to improve
the strength and creep resistance of γ′ hard precipitates and γ matrix phase. However, a
significant amount of refractory elements often lead to a decrease in the high-temperature
stability of the microstructure due to the formation of topological close-packed (TCP)
phases, which results in the deterioration of the mechanical performance of superalloys [1].
Therefore, with the development of superalloys, the element of ruthenium (Ru) has been
added to enhance the microstructural stability and further improve the strength and creep
resistance at high temperatures [2,3]. Reports [4–6] have shown that the Ru addition will
increase the liquidus temperature of nickel-based single-crystal superalloy and affect its
microstructural stability and creep properties. However, the effects of Ru on the γ/γ′ lattice
misfit, elemental partitioning behavior between phases, high-temperature microstructural
stability, and creep properties are still debatable [7]. It is also well known that the sign and
magnitude of lattice mismatch influence the precipitation and rafting behavior of the γ′

phase during high-temperature creep [8–10]. It will eventually affect the high-temperature
mechanical properties of nickel-based single crystal superalloys.

Regarding the effects of Ru addition on the microstructural evolution, Song et al. [7,11,12]
report that the growth and coarsening rate of the γ′ precipitates are increased, and stable
rafting microstructures forms during the long-term operation with the addition of Ru.
While Guan et al. [13,14] report that the increase in Ru content decreases the size and
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volume fraction of the γ′ phase, and the shape of the γ′ phase becomes more regular.
Moreover, the addition of Ru can also hinder the formation of the TCP phase to improve
microstructural stability and creep resistance. Some studies [15,16] show that the effect of
Ru on hindering the precipitation and growth of TCP phases through the “reverse partition-
ing” behavior of refractory elements, but other studies [17,18] indicate that the diffusion
of refractory elements depends on their composition gradient. Moreover, the addition
of Ru can introduce internal strains and lower the stacking fault energy in the Ni lattice
to improve high-temperature creep, but Ru is not used as a solid solution strengthening
element in alloy design [19–21]. In summary, clarifying the relationships among Ru content,
elemental partitioning behavior, and microstructural evolution in superalloys is of vital
importance for maximizing the potential effects of this alloying element.

In this study, a series of ternary alloys Ni-Al-Ru with γ and γ′ phases were prepared.
The temporal evolution of the microstructure of the alloys with different amounts of Ru
addition was investigated experimentally using SEM and TEM. As the influence of other
elements was excluded, the response of γ′ morphology and its precipitation behavior
showed different rules from studies containing other refractory elements, such as Co, Mo,
Re, and W in the alloys. The partitioning behavior of the elements and the γ/γ′ lattice misfit
are also discussed in detail. This study provides new insights for further understanding
of the role of Ru and a theoretical basis for the design of microstructure and properties of
nickel-based single crystal superalloy.

2. Materials and Methods

Three experimental alloys, designated NiAl1Ru, NiAl3Ru, and NiAl6Ru, were made
by induction melting with high-purity alloying elements (99.95 wt.% Ni, 99.99 wt.% Al,
and 99.95 wt.% Ru), under an argon atmosphere, after which the casting was chilled
into Φ 30 mm × 10 mm ingots. The composition of the alloys is shown in Table 1. To
ensure chemical homogeneity, cast ingots were homogenized at 1300 ◦C under argon
atmosphere for 24 h and then cooled in air. The samples with dimensions of 10 mm ×
10 mm × 2 mm were cut from the ingots by wire electrical discharge machining. Then,
an aging procedure was carried out at 900 ◦C under an argon atmosphere for 1 h, 4 h,
24 h, and 129 h, respectively, followed by water quenching to room temperature. Aged
samples were grounded and polished and then electrolytically etched using a mixed
solution of 34 mL H2SO4, 42 mL H3PO4, and 24 mL H2O; the voltage was 4 V, with the
etching time of 3 s. The morphological evolution of the samples was studied employing
a scanning electron microscope (SEM), and γ′ precipitates were measured with ImageJ
software based on at least 1000 particles. The finer structure of the alloys after heat treatment
was analyzed with a transmission electron microscope (TEM) on thin foils. The foils were
grounded manually and prepared by a precision ion polishing system (PIPS II 695) at
3.0–5.5 keV, with beam angles down to 2◦. Microstructure analysis was conducted using
a JEM-2100 TEM operating at 200 kV. In order to understand the partitioning behavior
of alloying elements, the compositions of phases were examined by means of energy-
dispersive spectroscopy (EDS) equipped in TEM, with an energy resolution of 129 eV and
spatial resolution of 10 nm, based on 5 detected positions of γ′ and γ phases, respectively,
in each sample. The characteristic X-ray lines of Ni-Kα, Al-Kα, and Ru-Lα were used to
record the corresponding EDS elemental map of Al, Ni, and Ru, respectively. Additionally,
the lattice misfit between γ and γ′ phases was also analyzed.

