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Abstract: Pure titanium and titanium alloys are widely used in dentistry and orthopedics. However,
despite their outstanding mechanical and biological properties, implant failure mainly due to post-
operative infection still remains a significant concern. The possibility to develop inherent antibacterial
medical devices was here investigated by covalently inserting bioactive ammonium salts onto the
surface of titanium metal substrates. Titanium discs have been functionalized with quaternary
ammonium salts (QASs) and with oleic acid (OA), affording the Ti-AEMAC Ti-GTMAC, Ti-AUTEAB,
and Ti-OA samples, which were characterized by ATR-FTIR and SEM-EDX analyses and investigated
for the roughness and hydrophilic behavior. The chemical modifications were shown to deeply
affect the surface properties of the metal substrates and, as a consequence, their bio-interaction. The
bacterial adhesion tests against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus
aureus, at 1.5 and 24 h of bacterial contact, showed good anti-adhesion activity for Ti-AUTEAB
and Ti-OA samples, containing a long alkyl chain between the silicon atom and the ammonium
functionality. In particular, the Ti-AUTEAB sample showed inhibition of bacteria adhesion against
Escherichia Coli of about one log with respect to the other samples, after 1.5 h. The results of this
study highlight the importance of chemical functionalization in addressing the antimicrobial activity
of metal surfaces and could open new perspectives in the development of inherent antibacterial
medical devices.

Keywords: metal surface modification; anti-bacterial adhesion; titanium implants

1. Introduction

Wearable and implantable medical devices play a fundamental role in modern health-
care. The implant technology has dramatically improved the quality of life of millions
of people worldwide, allowing the integration in the human body of different medical
solutions such as reconstructive joint replacements, programmable pacemakers, defibrilla-
tors, stents, synthetic valves, tissue-engineered scaffolds, and drug delivery systems [1].
Even if medical devices constituted by ceramics and polymers have shown excellent bio-
functionality and biocompatibility, more than 70% of surgical implants are still constituted
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by metal-based implants [2,3]. This preference is mainly due to their durability and high
fracture toughness. Among the different metallic materials used for medical implants,
pure titanium and titanium alloys are the most used in dentistry and orthopedics because
of their unique mechanical properties, corrosion resistance in biological media, and their
good biocompatibility and osseointegration ability [4–6]. However, despite the outstanding
mechanical and biological properties of titanium-based devices, the implant failure (mainly
due to postoperative infection and/or immune responses) still remains a significant con-
cern, leading to adverse clinical outcomes including bone loss and, in the most severe cases,
even death [7,8]. The primary causes of medical device complications, namely infection
and inflammation, are mediated by the interaction of the implanted materials with the host
environment. In fact, the implanted devices could be contaminated before implantation
with bacteria from droplets, air, or hands of healthcare workers or immediately upon their
introduction. After their introduction into the human body, these devices can be coated
with serum proteins, aqueous humor, mucosal secretions, host microbiota, and extracellular
fluids. These events make the materials’ surface highly susceptible to microbial infection
and host cellular adhesion [9,10]. Pathogens thus anchored on the titanium surface through
various surface interactions like van der Waals forces, hydrogen bonding, hydrophobic
interactions, and ionic interactions, are able to multiply and colonize the surface, conse-
quently resulting in device infection [11]. Therefore, inhibiting bacterial colonization is of
pivotal importance to avoid the probability of infection.

