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Abstract: Hardenability is one of the most basic criteria influencing the formulation of the heat
treatment process and steel selection. Therefore, it is of great engineering value to calculate the
hardenability curves rapidly and accurately without resorting to any laborious and costly experiments.
However, generating a high-precision computational model for steels with different hardenability
remains a challenge. In this study, a combined machine learning (CML) model including k-nearest
neighbor and random forest is established to predict the hardenability curves of non-boron steels
solely on the basis of chemical compositions: (i) random forest is first applied to classify steel into low-
and high-hardenability steel; (ii) k-nearest neighbor and random forest models are then developed
to predict the hardenability of low- and high-hardenability steel. Model validation is carried out
by calculating and comparing the hardenability curves of five steels using different models. The
results reveal that the CML model works well for its distinguished prediction performance with
precise classification accuracy (100%), high correlation coefficient (≥0.981), and low mean absolute
errors (≤3.6 HRC) and root-mean-square errors (≤3.9 HRC); it performs better than JMatPro and
empirical formulas including the ideal critical diameter method and modified nonlinear equation.
Therefore, this study demonstrates that the CML model combining material informatics and data-
driven machine learning can rapidly and efficiently predict the hardenability curves of non-boron
steel, with high prediction accuracy and a wide application range. It can guide process design and
machine part selection, reducing the cost of trial and error and accelerating the development of
new materials.

Keywords: hardenability; machine learning; JMatPro; empirical formulas

1. Introduction

Hardenability is the ability of steel to obtain martensite during quenching, depending
on the austenization conditions and cooling rate [1]. Through the degree of hardenability,
the most appropriate cooling medium is adopted to obtain the maximum depth of hardened
layer under the condition of the minimum deformation of the workpiece. Steel has different
applications depending on its hardenability. Low-hardenability steels have high surface
hardness and good core toughness, and they are widely used in automobile gears, machine
tool spindles, and industrial sectors [2]. High-hardenability steels normally have large
quenchable section sizes of workpieces. Strong workpieces, i.e., springs, are usually made
of high-hardenability steel to ensure that they can be quenched to a martensite structure [3].
Tools are also made of high-hardenability steels in order to obtain high strength, hardness,
and wear resistance [4]. Therefore, hardenability can not only guide the design of the heat
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treatment process, but also serve as an important reference for the selection of machine
parts [5].

The hardenability of steel is usually expressed as a hardenability curve. It is very
laborious and costly to obtain hardenability curves through experiments, especially in a
trial-and-error design. Therefore, calculation methods are used more often. As the hard-
enability mechanism of boron is different from other alloying elements, the calculation of
hardenability of boron steel is complicated [6]. Trace amounts of boron (0.001–0.003 wt.%)
can significantly improve the hardenability of steel. When the cooling rate is high, boron is
adsorbed on the grain boundaries in an atomic state, which can inhibit and delay ferrite
transformation and, thus, improve hardenability [7]. Upon decreasing the cooling rate,
boron can be precipitated as boron phase, which leads to nonspontaneous nucleation and a
sharp decrease in hardenability [8]. Therefore, only the calculation of hardenability curves
of non-boron steels is discussed in this study. Empirical formulas based on experimental
data and mathematical models based on phase transition dynamics were mainly used in
the past to calculate hardenability curves. In recent years, machine learning models have
been used to predict hardenability curves in order to ascertain the quenching behavior
of steels. Grossman et al. [9] proposed the ideal critical diameter (DI) method, which
calculates DI on the basis of the chemical composition and grain size of steel, and then
established the relationship between DI and the end-quenching curve. However, the calcu-
lation error was large, and it was only suitable for medium- and low-hardenability steel,
hindering its application in practical production [10]. Just et al. [11] established regression
equations to calculate the end-quenching curve on the basis of experimental data. How-
ever, their universality, accuracy, and rationality were also greatly limited, mainly because
the linear mathematical model did not adapt to the actual shape and variation trend of
the curve. Yu et al. [12] established nonlinear equations to predict the hardenability and
mechanical properties. The modified nonlinear equation (MNE) was obtained through
improvement, which further improved the prediction accuracy. Kirkaldy et al. [13] and
Honeycombe et al. [14] calculated the hardenability of steel through the continuous cool-
ing transformation (CCT) diagram of Jominy end-quenched bars on the basis of phase
transformation kinetics and thermodynamics, and this method was integrated into the
commercial software JMatPro. According to this model, the relationship between cooling
rate temperatures Tcool rate and end-quenching distances φ can be expressed as

Tcool rate = −(Ta − 297)
4η√
πxX2 φ3 exp

(
−φ2

)
, (1)

φ =

√
π

2

(
T − 297
Ta − 297

)
+ 0.4406

[
T − 297
Ta − 297

]3.725
, (2)

where η is the diffusivity at distance X (in cm) along the Jominy bar, T is the temperature,
and Ta is the austenization temperature. Thus, the new phase volume fraction τ can be
expressed as Equation (3) to calculate the TTT diagram; then, Scheil’s addition rule [15]
can be used to convert the TTT diagram to a CCT diagram. Each cooling rate of the CCT
diagram corresponds to a data point of the Jominy end-quenching bar.