Table 1. Composition of the designed alloys (at%).

Alloy Al Ru Ni

NiAl1Ru 17.82 1.00 Balance
NiAl3Ru 17.46 3.00 Balance
NiAl6Ru 16.92 6.00 Balance
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3. Results and Discussion
3.1. Microstructural Characteristics

The microstructure of the alloys after heat treatment, as shown in Figure 1, mainly
consisted of the γ phase and γ′ precipitates. For the NiAl1Ru alloy, cubic γ′ precipitates
were homogeneously distributed when aging for a short time, as shown in Figure 1a. With
increasing aging time, the size of γ′ grew, and the edges became more parallel to each other
after aging 4 h. With prolonged aging time, γ′ precipitates grew rapidly and arranged in
lines in perpendicular directions, and the distance between the adjacent γ′ precipitates in the
arrangement direction decreased gradually (Figure 1c); finally, γ′ precipitates linked with
each other and grew into strip shape after aging 129 h, that is, γ′ precipitates began rafting
(Figure 1d). For the alloys with higher Ru content, γ′ precipitates were spherical when
the aging time was short (Figure 1e,i), and as the aging process advanced, γ′ precipitates
became coarser; therefore, two evolutionary directions emerged for γ′ precipitates. For the
NiAl3Ru alloy, γ′ precipitates gradually transformed from spherical into cuboidal shapes
(Figure 1g,h). After aging for129 h, the sizes of γ′ precipitates were distributed unevenly,
with small particles surrounding the large ones, and the amount of the precipitates reduced;
thus, it can be inferred that the growth of γ′ precipitates obeys the Ostwald ripening, as
shown in Figure 1h [22]. However, for the alloy with 6 at% Ru, γ′ precipitates showed
spherical shapes during the whole aging process in this study (Figure 1i–l). It is clear that
the addition of Ru hinders the rafting process of γ′ precipitates during the aging process.
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width of the rafted γ′ precipitate was measured, as marked between the two yellow ar-

Figure 1. SEM images of NiAl1Ru (a–d), NiAl3Ru (e–h), and NiAl6Ru (i–l) alloys after aging at
900 ◦C for 1 h (a,e,i), 4 h (b,f,j), 24 h (c,g,k), and 129 h (d,h,l).

The mean size of γ′ precipitates was analyzed using ImageJ software, and the results
are shown in Table 2. Here, in order to obtain the accurate γ′ precipitate size, only the width
of the rafted γ′ precipitate was measured, as marked between the two yellow arrows in
Figure 1d. From the data, it can be found that the γ′ size increased with the prolonging of
aging time but decreased with the increase in Ru content. Based on the fact that the growth
of γ′ precipitates is controlled by elemental diffusion [23], the growth of γ′ precipitates can
be described with Lifshitz–Slyosov–Wagner (LSW) theory according to Equation (1) [24].

−
r

3
− −r 0

3
= kt (1)

where
−
r 0 and

−
r are the initial and instantaneous particle radius, respectively, and k and t

are the growth rate and time, respectively.
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Table 2. Mean sizes of γ′ precipitates after aging treatment at 900 ◦C over different times.