Several strategies have been proposed to overcome these serious drawbacks, with pre-
ventive strategies being the most effective. In this context, the use of intrinsic antimicrobial
surfaces represents the most advantageous possibility [12,13]. In general, two strategies
have been investigated to inhibit bacterial colonization on surfaces: (i) coating the device
surface with an antifouling layer to prevent bacterial adhesion, or (ii) coating the device
surface with a bactericidal layer [14]. The first approach is based on the formation of a
hydrated barrier able to inhibit a bacterial attack [15,16]. This strategy can retard biofilm
formation but does not lead to the killing of bacteria cells that are already deposited on
the surface [17]. The second approach is based on the covalent immobilization of bac-
tericidal agents, like antibiotics, antiseptics, and silver or nitric oxide on the surface of
the implant [18,19]. This second strategy shows some disadvantages, such as the low
concentration of loaded bactericidal agents, a fast release over time into body fluids with
consequent toxicity profiles, problems related to antibiotic resistance, and above all, the
poor efficiency for long periods [20,21]. Additionally, the use of metal coatings which are
extremely effective in preventing biofilm formation can lead to severe toxicity problems
due to their accumulation in tissues which causes long-term damage [22]. In this scenario,
the covalent anchoring of biomolecules with antibacterial properties, such as quaternary
ammonium compounds and antimicrobial peptides on medical implants has shown to
afford new materials able to kill microorganisms on contact, thus exhibiting a self-sterilizing
effect [13,23,24]. This strategy proved to overcome problems related to biofilm-associated
infections in medical devices with minimal cytotoxicity and stability profiles [24–27].

Among the different antibacterial compounds, quaternary ammonium salts (QASs)
exert a strong antimicrobial activity against a wide class of microorganisms including
bacteria, fungi, and viruses [28,29]. Their permanent positive charge allows a fast bind-
ing with the negatively charged surface of most microbes, thus leading to the loss of
cell membrane integrity and then cell death. Based on these considerations, the aim
of this work was to investigate for the first time the possibility of covalently inserting
bioactive QASs moieties directly onto the surface of titanium metal substrates for the de-
velopment of inherent antibacterial medical devices. The QASs chosen in this study were:
2-(acryloyloxy)ethyl]trimethylammoniumchloride (AEMAC), glycidyltrimethylammonium
chloride (GTMAC), and acryloyloxyundecyltriethylammonium bromide (AUTEAB). The
latter, previously synthesized by us [30,31], proved to be a good antibacterial agent [32,33].

The QASs were covalently anchored to the surface of titanium discs by means of
the linker (3-aminopropyl)triethoxysilane (APTES). The alkoxy groups of this molecule
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were linked to the titanium hydroxyl groups by siloxane bonds while the nucleophilic
amino group was used for the further bonding with QASs. Moreover, we also inves-
tigated the antimicrobial activity of ammonium salt functionalized titanium discs ob-
tained by reaction of the naturally-derived oleic acid (OA) with the organosilane (N,N-
dimethylaminopropyl)trimethoxysilane (DAPTES); analogously to APTES, also DAPTES
was anchored to the titanium surface by siloxane bonds, while the tertiary amino group
was used to form the ammonium salt with the carboxyl group of OA.

The so functionalized titanium discs were evaluated for their bacterial adhesion inhi-
bition against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus,
showing a clear anti-adhesion activity for Ti-AUTEAB and Ti-OA samples, containing a
long alkyl chain between the silicon atom and the ammonium functionality. The results
of biological preliminary tests highlight the importance of chemical functionalization in
addressing the antimicrobial activity of metal surfaces and open new perspectives in the
development of antimicrobial implantable titanium medical devices.

2. Materials and Methods
2.1. Chemicals and Instrumentation

Commercial titanium discs (25 mm in diameter and 0.5 mm thick) were purchased from
Merck Life Science with chemical and mechanical properties according to the standard ASTM-
B-265/ASME-SB-265. Oleic acid, 3-aminopropyltriethoxysilane, N,N-dimethylaminopropyl-
trimethoxysilane, sodium hydroxide (pellets), and the solvents toluene (99.8%) ethanol
(99.8%) and methanol (99.8%), were obtained from Merck Life Science at the highest
purity available and used without further purification. Acryloyloxyundecyltriethylam-
monium bromide (AUTEAB) was prepared as we already reported [30,31]. Spectrometer
(PerkinElmer, Waltham, MA, USA), by the method ATR in the range of 4000–500 cm−1.
Scanning Electron Microscopy (SEM) was conducted at room temperature with an FEI
Quanta 450 FEG instrument (Thermo Fisher Scientific, Hillsboro, OR, USA) operating in a
high vacuum, at 20 kV, using an Everhart-Thornley detector (ETD). The Energy Dispersive
X-ray (EDX) analyses were made using an Octane Plus Silicon Drift Detector (Ametek,
Berwyn, PA, USA), equipped with a 30 mm2 Super Ultra Thin Window (SUTW). The FeK
mapping analysis was performed using an image resolution of 256 × 200 pixels and a
dwell time of 200 µs. The mapping acquisition time was set at 60 min. The roughness of the
samples was measured using a Surftest SJ-210 roughness meter Series 178 (MitutoyoS.r.l.,
Milan, Italy). In particular, the arithmetic average height (Ra) [µm] was evaluated by:

