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Supplementary Table S1. Range of composition (wt. %), austenitizing temperature (AT, ℃) and 

Jominy equivalent cooling rate (J_ec, ℃/s) of the steels. 

 C Si Mn Cr Ni Mo W V Ti Cu AT 𝑱𝒆𝒄 

Minimum 0.10 0 0 0 0 0 0 0 0 0 800 1.7 

Maximu

m 
0.70 1.83 1.89 1.6 1.78 0.54 2.20 0.20 0.09 0.54 930 270 

Supplementary Table S2. Number of instances in the training datasets 

Datasets 

low hardenability 

steel high hardenability steel 

Number 827 1032 

Supplementary Table S3. Optimized parameters and package version of models. 
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Databases Optimized Parameters 
Package 

Version 

Classification  
Random Forest -P 100 -I 100 -num-slots 1 -K 0 -M 

1.0 -V 0.001 -S 1 
Weka 3.9.5 

Low hardenability 

steels 

IBk -K 2 -W 0 -A 

"weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 

Weka 3.9.5 

High hardenability 

steels 

Random Forest -P 100 -I 100 -num-slots 1 -K 0 -M 

1.0 -V 0.001 -S 1 
Weka 3.9.5 

Supplementary Table S4. Chemical composition of test set (wt.%) 

NO. Steels C Si Mn Cr Ni Mo W V Ti Cu 

#1 5SiMnMoV 0.57 1 0.95 0 0 0.12 0 0.16 0 0 

#2 42SiMn 0.40 1.34 1.21 0.4 0 0 0 0 0 0 

#3 40CrNiMoA 0.37 0.3 0.6 0.71 1.43 0.22 0 0 0 0 

#4 45CrMnMo 0.455 0.275 0.875 0.975 0 0.2 0 0 0 0 

#5 50CrMnVA 0.505 0.275 0.8 0.975 0 0 0 0.075 0 0 

Supplementary Table S5. Number of instances in the test set 

Test set #1 #2 #3 #4 #5 

Number 6 11 11 11 11 11 

Supplementary Note S1. The basic principles of machine learning algorithms  

1. Random Forest 

Random forests is an ensemble learning method for classification, regression and 

other tasks that operates by constructing a multitude of decision trees at training time 

and outputting the class that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees [1,2]. Random decision forests correct for decision 

trees' habit of overfitting to their training set. 

Random forests are a way of averaging multiple deep decision trees, trained on 

different parts of the same training set, with the goal of reducing the variance [3]. This 

comes at the expense of a small increase in the bias and some loss of interpretability, but 

generally greatly boosts the performance in the final model. 

The training algorithm for random forests applies the general technique of bootstrap 

aggregating, or bagging, to tree learners. Given a training set X = x1, ..., xn with responses 

Y = y1, ..., yn, bagging repeatedly (B times) selects a random sample with replacement of 

the training set and fits trees to these samples[4]:  

For b = 1, ..., B:  

Sample, with replacement, n training examples from X, Y; call these Xb, Yb. 

Train a classification or regression tree fb on Xb, Yb. 

After training, predictions for unseen samples x' can be made by averaging the pre-

dictions from all the individual regression trees on x':  

𝑓 =
1

B
∑ 𝑓𝑏(𝑥′)𝐵

𝑏=1                                  (S1) 

This bootstrapping procedure leads to better model performance because it de-

creases the variance of the model, without increasing the bias. This means that while the 

predictions of a single tree are highly sensitive to noise in its training set, the average of 

many trees is not, as long as the trees are not correlated. Simply training many trees on a 

single training set would give strongly correlated trees (or even the same tree many 

times, if the training algorithm is deterministic); bootstrap sampling is a way of 

de-correlating the trees by showing them different training sets.  
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Additionally, an estimate of the uncertainty of the prediction can be made as the 

standard deviation of the predictions from all the individual regression trees on x':  

𝜎 = √
∑ (𝑓𝑏(𝑥′)−�̂�)2𝐵

𝑏=1

𝐵−1
                                 (S2) 

The number of samples/trees, B, is a free parameter. Typically, a few hundred to 

several thousand trees are used, depending on the size and nature of the training set. An 

optimal number of trees B can be found using cross-validation, or by observing the 

out-of-bag error: the mean prediction error on each training sample xᵢ, using only the 

trees that did not have xᵢ in their bootstrap sample [5]. The training and test error tend to 

level off after some number of trees have been fit. 

To sum up, Random Forests are an improvement over bagged decision trees. Ran-

dom forest changes the algorithm for the way that the sub-trees are learned so that the 

resulting predictions from all of the subtrees have less correlation. It is a simple tweak. In 

CART, when selecting a split point, the learning algorithm is allowed to look through all 

variables and all variable values in order to select the most optimal split-point. The ran-

dom forest algorithm changes this procedure so that the learning algorithm is limited to a 

random sample of features of which to search. 

2. k-Nearest Neighbours 

In pattern recognition, the k-nearest neighbors algorithm (k-NN) is a 

non-parametric method used for classification and regression [6]. k-NN is a type of in-

stance-based learning, or lazy learning, where the function is only approximated locally 

and all computation is deferred until classification.  

Both for classification and regression, a useful technique can be to assign weights to 

the contributions of the neighbors, so that the nearer neighbors contribute more to the 

average than the more distant ones. For example, a common weighting scheme consists 

in giving each neighbor a weight of 1/d, where d is the distance to the neighbor [7]. A 

commonly used distance metric for continuous variables is euclidean distance, as shown 

in Formula (S3) [8]. 

 deuc(𝑥, 𝑦) = [∑ (𝑥𝑗 − 𝑦𝑗)2𝑑
𝑗=1 ]

1

2 = [(𝑥 − 𝑦)(𝑥 − 𝑦)𝑇]
1

2                       (S3) 

In k-NN regression, the k-NN algorithm is used for estimating continuous variables. 

One such algorithm uses a weighted average of the k nearest neighbors, weighted by the 

inverse of their distance. This algorithm works as follows:  

1. Compute the Euclidean distance from the query example to the labeled examples. 

2. Order the labeled examples by increasing distance. 

3. Find a heuristically optimal number k of nearest neighbors, based on Root Mean 

Square Error. This is done using cross validation. 

4. Calculate an inverse distance weighted average with the k-nearest multivariate 

neighbors. 
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