Aging Time (h)
Mean Particle Size (µm)

NiAl1Ru NiAl3Ru NiAl6Ru

1 0.18 ± 0.053 0.12 ± 0.028 0.11 ± 0.024
4 0.17 ± 0.053 0.16 ± 0.041 0.13 ± 0.035
24 0.30 ± 0.108 0.22 ± 0.056 0.20 ± 0.051

129 0.50 ± 0.331 0.42 ± 0.131 0.32 ± 0.095

For cuboidal particles,
−
r is replaced by a/2, and

−
r 0 is replaced by a0/2. Additionally,

in this study, a represents the average side length of the cubic γ′ precipitates after aging
treatment, and a0 is the average side length of the cubic γ′ precipitates after solution
treatment, and in this paper, we used the particle size after aging for 1 h as a0. Therefore,
the particle size in Table 2 is presented as a plot of (a/2)3–(a0/2)3 versus t, as shown in
Figure 2. The plots show excellent linear fittings of growth rates k of the γ′ precipitates for
the NiAl1Ru, NiAl3Ru, and NiAl6Ru alloys aged at 900 ◦C. The values of k were calculated
and marked in Figure 2, illustrating the diffusion coefficient. Figure 2 shows that the slopes
varied with the Ru content, and a lower Ru content corresponded to a larger slope—namely,
a faster rate of coarsening in γ′ precipitates. Since the only difference between the alloys
was the Ru content, it can also be inferred that the addition of Ru hinders the growth of
γ′ precipitates.
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3.2. The Partitioning Behavior of Ru

The microstructure of the samples was observed with TEM, and the distributions
of elements in the γ and γ′ phases were analyzed using EDS in TEM; Figure 3 shows
the HAADF STEM images of microstructures and the corresponding EDS mappings of
elements distribution in samples NiAl1Ru, NiAl3Ru, and NiAl6Ru after aging for 4 h. It
can be seen that the difference in Ni distribution in the two phases was not obvious, and Al
mainly existed in the γ′ phase. Ru partitioned preferentially to the γ phase, and its content
in the two phases was measured, as shown in Figure 4. The Ru concentrations in both γ

and γ′ phases increased with the increase in Ru addition, while the aging process had a
slight influence on the distribution of Ru. However, for the NiAl6Ru alloy, the value of
Ru content in γ′ fluctuated greatly with aging time, which mainly results from the small
particle size, causing low measurement accuracy.
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In order to analyze the partitioning behavior of Ru between γ and γ′ phases, the

partition ratios of Ru in the two phases are defined as fi =
xγ

i
xγ′

i
, where i represents each of

the constituent elements. Since xγ
i and xγ′

i represent the mole concentration of element i in
γ and γ′ phases, respectively, partition ratios greater or less than unity indicates preferential
partitioning to either the γ or γ′ phase [25]. The results in Figure 5 show that, with the
increase in Ru addition, the partition ratio of Ru attributed to γ increased, reaching the
maximum value for the alloy with 3 at% Ru in this study. By contrast, the aging treatment
slightly affected the partition of Ru, with the partition ratio slightly increasing as the aging
time advanced, due to the growth of the γ′ phase with more Ru elements expelled to the γ

phase. In addition, with the increase in Ru content to over 3 at%, the ratio of Ru existing in
the γ′ phase became higher, so it can be inferred that the addition of more Ru (>3 at%) to
the alloys reduces its effect on hindering γ′ phase growth.
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It is known that the addition of Ru and its partitioning behavior between γ and γ′

phases are crucial to the γ/γ′ lattice misfit, microstructure evolution, and high-temperature
mechanical properties [7]. In this study, with the increase in Ru addition, the shapes of
γ′ precipitates transformed from cubic into spherical, but this is contrary to the results
of other studies in the literature [12,13], indicating that, with the increase in Ru content,
the morphology of γ′ precipitates evolves from spherical to intermediately shape and to
cuboidal, due to the more negative lattice misfit introduced by the increase in Ru content.
Here, the lattice misfit δ between γ and γ′ phases is calculated according to Equation (2) [9].