Ra =
1
N

n

∑
i=1
|Yi| (1)

where Ra represents the arithmetic mean of the absolute values of the evaluation profile (Yi)
from the mean line. The measurement conditions were regulated according to the JIS2001
roughness standard, five sampling lengths, lengths of cut-off (λs = 2.5 µm, λc = 0.8 µm), and
a stylus translation speed of 0.5 mm/s. Four roughness profiles per type of sample were
performed and then an average profile was obtained. Contact angle analysis was performed
using the static method and direct measurement of the tangent angle at the three-phase
contact point on a sessile drop profile, using high-resolution photographs of pure water
droplets and graphic image processing software (Gimp). In particular, five sets of contact
angle measurements on each sample, were performed. The volume of the droplets was 1 µL.
On each set we measured the contact angle from both sides (left and right), each reading
was taken 5 times. The following results present the average of these measurements.

θw = 2arctg(2h/d) (2)

where d is the diameter and h is the height (both in mm) of the drop, θw is the apparent
Wenzel angle, dependent on the roughness (r) of the surface
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2.2. Functionalization of Titanium-Based Samples
2.2.1. Activation of Titanium Samples

Titanium discs were cleaned by ultrasonication in acetone, ethanol, and deionized
water (10 min each). The surfaces of 15 titanium discs were then activated by immersing
the discs for 48 h into a 5 M NaOH solution (100 mL) and heating at 60 ◦C in a glass flask
fitted with a reflux condenser. After this treatment, the samples were washed with ethanol
and dried with nitrogen gas. These alkali-activated samples were labeled as Ti-OH.

2.2.2. Silanization of Activated Titanium Discs

Ti-OH samples (14 discs) were subjected to silanization using solutions (2.0 vol.%) of
APTES or DAPTES in anhydrous toluene. The samples, placed in a glass flask fitted with a
reflux condenser were heated for 36 h at 70 ◦C, under a nitrogen atmosphere. Afterward, the
discs were profusely washed with ethanol and dried with nitrogen. They were respectively
labeled as Ti-APTES (6 discs) or Ti-DAPTES (6 discs).

2.2.3. Synthesis of AEMAC, AUTEAB, and GTAMC Functionalized Titanium Discs

Ti-APTES samples (3 discs) were placed in a flask fitted with a reflux condenser and
then treated with a solution of AEMAC (0.28 mmol), AUTEAB (0.28 mmol), or GTMAC
(0.28 mmol), in methanol (25 mL). The disks were heated for 36 h at 80 ◦C and then washed
with ethanol and dried with nitrogen. The as-prepared samples were named Ti-AEMAC,
Ti-AUTEAB, or Ti-GTMAC, respectively.

2.2.4. Synthesis of Oleic Acid Salts Functionalized Titanium Disks

Ti-DAPTES samples (3 discs), placed in a flask fitted with a reflux condenser were
treated with a solution of oleic acid (OA, 0.017 mmol), in methanol (10 mL). The discs were
heated for 36 h at 80 ◦C and then were washed with ethanol and dried with nitrogen. The
as-prepared samples were named Ti-OA.

