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Abstract: The purpose of the current study is the experimental analysis of the dynamics and aerody-
namic loads of a three-bladed rotor. The experimental tests focus on the rotation with three different
angular velocities; for each angular speed, four different preset angles of beam have been studied.
During the laboratory experiment, strain gauges, as well as high-speed cameras, have been used
as the measurement system. The images from the high-speed cameras have been used to obtain
aerodynamic loads in the form of polynomials, while the signals from strain gauges mounted on each
beam allowed us to observe the synchronization phenomenon between beams.

Keywords: rotating beams; aerodynamic loads; synchronization

1. Introduction

Rotating structures are very important and popular in mechanical engineering, and
they are used widely in several industrial applications. The most popular rotating com-
ponents are helicopter rotors, fans, airplane propellers, turbojet aircraft engines, wind
turbines, etc. Recently, many of these elements have been made of composite materials,
because they have many technological advances, such as better strength properties, high
stiffness, and a better strength-to-weight ratio.

The in-plane free vibrations analysis of rotating beams is considered in [1], where
the authors used an exact dynamic stiffness method. Furthermore, in the calculation, the
Coriolis effects, as well as the effects of an arbitrary hub radius, are taken into account.
The governing equations of motion have been derived from Hamilton’s principle, consid-
ering the stiffness matrix depending on a beam’s frequency. The free vibrations analysis
is studied also in [2]—the authors focused on a rotating hub with a functionally graded
material beam system. The equations of motion are obtained from the Lagrange equation
of the second kind, while the model is based on the complex dynamics of a rigid body
and flexible beam theory. Moreover, Oh et al. [3] studied a rotating system with a hub and
FGM beam, where the equations of motion are derived from the Rayleigh–Ritz assumed
mode method with Kane’s method. The authors analyzed the dynamics of a pretwisted
beam and showed the effects of the Young’s modulus ratio, hub radius ratio, pre-twist
angle, taper ratios, width-to-thickness ratio, and angular speed upon the dimensionless
natural frequencies of the FGM blade. Additionally, they presented an algebraic condition
under which natural frequencies can be minimized. The geometrically exact model of a
rotating isotopic blade is proposed in [4]. In this paper, the authors focused on the linear
modal properties of the blade, while investigating natural frequencies, as well as coupling
between flapping, lagging, axial, and torsional components. Furthermore, the nonlinear
free vibrations of a centrifugally stiffened beam with a uniform cross-section and constant
angular velocity are analyzed in [5]. The authors used geometrically exact equations of
motion for a Timoshenko beam that exhibits a large amplitude of displacement. The set
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of equations is derived from Hamilton’s principle and the model takes into account the
Coriolis effect as well as warping of the cross-section. Based on this, the authors plotted
backbone curves and analyzed the change in the behavior of the beam in the first lagging
and flapping modes. The model of the pre-twisted composite rotor blade is presented in [6].
Shang et al. derived the geometrically exact equations of motion based on Hamilton’s
principle for a Timoshenko beam with an arbitrary cross-section. The analytical results
of the static and dynamic analysis have been compared with experimental data. The au-
thors focused mainly on the influence of the transverse shear deformation on the analyzed
pre-twisted blade. Sun et al. presented a dynamic model of a multilayer rotating beam
mounted on an arbitrary stagger angle in [7]. They presented simulations for reduced 2D
and full 3D models, which show excellent agreement. They also analyzed the change in the
damping in rotation of the different angular velocities. Moreover, a rotating thin-walled
cylindrical shell is presented in [8]. The authors used the Lagrange equation to obtain
equations of motion; next, they analyzed the nonlinear vibrations of the model, and the
influence of the angular speed and geometry parameters of the shell on system dynamics.
The nonlinear resonances of a rotating axially functionally graded beam are presented
in [9]. In the governing equations, axial, chordwise, and flapwise deformations are taken
into account. The analytical results of calculations have been compared with results based
on the finite element method. The authors concluded that the analyzed model of the beam
exhibited complicated nonlinear behavior. The dynamics of the rotating hub–beam system
are presented in [10,11], in which a model of a slender beam with a tip mass based on
Bernoulli–Euler theory is developed. The equations of motion are derived from Hamilton’s
principle, and then partial differential equations are solved analytically with the multiple
time scale method. The forced vibrations, the influence of beam rotation, and the tip mass
are studied. The model of the hub and the thin-walled composite beam is presented in [12].
The authors analyzed not only the dynamics and the natural and forced vibrations of the
system, but also developed the control methods of the rotating structures. The embedded
active elements are used to control the oscillations of the model. Moreover, the model of
the rotating hub–beam system based on Timoshenko beam theory is developed in [13]
with equations of motion derived from Hamilton’s principle. Non-classical effects such as
material anisotropy, transverse shear, and primary and secondary cross-section warpings
are taken into account in the equations of motion. Latalski et al., in [14], obtained a model
of a rotating hub with a thin elastic clamped bimorph beam. Two layers of active elements,
which play the role of a sensor/actuator, are applied in the model. The authors showed the
results of numerical simulations of the model excited by a periodic torque. The concept
and development of the three-blade rotor model is shown in [15]. The authors presented
numerical analysis based on the finite element method, as well as series of static and dy-
namic experimental simulations. In the case of both methods, good agreement between
results is observed. The dynamics of the system composed of the rigid hub and three com-
posite beams is analyzed in [16,17]. Forced vibrations of the model and the synchronization
phenomenon, which can be observed between beams or between beams and the hub, are
studied in detail. Two types of excitations of the rotor are analyzed—a regular torque or
chaotic oscillations. Experimental tests of the helicopter-like thin-walled rotating beam are
presented in [18]. The tests have been carried out in a vacuum chamber, where the blades
have been excited by impulse force. During the experiment, time series as well as strain
distribution have been recorded. Two other experimental approaches using piezoelectric ac-
tuators together with a contactless scanning vibrometer and modal hammer were presented
by Teter and Gawryluk in [19]. Their laboratory tests were extended by a numerical finite
element model; however, a cantilever beam, one-beam–hub, and three-beam–hub structures
were not put in rotational motion. Additionally, modal analysis of the thin-walled beam
is shown in [20], in which the authors compare theoretical and experimental results for a
composite box beam. During the experimental tests, macro fiber composite (MFC) patch
actuators were used for the excitation of the model and the laser-based motion analysis
system functioned as the recorder. Furthermore, the results of numerical calculations and
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experimental tests of the three-bladed rotor are presented in [21]. The experimental studies
of the rotating beam are also presented in [22], in which the authors tested three different
beams rotating with a constant angular velocity. The results from experimental studies
are compared with results from finite element method simulations. Observations of the
constant angular velocity of the three-bladed hub with simultaneous harmonic excitation via
piezoelectric patches—called active control—are presented in [23], and the corresponding
numerical experiment is presented in [24].