δ =
2(a γ′ − aγ)

(a γ′+aγ)
(2)

where aγ and aγ′ are the lattice constant of γ and γ′ phases, respectively. Additionally,
according to the phase composition the lattice constant of the γ and γ′ phases can be
estimated by the following Equations (3) and (4) [12].

aγ = 3.524 + 0.0196CCo + 0.110CCr + 0.478CMo + 0.444CW + 0.441CRe + 0.3125CRu+
0.179CAl + 0.422CTi + 0.7CTa + 0.7CNb

(3)

aγ′ = 3.57− 0.004C′Cr + 0.208C′Mo + 0.194C′W + 0.262C′Re + 0.1335C′Ru + 0.258C′Ti+
0.5C′Ta + 0.46C′Nb

(4)

where Ci represents the atomic fraction of i element. In this study, the alloys only consisted
of Ni, Al, and Ru, so it can be inferred that for the basic alloy without Ru, the lattice misfit
was positive due to the larger atomic radius of Al in the γ′ phase. It is clear that, with the
addition of Ru, the lattice parameter of the γ phase grew faster than that of the γ′ phase,
due to the preference of Ru partitioning to the γ phase and a larger coefficient multiplying
the Ru concentration for the γ phase. Additionally, a previous study [26] found that, in
Ni-Al-Ru alloys, Ru resides on the Ni site in the γ phase, resulting in an outward relaxation
of Ni lattice and on the Al site in the γ′ phase, which, in turn, leads to an inward relaxation
of Ni lattice. Hence, with the increase in Ru content, the lattice misfit became smaller, as
shown in Figure 6, and for all of the alloys, the misfit was positive. Additionally, with the
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increase in aging time, the misfit changed slightly. Therefore, for the alloys with low Ru
concentrations, the lattice misfit was large, and the γ′ phase had a cubic shape, tending to
raft easily, as shown in Figure 1a–d. For the alloys with 3 at% Ru, the lattice misfit became
smaller, and under weaker lattice elastic energy, the γ′ phase was spherical at the beginning
of precipitation but grew into a cubic shape with rounded corners during the aging process,
as shown in Figure 1e–h. For the alloys with 6 at% Ru, the lattice misfit was the smallest,
leading to the smallest lattice elastic energy; thus, the γ′ phase was spherical during the
whole aging process, as shown in Figure 1i–l. Meanwhile, the elastic strain introduced
by lattice misfit leads to distortion at the interface plane and diversion of γ and γ′ crystal
angles. This, in turn, causes the γ′ phase to have a greater tendency toward agglomerating
and coarsening at higher temperatures [27]. Then, it can also be inferred that, due to the
reduction in the lattice misfit, it becomes difficult for the Ru atoms, which are rejected from
the γ′ phase, to diffuse into the γ phase [28]. Therefore, the growth rate of the γ′ phase was
reduced with the increase in Ru content. However, it can be inferred that if the aging time
is long enough, the γ′ phase in the alloy NiAl6Ru will also grow into cubic under a small
amount of lattice elastic energy that is not zero.
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4. Conclusions

The effect of Ru on the evolution of the γ′ phase in the Ni-Al-Ru ternary alloys was
studied in terms of variations in Ru content and aging heat treatment. Additionally, the
results are concluded as follows:

1. The addition of Ru can hinder the coarsening and rafting process of γ′ precipitates
during aging treatment, but the effect of Ru on hindering γ′ phase growth reduced
when the Ru content was over 3 at%;

2. Ru mainly existed in the γ phase, and its partition ratio to the γ phase increased with
the variation in Ru content from 1 at% to 3 at% and decreased for the NiAl6Ru alloy;

3. The lattice misfit of the alloys was positive and was reduced with the increase in Ru
content, which hindered the Ru atoms to diffuse into the γ phase and promoted the
shape of γ′ precipitates to change from cubic to spherical.
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