2.3. Evaluation of Titanium Discs’ Anti-Bacterial Adhesion Properties
2.3.1. Microbial Strains and Culture Conditions

The following American Type Culture Collection (ATCC) strains were used for the
adhesion testing: Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC6538. For
the susceptibility studies, the strains were grown in Mueller Hilton Broth (MHB, Oxoid,
CM0405, Sigma, Milan, Italy) at 37 ◦C for 18–20 h.

2.3.2. Adhesion Tests

The bacterial adhesion on titanium discs’ surfaces was performed on bare titanium
discs and on the functionalized samples as reported in the literature [32]. Briefly, the
overnight cultures were harvested by centrifugation (3000× g for 15 min), washed twice
using phosphate-buffered saline (PBS) solution, and suspended to a concentration of
1 × 106 Colony Forming Unit (CFU)/mL in PBS solution. The titanium discs, which were
sterilized in an ethanol bath rinsed in sterile distilled water, and dried under a sterile
atmosphere, were placed in sterile Petri dishes, covered with 1 ml of bacterial suspension
(106 CFU/mL), and incubated at room temperature for 1.5 h and 24 h. Then, in order to
remove adhering bacteria, samples were rinsed with sterile distilled water and sonicated for
3 min in 5 mL of sterile PBS solution. Serial dilutions of the PBS solution were performed
and were plated in Mueller Hilton Agar (MHA, Oxoid, PO0152, Sigma, Milan, Italy). After
24 h at 37 ◦C, the colonies were enumerated and expressed as CFU per disc (CFU/discs).
All experiments were performed in triplicate on three independent days.

2.3.3. Statistical Analysis

The mean differences and standard deviations of antibacterial activity of functional-
ized titanium discs were calculated with Prism 8.0.2 (GraphPad Software, Inc., La Jolla,
CA, USA). Data were first verified with the Shapiro Wilk test for the normality of the
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distribution and the Brown Forsythe test for the homogeneity of variances. Data were
normally distributed and homogenous. Therefore, they were statistically analyzed using
one-way analysis of variance (ANOVA) and Tukey post hoc test for multiple comparisons
at a level of significance set at p < 0.05.

3. Results and Discussion
3.1. Titanium Discs Activation

The synthetic strategy used to develop inherent antibacterial titanium metal substrates
is based on the silanization of titanium surface to immobilize the bioactive molecules.
Silane chemistry is a well-established strategy, to chemically modify titanium surfaces,
allowing the covalent bonding of biologically active molecules [34]. In particular, the amino
silane APTES is a bifunctional molecule, widely used for bioconjugation purposes [35];
the three alkoxy groups of this molecule can be linked to the titanium hydroxyl groups by
siloxane bonds while the nucleophilic amino group can be used for further bonding with
biologically active compounds. In a similar way, the silane DAPTES can be anchored to the
titanium surface by siloxane bonds and the tertiary amino group can react with biologically
active compounds [36]. In this study, we used APTES for its ability to readily react with
α,β−unsaturated carbonyl compounds or epoxide functionalities and DAPTES, which is
able to form ammonium salts after reaction with carboxyl groups (Figure 1).
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Figure 1. Activation and silanization of titanium discs surfaces.

To ensure the optimal silanization, the titanium discs were activated by alkaline
treatment with NaOH at 60 ◦C, for 48 h. This increased the number of available hydroxyl
groups as confirmed by FTIR spectra (Figure 2). Compared to the untreated sample (Ti), the
Ti-OH sample shows a broad peak at 3280 cm−1, due to the vibration of the O–H groups and
a band centered at 850 cm−1, which is normally attributed to the Ti–O bonds [37]. The peak
at 1648 cm−1 can be related to the presence of adsorbed water molecules on the activated
titanium surfaces. The subsequent treatment of Ti-OH with the organosilanes APTES or
DAPTES, performed in anhydrous toluene by heating the discs at 70 ◦C for 36 h, under an
inert atmosphere, afforded the silanized discs Ti-APTES and Ti-DAPTES. The FTIR spectra
of these samples show the representative peaks located around 1030 cm−1, attributable
to the presence of the Si–O bond and the aliphatic C–H stretching of the propyl group at