In the present contribution, experimental studies on the three-bladed rotor are intro-
duced. The rotor under investigation consists of three slender and elastic beams attached
to the rigid hub. During the laboratory tests, the angular speed of the hub, as well as the
preset angle, have been changed. For each angular velocity (50, 100, and 150 rpm), four
different preset angles have been set (0◦, 5◦, 45◦, and 90◦). Two types of measurements
have been used—two high-speed cameras and three strain gauges. The cameras have been
used for optical contactless measurements, while strain gauges embedded on each beam
allowed us to record time series during the beam deformations and rotation of the system.
Additionally, based on time series, the synchronization phenomenon is analyzed.

2. Model and Experimental Methods

The experimental tests have been performed in the Laboratory of the Department of
Applied Mechanics of Lublin University of Technology. The laboratory stand is shown
in Figure 1. The studied rotor is composed of three flexible composite beams and a
rotating rigid hub. All of the blades are composed of an eighteen-layered laminate of
graphite-epoxy prepreg material, ThinPregTM 120EP-513/CF resin reinforced with M40JB-
12000-50B TORAY carbon fiber composite [12], which is applied in the stacking sequence
(0◦/−60◦/60◦/0◦/−60◦/60◦3/−60◦2/0◦2/−60◦/0◦2/60◦2/−60◦) [25]. Each single beam has
a length of 595 mm, with a cross-section 34 × 0.9 mm and density ρ = 1350 kg/m3.
Near the fixed end of each beam, 25 mm from the dedicated mount, the strain gauge (model
TFr-8/120) is embedded. In order to measure strain not only in the longitudinal direction,
but also torsion, a rosette strain gauge (model TFr-8/120) is used, with the main part of
the sensor positioned along the span of the beam in its axis, and two remaining parts in ±
60◦ from the main axis of the beam. The strain gauge’s grid material is constantan foil and
the backing material is modified epoxy-phenolic resin. Nominal resistance of the sensor is
120 Ω and strain sensitivity k = 2.1 for each strain gauge.

