

Materials 2022, 15, 3127. https://doi.org/10.3390/ma15093127 www.mdpi.com/journal/materials

Article

Prediction of Hardenability Curves for Non-Boron Steels via a

Combined Machine Learning Model

Xiaoxiao Geng 1, Shuize Wang 1,*, Asad Ullah 2, Guilin Wu 1,3 and Hao Wang 4,*

1 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and

Technology Beijing, Beijing 100083, China; gengxiaoxiao1104@163.com (X.G.); guilinwu@ustb.edu.cn (G.W.)
2 Department of Mathematical Sciences, Karakoram International University, Gilgit-Baltistan 15100, Pakistan;

dr.asadullah@kiu.edu.pk
3 Yangjiang Branch, Guangdong Laboratory for Materials Science and Technology (Yangjiang Advanced Al-

loys Laboratory), Yangjiang 529500, China
4 School of Materials Science and Engineering, University of Science and Technology Beijing,

Beijing 100083, China

* Correspondence: wangshuize@ustb.edu.cn (S.W.); xiaohao_2001@163.com (H.W.)

Supplementary Table S1. Range of composition (wt. %), austenitizing temperature (AT, ℃) and

Jominy equivalent cooling rate (J_ec, ℃/s) of the steels.

 C Si Mn Cr Ni Mo W V Ti Cu AT 𝑱𝒆𝒄

Minimum 0.10 0 0 0 0 0 0 0 0 0 800 1.7

Maximu

m
0.70 1.83 1.89 1.6 1.78 0.54 2.20 0.20 0.09 0.54 930 270

Supplementary Table S2. Number of instances in the training datasets

Datasets

low hardenability

steel high hardenability steel

Number 827 1032

Supplementary Table S3. Optimized parameters and package version of models.

Citation: Geng, X.; Wang, S.;

Ullah, A.; Wu, G.; Wang, H.

Prediction of Hardenability Curves

for Non-boron Steels via a

Combined Machine Learning Model.

Materials 2022, 15, 3127.

https://doi.org/10.3390/ma15093127

Academic Editors: Szymon

Wojciechowski, Antoine Ferreira and

Krzysztof Talaśka

Received: 9 March 2022

Accepted: 21 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2022 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Materials 2022, 15, 3127 2 of 4

Databases Optimized Parameters
Package

Version

Classification
Random Forest -P 100 -I 100 -num-slots 1 -K 0 -M

1.0 -V 0.001 -S 1
Weka 3.9.5

Low hardenability

steels

IBk -K 2 -W 0 -A

"weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

Weka 3.9.5

High hardenability

steels

Random Forest -P 100 -I 100 -num-slots 1 -K 0 -M

1.0 -V 0.001 -S 1
Weka 3.9.5

Supplementary Table S4. Chemical composition of test set (wt.%)

NO. Steels C Si Mn Cr Ni Mo W V Ti Cu

#1 5SiMnMoV 0.57 1 0.95 0 0 0.12 0 0.16 0 0

#2 42SiMn 0.40 1.34 1.21 0.4 0 0 0 0 0 0

#3 40CrNiMoA 0.37 0.3 0.6 0.71 1.43 0.22 0 0 0 0

#4 45CrMnMo 0.455 0.275 0.875 0.975 0 0.2 0 0 0 0

#5 50CrMnVA 0.505 0.275 0.8 0.975 0 0 0 0.075 0 0

Supplementary Table S5. Number of instances in the test set

Test set #1 #2 #3 #4 #5

Number 6 11 11 11 11 11

Supplementary Note S1. The basic principles of machine learning algorithms

1. Random Forest

Random forests is an ensemble learning method for classification, regression and

other tasks that operates by constructing a multitude of decision trees at training time

and outputting the class that is the mode of the classes (classification) or mean prediction

(regression) of the individual trees [1,2]. Random decision forests correct for decision

trees' habit of overfitting to their training set.

Random forests are a way of averaging multiple deep decision trees, trained on

different parts of the same training set, with the goal of reducing the variance [3]. This

comes at the expense of a small increase in the bias and some loss of interpretability, but

generally greatly boosts the performance in the final model.

The training algorithm for random forests applies the general technique of bootstrap

aggregating, or bagging, to tree learners. Given a training set X = x1, ..., xn with responses

Y = y1, ..., yn, bagging repeatedly (B times) selects a random sample with replacement of

the training set and fits trees to these samples[4]:

For b = 1, ..., B:

Sample, with replacement, n training examples from X, Y; call these Xb, Yb.