Materials 2022, 15, 3283 6 of 17

2950–2954 cm−1, thus indicating that the silane was covalently bound on the surface of
the titanium substrate. Moreover, these samples show the presence of a peak at 3265 cm−1,
due to the symmetric and asymmetric –NH vibrations and the presence of the peaks at
1580 cm−1 and 1640 cm−1, ascribable to the bending of N-H group of Ti-APTES and Ti-
DAPTES, respectively. Compared to the Ti-OH samples, a weaker broad peak at 3278 cm−1

can be observed for both samples, as a consequence of the silanization procedures.
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Figure 2. FTIR spectra of bare titanium sample (Ti), of the oxidized sample Ti-OH and of the silanized
samples Ti-APTES and Ti-DAPTES.

The activation of the titanium surface by alkaline treatment and the occurred silanization
was also confirmed by field emission scanning electron microscopy (FEG-SEM) (Figure 3). As
reported in other studies, the chemical treatment with NaOH 5M, in addition to improving
the biointegration properties of titanium surfaces [38], was shown to markedly modify the
discs’ surface, leading to the almost disappearance of the grinding marks present in the
starting substrates. The formation of an amorphous alkali titanate layer was confirmed by
EDX spectra, which showed for the oxidized sample, the presence of sodium and oxygen
peaks. Elemental analyses via EDX showed average atomic percentages of sodium and
oxygen content of 7.4% and 50.7%, respectively. The subsequent silanization procedure
revealed for both samples the presence of ordered silicon atoms covering regularly the
surfaces of titanium discs with average percentage of silicon atoms of 2% for both silanes.
Mapping analyses performed on the silanized samples Ti-APTES and Ti-DAPTES confirmed
the presence of homogeneously distributed silicon atoms (yellow spots) covering the
surfaces of titanium discs (Figure 4).
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Materials 2022, 15, 3283 8 of 17

3.2. Titanium Discs Functionalization

The silanized samples were functionalized with the bioactive molecules to obtain
inherently antibacterial titanium metal surfaces. The QASs here investigated, namely
GTMAC, AEMAC, and AUTEAB were covalently linked to the Ti-APTES sample by
reaction of the free nucleophilic amino group present in the metal substrates with the
reactive groups present in the QASs. In particular, AEMAC and AUTEAB were linked
to the discs by the Michael addition reaction between the amino group and the terminal
double bond present in the QASs while GTMAC was anchored to the surface of the same
sample by ring-opening reaction of the epoxide functionality present in GTMAC and the
amino group of Ti-APTES. The halogen-free Ti-OA sample, containing the naturally derived
oleic acid (OA) was prepared by a simple reaction of the carboxyl functionality present in
OA with the dimethylamino functionality exposed on the TI-DAPTES sample, to give the
corresponding ammonium salt (Figure 5).
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The effectiveness of functionalization reactions was confirmed by FTIR analyses
(Figures 6 and 7). The functionalized samples deriving from Ti-APTES and possessing
a quaternary ammonium functionality show a broadband at 3000–2800 cm−1 ascribable to
the stretching of the N–H bond of the introduced amine salt together with a more intense
peak, with respect to the Ti-APTES sample, at 2970–2960 cm−1, due to the C–H stretching
of alkane functionalities (Figure 6). The Ti-GTMAC sample shows the additional peaks at
2750 cm−1 and at 1390 cm−1 attributable to the O-H stretching and O-H bending respec-
tively, of alcohol functionality, present in this sample after ring-opening of the epoxide
group. The Ti-AEMAC and the Ti-AUTEAB T samples show the presence of a peak at
1735 cm−1 and at 1730 cm−1 respectively, due to the C=O bond of ester functionalities.
Moreover, these samples present the peaks at 1135 cm−1 for Ti-AEMAC and at 1130 cm−1

for Ti-AUTEAB due to the stretching of C-O groups. The Ti-OA sample, compared with the
precursor Ti-DAPTES, shows more intense peaks at 2850 cm−1 and 2920 cm−1, due to the
C–H stretching of newly introduced alkane functionalities. Moreover, for the functionalized
sample, additional peaks at 1740 cm−1 and 1640 cm−1 ascribable to the C=O stretching of
carboxylate functionality and to the stretching of the C=C Z group respectively, were also
recorded (Figure 7).
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3.3. Roughness and Contact Angle Measurements