Figure 1. Three-bladed rotor—laboratory stand.

The signals from the strain gauges are sent to computer software by the wireless
module. The radius of the rigid body hub is 120 mm. In the hub, there are boards with
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electronic circuits with the wireless module, which allows us to transmit signals from the
beams. The laboratory set-up is excited by a DC motor with power of 1.1 kW (1.5 HP), and
the motor is combined with the hub by a helical clutch. Between the hub and the motor,
a set of nine slip rings is applied—the rings allow us to transmit measuring and control
signals. The test stand was designed for scientific research and experiments with constant
velocity or excitation of any optional signal, as well as excitation with different frequencies.
In the authors’ previous paper [21], the experimental tests of the rotor excited by different
frequencies, as well as the resonance curvature, are presented.

This contribution is focused on experiments with a constant angular velocity. Dur-
ing the tests, two parameters have been changed: the angular velocity and the preset
angle of the blade. The authors considered four different setting angles: 0◦, 5◦, 45◦, and
90◦. For every angle, three different angular velocities of the rotor have been set: 50 rpm,
100 rpm, and 150 rpm. Two high-speed cameras have been used, as well as signals from
strain gauges in the measurement setup; see Figure 2. One camera was hung on the top
of the rotor to capture the view of the whole stand, while the second camera was placed
perpendicularly to the rotation axis. In order to cover the whole motion range, the top
camera was placed 2.5 m away from the rotation plane.

Top camera
Phantom Miro M120

Side camera
Phantom v9.1

PC 1 PC 2

Control velocity
panel

Strain
gauges

n

Figure 2. Diagram of the measuring system.

The camera above the rotor was the Phantom Miro M120, which is based on a 2 Mpx
sensor and 1.6 Gpx/s throughput, which translates to over 1200 frames per second at
1152 × 1152 resolution. The lens was selected for the exposure time and the area of the
rotor, as well as the distance from the camera to the object intended to be captured. The best
lens available was the Nikon AF 20 mm f/2.8 D; the shutter was set to the maximal settings.
Since the resolution was set to 1216 × 1200 pixels, the maximal sample rate available was
1100 fps, and all the tested velocities were sampled with this rate. The side camera was
set in a manner so as to cover only one full length of a beam with part of a hub. For the
side view, the Phantom v9.1 was used, with a built-in CMOS sensor, which provides up
to 1000 fps at full resolution of 1632 × 1200 active pixels. The lens selected for this angle
was the Nikon AF 50 mm f/1.4 D. In order to visualize the entire motion of the beam,
the desired resolution was 1244 × 720 pixels and the sample rate was set to 1900 fps for
all tests.

3. Results—Video Measurements

The videos obtained from the two high-speed cameras were post-processed in Mathe-
matica commercial software. Figures 3–12 are elaborated on the basis of single pixels for
a selected freeze-frame at the highest deformations of the beam; we then placed them in
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a planar coordinate system and then construction lines and points were plotted on them.
The results of this painstaking manual work are grouped according to the preset angle (0◦,
5◦, 45◦, and 90◦) in Sections 3.1–3.4, and ordered from the lowest to the highest angular
speed (50, 100, 150 rpm). Note that the greater the preset angle of the beam, the greater the
aerodynamic drag. Therefore, measurements for the preset angle 45◦ and angular velocity
greater than 100 rpm, as well as the preset angle 90◦ and angular velocity greater than 45
rpm, are above the drive’s operating range.

(a)

(b)

Figure 3. Preset angle 0◦, angular speed 50 rpm: top view (a), side view (b).