Train a classification or regression tree fb on Xb, Yb.

After training, predictions for unseen samples x' can be made by averaging the pre-

dictions from all the individual regression trees on x':

𝑓 =
1

B
∑ 𝑓𝑏(𝑥′)𝐵

𝑏=1 (S1)

This bootstrapping procedure leads to better model performance because it de-

creases the variance of the model, without increasing the bias. This means that while the

predictions of a single tree are highly sensitive to noise in its training set, the average of

many trees is not, as long as the trees are not correlated. Simply training many trees on a

single training set would give strongly correlated trees (or even the same tree many

times, if the training algorithm is deterministic); bootstrap sampling is a way of

de-correlating the trees by showing them different training sets.

Materials 2022, 15, 3127 3 of 4

Additionally, an estimate of the uncertainty of the prediction can be made as the

standard deviation of the predictions from all the individual regression trees on x':

𝜎 = √
∑ (𝑓𝑏(𝑥′)−�̂�)2𝐵

𝑏=1

𝐵−1
 (S2)

The number of samples/trees, B, is a free parameter. Typically, a few hundred to

several thousand trees are used, depending on the size and nature of the training set. An

optimal number of trees B can be found using cross-validation, or by observing the

out-of-bag error: the mean prediction error on each training sample xᵢ, using only the

trees that did not have xᵢ in their bootstrap sample [5]. The training and test error tend to

level off after some number of trees have been fit.

To sum up, Random Forests are an improvement over bagged decision trees. Ran-

dom forest changes the algorithm for the way that the sub-trees are learned so that the

resulting predictions from all of the subtrees have less correlation. It is a simple tweak. In

CART, when selecting a split point, the learning algorithm is allowed to look through all

variables and all variable values in order to select the most optimal split-point. The ran-

dom forest algorithm changes this procedure so that the learning algorithm is limited to a

random sample of features of which to search.

2. k-Nearest Neighbours

In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a

non-parametric method used for classification and regression [6]. k-NN is a type of in-

stance-based learning, or lazy learning, where the function is only approximated locally

and all computation is deferred until classification.

Both for classification and regression, a useful technique can be to assign weights to

the contributions of the neighbors, so that the nearer neighbors contribute more to the

average than the more distant ones. For example, a common weighting scheme consists

in giving each neighbor a weight of 1/d, where d is the distance to the neighbor [7]. A

commonly used distance metric for continuous variables is euclidean distance, as shown

in Formula (S3) [8].

 deuc(𝑥, 𝑦) = [∑ (𝑥𝑗 − 𝑦𝑗)2𝑑
𝑗=1]

1

2 = [(𝑥 − 𝑦)(𝑥 − 𝑦)𝑇]
1

2 (S3)

In k-NN regression, the k-NN algorithm is used for estimating continuous variables.

One such algorithm uses a weighted average of the k nearest neighbors, weighted by the

inverse of their distance. This algorithm works as follows:

1. Compute the Euclidean distance from the query example to the labeled examples.

2. Order the labeled examples by increasing distance.

3. Find a heuristically optimal number k of nearest neighbors, based on Root Mean

Square Error. This is done using cross validation.

4. Calculate an inverse distance weighted average with the k-nearest multivariate

neighbors.

References

1. Ho Tin Kam, Random decision forests, Proceedings of the 3rd International Conference on Document Analysis and Recogni-

tion, Montreal, QC, Canada, 1995; 14-16, 278–282. Proceedings of the 3rd International Conference on Document Analysis and

Recognition, Montreal, QC, Canada, 1995; 14-16, 278–282.

2. Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 8, 832–

844.

3. Berk R A. Statistical learning from a regression perspective. New York: Springer, 2008.

4. Breiman L. Random forests. Machine Learning, 2001, 45(1): 5-32.

5. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; New York: Springer, 2 013; 6, 316-321

6. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Statistician 1992, 46, 175–185.

7. Hsu, B. Generalized linear interpolation of language models. In Proceedings of the 2007 IEEE Workshop on Automatic Speech

Recognition & Understanding (ASRU), Kyoto, Japan, 9-13 December 2007; pp. 136-140.

Materials 2022, 15, 3127 4 of 4

8. Vries, A.P.D.; Mamoulis, N.; Nes, N.; Kersten, M. Efficient k-NN search on vertically decomposed Data. In Proceedings of the

Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, WI, USA, 3-5 June 2002;

pp. 322-333.