The chemical functionalization of titanium substrates has been shown to modify
the surface roughness and, as a consequence, the interaction of the metal substrate with
the surrounding biological systems [39]. In our study, the activation, silanization, and
functionalization procedures have deeply affected the roughness of titanium discs’ surfaces.
The alkaline treatment with NaOH leads to a decrease in surface roughness (Ra value), from
0.882 µm in the unmodified Ti sample to 0.373 µm for the activated Ti-OH sample. These
values are in complete agreement with the results obtained with SEM analyses (Figure 3).
The subsequent silanization with APTES or DAPTES afforded an increase in the Ra values
of 0.784 µm for Ti-APTES and 0.713 for DAPTES, thus further confirming the presence
of homogeneously distributed silicon moieties (Figure 8). The functionalized samples Ti-
AEMAC, Ti-GTMAC Ti-AUTEAB, and Ti-OA showed again a decrease in surface roughness
with Ra values of 0.586, 0.539, 0.554, and 0.554 µm respectively, thus further confirming the
effectiveness of functionalization procedures (Figure 9).

Among the different surface properties, hydrophilicity is strictly correlated with cell ad-
hesion since cell proliferation and differentiation have been shown to increase on the surface
of highly hydrophilic materials [40]. In particular, the presence of lipophilic/hydrophobic
groups grafted on metal substrates has been shown to affect the interaction of metal sub-
strates with bacteria [41]. Generally, water contact angles between 90◦ and 120◦ suggest a
hydrophobic behavior, whereas smaller water contact angles are found in hydrophilic sur-
faces [42]. The Wenzel contact angles of all the investigated samples, measured by applying
water drops on the metal surfaces are always less than 90◦, thus indicating that the surfaces
are hydrophilic (Figure 10). The alkaline treatment of the titanium discs with NaOH leads
to a significant reduction in the surface contact angle (24.65◦), compared to the untreated
sample (contact angle of 71.39◦). The samples functionalized with ammonium salts show
different wettability behavior with increased hydrophobic character with respect to the
activated sample Ti-OH. Contact angles of 56.03◦, 63.02◦, 88.51◦, and 87.50◦ are observed for
the Ti-AEMAC, Ti-GTMAC, Ti-AUTEAB, and Ti-OA samples, respectively. The decreased
hydrophilicity observed for the Ti-AUTEAB and Ti-OA samples can be rationalized by the
presence of a lipophilic alkyl chain present in both functionalized samples. The apparent
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static contact angle θw depends on the morphology of the surfaces and their heterogeneities
which affect the contact between the liquid and the substrate.
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3.4. Antibacterial Activity of Functionalized Titanium Discs

The microbial biofilm represents a formation that is particularly resistant to the host
immune defense and often also to antibiotic compounds [43]. The cell adhesion represents
the first stage of biofilm formation and its inhibition results in a clear target for biofilm
prevention [44]. Given that quaternary ammonium compounds have been shown to
decrease microbial adhesion when used to coat various surfaces [19,45], in this study, a
preliminary test investigating the anti-adhesion activity of functionalized titanium discs
against E. coli (ATCC 25922) and S. aureus (ATCC6538) was carried out. The anti-adhesion
potential of the synthesized samples Ti-AEMAC Ti-GTMAC, Ti-AUTEAB, and Ti-OA was
assessed on the basis of cell viability of E. coli and S. aureus (Gram-positive) cultures, after
being in contact with the films for 1.5 and 24 h, as previously reported [32].