We introduce colors green, red, and blue to construct lines for beams A, B, and C,
respectively. Considering the top view frames, straight lines originate from the hub axis
01 = (X0,Y0) and reflect the longitudinal axis of the undeformed beam. Line segments
are described by origin 01 and tip points defined at a distance R2 from the origin and
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angle from the reference direction (horizontal edge of the photo, positively defined right
direction) Φi, where i = 1, 2, 3.

XAt = X0 + R2 cos Φ1, YAt = Y0 + R2 sin Φ1,

XBt = X0 + R2 cos Φ2, YBt = Y0 + R2 sin Φ2,

XCt = X0 + R2 cos Φ3, YCt = Y0 + R2 sin Φ3. (1)

In the case of a perfect (rigid) anchorage of the beam in the hub, the relationship
between the angles is Φ2 = Φ1 + 120◦ and Φ3 = Φ2 + 120◦. The blade grip is mounted
in the polyamide ring, so the connection has the required stiffness and the processing
requires corrections

Φ2 = Φ1 + 120◦ + α1, Φ3 = Φ1 + 240◦ + α2. (2)

Coefficients α1 and α2 can vary ±1◦. Two black dotted circles are drawn in the top
view pictures, which describe the radii responsible for the fixed edge R1 = 100 pixels
and free end R2 = 575 pixels of the straight beam (no gravity, no centrifugal forces, and
no aerodynamic forces). The outer circle indicates the reduction in the dimension due to
deflection by gravity, centrifugal forces, and aerodynamic forces. An important effect reveals
when the beam leaves the rotor plane. A lift towards the camera gives the optical effect of
the beam extension, while moving away from the camera shortens its length; see Figure 11.
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(a)

(b)

Figure 4. Preset angle 00, angular speed 100 rpm: top view (a), side view (b).
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(a)

(b)

Figure 5. Preset angle 0◦, angular speed 150 rpm: top view (a), side view (b).
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(a)

(b)

Figure 6. Preset angle 5◦, angular speed 50 rpm: top view (a), side view (b).
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(a)

(b)

Figure 7. Preset angle 5◦, angular speed 100 rpm: top view (a), side view (b).
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(a)

(b)

Figure 8. Preset angle 5◦, angular speed 150 rpm: top view (a), side view (b).
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(a)

(b)

Figure 9. Preset angle 45◦, angular speed 50 rpm: top view (a), side view (b).
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(a)

(b)

Figure 10. Preset angle 45◦, angular speed 100 rpm: top view (a), side view (b).

The side view frames are labeled with three curvilinear lines describing the deforma-
tion of the beam at a given moment. It requires comment. These side view pictures were
not taken at the maximum amplitude of the swing out of rotor plane, but they were taken
randomly. Capturing an image of the maximum vibration amplitude in a given plane is
very demanding, beyond the capabilities of the equipment used. The situation would be
different with a camera following the rotor and recording the full movement of the blade,
which, of course, generates many more technical issues.
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Figure 11. Side view of the top camera axially aligned with rotating hub: the effect of beam deforma-
tion outside the rotor plane on camera observation.

Figure 12. Preset angle 90◦, angular speed 50 rpm: top view; side view is not applicable.



Materials 2022, 15, 3335 15 of 23

3.1. Preset Angle 0◦

The zero preset angle almost does not generate lift, and drag force can be neglected.
This implies that the beam deformation field undergoes a balance of gravity and centrifugal
force. The top view, which is used to measure deformation due to drag and centrifugal
forces, remains unchanged; see Figures 3a, 4a and 5a.

Carefully comparing the graphics, one can observe how the tip of the beam approaches
and then crosses the outer circle as the angular velocity increases. This is in line with the
side view. As the angular velocity gradually grows, the centrifugal force dominates over
gravity, and the beam becomes almost perfectly straight; see Figures 3b, 4b and 5b.

3.2. Preset Angle 5◦

A positive preset angle of approximately 5 degrees effectively generates lift and drag
forces. However, aerodynamic forces have no significant effect on the top view frames
(Figures 6a, 7a and 8a). The lift force generates the lifting of the beam end. Angular velocity
of approximately 50 rpm is enough to balance gravity, and higher angular velocities of
100 rpm and 150 rpm bend the beam upwards; see Figures 6b, 7b and 8b.

3.3. Preset Angle 45◦

Unlike the previous cases, the preset angle of 45◦ changes the deformation field in
both views. For the top views (Figures 9a, 10a, 11a and 12a), the beam trailing edges are
marked by 11 points and linked by a curve. In the next section, markers will be used to
build a deformation profile and its polynomial approximation.

In Figure 9a,b, the leading (trailing) edges are marked with solid (dashed) lines. Dif-
ferences in curves indicate a twist effect or, more likely, another optical issue. However,
the graphical results can be used to describe the beam deformation field, and the nar-
row/detailed oscillations will be analyzed in a future section using the time histories of the
strain gauges. Herein, a hypothesis can be accepted that the deformation profiles can be
assigned to the axis offset in the upcoming measurements performed by the strain gauges.

3.4. Preset Angle 90◦

In this case, the direction of high flexural stiffness prevents deformations out of
rotor plane in video analysis; thus, the side view is not reported here. On the contrary,
the direction susceptible to bending is subjected to supreme drag, which results in a very
large deformation curve at angular velocity 50 rpm. Attempts to measure higher speeds
(higher than 80 rpm) have been neglected due to the limited power of the DC motor.

4. Mathematical Description of Deformation Field

In top view camera records, three measurements are enough to collect information
about beam deformation: two for preset angle 45◦ and one for 90◦. The measuring points
have been divided into 11 radii values; more precisely, r1–r10 are spaced from each other
every 50 pixels starting from R1, and plus r11 = R2. The radii values define the circles on
which the angular value φA1–φA11 of the deflection with respect to the undeformed line
segment Φ1

PAi(XAi, YAi) = (X0 + ri cos (Φ1 + φAi), Y0 + ri sin (Φ1 + φAi)), (3)

PBi(XBi, YBi) = (X0 + ri cos (Φ2 + φBi), Y0 + ri sin (Φ2 + φBi)), (4)

PCi(XCi, YCi) = (X0 + ri cos (Φ3 + φCi), Y0 + ri sin (Φ3 + φCi)), (5)

where i ∈ N = {1, 2, 3, ... 11}.
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The distance between the given point and constructing a line segment is obtained with
a system of algebraic equations:

Y0 = cA1X0 + cA2, YAt = cA1XAt + cA2, → cA1, cA2, (6)

dAi =
cA1XAi −YAi + cA2√

X2
Ai + Y2

Ai

, (7)

where coefficients cA1 and cA2 describe the equation of a line intersecting the points (X0,Y0)
and (XAT ,YAT); dAi is the dimension (in pixels) between the line and the ith point. The au-
thors introduce the dimensionless results in reference to the beam length; thus, relative
deformation becomes dAi/(R2 − R1). Note that the beam length is a constant parameter
R2 − R1 of the initially straight (undeformed) beam; of course, the top and side views from
cameras display different values in pixels, but still it is the same length (L = R2 − R1).
Thus, in order to unify the results, the following projections of beam deformation on the
proper plane (relative deformation) are presented for a dimensionless quantity of the beam
length.

Sets of points in the plane of the beam length vs. the relative deformation are approxi-
mated by polynomials, which is the main purpose of the camera measurements gathered
in Figures 13–15.

(a)

(b)

(c)

Figure 13. Beam deformations and their description by polynomials: (a) preset angle 45◦ and angular
speed 50 rpm, (b) preset angle 45◦ and angular speed 100 rpm, (c) preset angle 90◦ and angular speed
50 rpm.
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(a)

(b)

(c)

(d)

Figure 14. Side view—beam deformations and their description by polynomials: (a) preset angle 45◦

and angular speed 100 rpm, (b) preset angle 45◦ and angular speed 50 rpm, (c) preset angle 5◦ and
angular speed 100 rpm, (d) preset angle 5◦ and angular speed 50 rpm.
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(a)

(b)

(c)

Figure 15. Side view—beam deformations and their description by polynomials: (a) preset angle 0◦

and angular speed 50 rpm, (b) preset angle 0◦ and angular speed 100 rpm, (c) preset angle 0◦ and
angular speed 150 rpm.