Following the ultrasonic washing of the titanium discs, serial dilutions of the bacterial
cultures were plated and the obtained colonies were quantified to evaluate the number of vi-
able adhering bacteria after 1.5 and 24 h. The results, which are expressed as CFU/discs, are
summarized in Figures 11 and 12. For the Ti-AEMAC and Ti-GTMAC samples (p < 0.0001),
almost superimposable results with those obtained from the starting substrate (Ti) have
been recorded while a certain inhibition of bacterial adhesion was observed for Ti-AUTEAB
and Ti-OA samples (p < 0.0001). In particular, the Ti-AUTEAB sample showed a certain
antimicrobial effect against E coli with inhibition of bacteria adhesion of about one log with
respect to all the other samples after 1.5 h (p < 0.0001) (Figure 11). In order to assess the per-
manence of the anti-adhesive property of the discs, the amount of the bacterial population
present on the samples after 24 h of contact was evaluated (Figure 12). In line with previous
studies, an increased number of adhered bacteria was observed in all the analyzed samples
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(p < 0.0001). These experiments have shown that the functionalized titanium discs showed a
similar anti-adhesive effect after one day of contact with the functionalized titanium discs to the
ones obtained after 1.5 h of exposition time. These observations highlighted that the functionalized
discs maintain good stability and a certain anti-adhesive effect also after 24 h.
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bare titanium discs (Ti) and on the functionalized samples Ti-AEMAC, Ti GTMAC, Ti-AUTEAB,
and Ti-OA P; Error bars indicate standard deviation (SD) from three independent CFU counting
(i.e., n = 6). “Elaboration standard deviation with ANOVA, p < 0.0001”.

The improved antimicrobial behavior of these samples can be rationalized considering
their less hydrophilic behavior with respect to the other samples and on the basis of the
chemical nature of the inserted organic moieties. Both samples possess a long alkyl chain
(C11 for Ti-AUTEAB and C16 for Ti-OA) between the silicon atom and the ammonium
functionality which, as also reported in studies on other cationic salts, is an important factor
able to significantly increase the antibacterial activity. [46,47].
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4. Conclusions

The possibility to develop inherent antibacterial medical devices was here investigated
by covalently inserting bioactive ammonium salts onto the surface of titanium metal sub-
strates. The bioactive molecules were anchored to titanium discs after alkaline activation
and silanization procedures. The QASs AEMAC, GTMAC, and AUTEAB were linked to
the metal substrates by reaction with the free nucleophilic amino group of APTES, while
the carboxyl group of the naturally-derived oleic acid was used to form an ammonium salt
by reaction with the dimetylamino group of DAPTES. ATR-FTIR and SEM-EDX analyses
confirmed the effectiveness of the functionalization procedures. These chemical modifica-
tions were shown to deeply affect the surface properties of the metal substrates, namely
roughness and hydrophilic behavior, and consequently, their interaction with their biologi-
cal counterparts. The functionalized titanium discs were evaluated for their anti-adhesion
properties against the Gram-negative Escherichia Coli and Gram-positive Staphylococcus
aureus, at 1.5 and 24 h of bacterial contact, showing good antimicrobial activity for Ti-
AUTEAB and Ti-OA samples, containing long alkyl chains between the silicon atom and
the ammonium functionality. In particular, the Ti-AUTEAB sample showed inhibition
of bacteria adhesion against Escherichia Coli of about one log with respect to the other
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samples after 1.5 h. Even if the functionalization with AUTEAB gave the best results in
terms of inhibition of bacterial adhesion, the halogen-free Ti-OA sample could exert lower
toxicity. The results of this study highlight the importance of chemical functionalization in
addressing the antimicrobial activity of metal surfaces and open new perspectives in the
development of inherent antibacterial medical devices. Further studies, involving the use
of other bioactive molecules containing long alkyl chains as well as the use of new suitable
functionalization reaction conditions will allow a better understanding of the chemical role
of bioactive molecules in addressing optimal anti-bacterial adhesion properties and the
evaluation of their long-term stability.
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