5. Results—Time Series

In this section, time series from the strain gauges are analyzed in detail. On each beam
near to the fixed end, the strain gauge is embedded, the signal from which is sent wirelessly
to the software; see Figure 2. In our study, we focused on the longitudinal direction of the
beams. The results are grouped according to the preset angle (0◦, 5◦, 45◦, and 90◦).

5.1. Preset Angle 0◦

From the time series of the preset angle 0◦—see Figure 16—one can see that vibrations
are localized in beam C for every studied case of angular velocity. Moreover, at the lowest
angular speed (Figure 16a), all beams are synchronized, but with an increased speed of
100 rpm, all of them vibrate differently (see Figure 16b). With the highest angular speed,
the synchronization with locked phase can be observed—see Figure 16c.
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Figure 16. Time histories of individual beams: (a) preset angle 0◦ and angular speed 50 rpm, (b) preset
angle 0◦ and angular speed 100 rpm, (c) preset angle 0◦ and angular speed 150 rpm.

5.2. Preset Angle 5◦

In the case of the rotor with preset angle 5◦ of beams, the localization of the vibration
changes as well as for different angular speeds—see Figure 17. When the constant angular
velocity equals 50 rpm, all beams move synchronously and oscillate with similar amplitudes
(Figure 17a). The synchronization between beams A and B can be observed when the system
rotates with an angular speed 100 rpm; beam C is synchronized in antiphase with beams A
and B (Figure 17b). The synchronization phenomenon does not change in the case of the
angular speed equal to 150 rpm, but the vibrations are localized in beams A and C.
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Figure 17. Time histories of individual beams: (a) preset angle 5◦ and angular speed 50 rpm, (b) preset
angle 5◦ and angular speed 100 rpm, (c) preset angle 5◦ and angular speed 150 rpm.

5.3. Preset Angle 45◦

Full synchronization between all three beams can be noticed in the rotation of the
model with 50 rpm and preset angle of beams 45◦—see Figure 18a. For this setting of the
rotor, all beams oscillate with similar amplitudes; only in the case of the higher angular
velocity (150 rpm) does asynchronous motion appear (in Figure 18c).
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Figure 18. Time histories of individual beams: (a) preset angle 45◦ and angular speed 50 rpm, (b) preset
angle 45◦ and angular speed 100 rpm, (c) preset angle 45◦ and angular speed 150 rpm.

5.4. Preset Angle 90◦

As was mentioned before, the experimental tests of the rotor with the preset angle
90◦ of beams created some difficulties. The DC motor power rotor was insufficient, so the
tests were performed only for the angular speed equal to 50 rpm. In Figure 19, the full
synchronization between all three beams can be observed and the amplitude of beams
is similar.
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Figure 19. Time histories of individual beams with preset angle 90◦ and angular speed 50 rpm.

6. Conclusions and Final Remarks

The paper presents experimental studies performed on a three-bladed rotor. The aero-
dynamic loads, as well as the synchronization phenomenon, are studied. Two types of
measurements have been used—high-speed cameras and strain gauges applied to the
beams. Based on the optical measurements, it is possible to notice that the zero preset angle
almost does not generate lift, and drag force can be neglected. Moreover, as the angular
velocity gradually grows, the centrifugal force dominates over gravity, and the beam be-
comes perfectly straight. Next, a positive angle of 5◦ effectively generates lift and drag
forces, and then the lift force generates the displacement of the beam end. Angular velocity
of approximately 50 rpm is large enough to balance gravity, while higher angular velocities
bend the beam upwards. Furthermore, based on images from the high-speed cameras, the
polynomials of aerodynamic loads have been obtained. These polynomials can be used
for analytical calculations of rotating structures. Additionally, the synchronization phe-
nomenon has been studied. The full synchronization between all three beams is observed
in the case of preset angles 5◦, 45◦, and 90◦ with angular speed 50 rpm. Synchronization
with the locked phase appears for preset angles 0◦ and 150 rpm. Finally, in the case of
preset angle 5◦, the localization of the beams’ vibration changes dynamically for various
angular velocities.
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15. Latalski, J.; Bocheński, M.; Warmiński, J.; Jarzyna, W.; Augustyniak, M. Modelling and Simulation of 3 Blade Helicopter’s Rotor
Model. Acta Phys. Pol. A 2014, 125, 1380–1384. [CrossRef]
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