τTTT =
1

2(N/8)(∆T)3 e(
Qe f f

RT )
m

∑
j=1

αjCj, (3)

where αj is the constant for each element, Cj is the concentration of the element, and Qeff
is the effective activation energy for diffusion. The phase transformation reaction rate
at any time is the derivative of the phase transformation volume fraction τ with time.
Kirkaldy et al. believed that the inflection point of the phase transformation reaction rate is
the same as that in TTT diagram and in proportion with the CCT diagram. Therefore, the
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points corresponding to the CCT diagram must correspond to the inflection point of the
Jominy curve. Lastly, the corresponding Vickers pyramid number (VPN) is calculated as

VPN = Y1− (Y1−Y2)
3X2

0
X2, X < X0 , (4)

VPN = Y2 + 2
3 (Y1−Y2)X0

X , X >= X0 , (5)

where Y1 and Y2 are the calculated hardness values of martensite and pearlite, respectively,
in the alloy, and X0 is the distance from the inflection point of the Jominy curve to the
quenching end.

With the development of the Materials Genome Initiative (MGI) [16] and Integrated
Computational Materials Engineering (ICME) [17], data-driven machine learning methods
have been gradually introduced into material design and development, with great achieve-
ments in various fields [18–21]. These methods can make rapid predictions on the basis of
existing experimental data and effectively deal with the complex multivariate nonlinear
relationship between input and output variables. Churyumov et al. [22] constructed an ar-
tificial neural network model for predicting flow stress of high-alloyed, corrosion-resistant
steel during hot deformation. Honysz et al. [23] used generalized regression neural net-
works (GRNNs) to more accurately predict the chemical concentration of carbon and nine
of the other most common alloying elements in ferritic stainless steels on the basis of the
mechanical properties with the best efficiency. Artificial neural network algorithms have
also been used to predict the hardenability of steel [24–26]. Gao et al. [27] applied polyno-
mial regression and artificial neural networks to predict the hardenability of gear steels.
Dong et al. [28] built a chemical composition–hardenability model for wear-resistant steels
using an artificial neural network. However, these studies were modeled for specific steel
grades; hence, the applicability of the models is limited. The change trends of high- and
low-hardenability steel are different. Therefore, it is very necessary to obtain a calculation
model with high accuracy and a wide application range.

In this study, a combined machine learning (CML) model is developed to effectively
predict the hardenability of non-boron steels. Through collecting data, modeling, and
evaluating classification and regression models, the optimal CML model is established.
Due to the complex influence of composition, the hardenability curves of steels vary greatly.
In order to improve the prediction accuracy and application range of the model, random
forest (RF) is firstly used to divide the steel into low- and high-hardenability steel. Then,
k-nearest neighbor (k-NN) is used to predict the quenching curve of low-hardenability steel,
while random forest is used as the optimal prediction model for high-hardenability steel.
To further verify the accuracy of the CML model, the hardenability curves of five steels
are predicted by this model and other methods. The results show that the hardenability
curve calculated by CML model is in excellent agreement with the experimental ones,
and the prediction accuracy of this model is better than that of JMatPro software, the
ideal critical diameter method, and the modified nonlinear equation. Therefore, the CML
model combining material informatics and data-driven machine learning can quickly
and efficiently predict the hardenability curve of non-boron steel, with high prediction
accuracy and a wide application range. It has certain guiding significance for heat treatment
process design and mechanical part selection, which can accelerate new material research
and development.

2. Methodology
2.1. Data Collection and Preprocessing

In this study, the hardenability curves of 126 different steels were obtained from
published studies [2,29–31], of which 121 groups were used for training and five groups
were used for testing. The ranges of composition, austenitizing temperature (AT), and
Jominy equivalent cooling rate (Jec) are shown in Supplementary Table S1 (refer to electronic
Supplementary Materials). Due to the complex influence of alloying elements, the hardness
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variation trends of low- and high-hardenability steels are different. The hardenability
curves of low-hardenability steel (5SiMnMoV) and high-hardenability steel (40CrNiMoA)
are shown in Figure 1. In the figure, the horizontal axis is the distance to the quenching end
X (mm), while the vertical axis is the hardness (HRC). It can be seen that the hardness of low-
hardenability steel decreases continuously from the water-cooled end until it approaches the
horizontal line. Due to the low critical cooling rate of high-hardenability steel, martensite
can be obtained in a range greater than the critical cooling rate. Therefore, its hardness
does not change much within a certain distance from the water-cooled end, beyond which
it begins to decline. The hardenability curves or hardenability bands collected in this study
were obtained from end-quenched specimens using the Jominy method. For certain grades
of steel, because their chemical composition fluctuates within a certain range, hardenability
bands are obtained rather than a line. In order to obtain more statistically significant
data, the average value of the upper and lower limits of the hardenability bands should
be taken as the hardenability curve. These hardenability curves can be converted from
graphical format to numerical format, i.e., distance versus hardness (X-HRC). All points
were taken manually, and hardness values were obtained at 1.5 mm or 3 mm intervals
along the horizontal axis, resulting in a training set and test set. Then, the training and
test datasets were converted to CSV file format. Each dataset contained 11 input variables,
whose attributes were numeric. The number of instances in the training datasets of low-
and high-hardenability steels is shown in Supplementary Table S2.
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2.2. Feature Selection

Feature selection is the key step in the data analysis process, which greatly affects the
results of machine learning. Chemical composition and austenite grain size are some of
most important factors affecting hardenability [32]. However, austenite grain size was not
used as a feature parameter due to a lack of relevant data. Therefore, the input feature
parameters of the present model included the chemical composition (C, Si, Mn, Cr, Ni, Mo,
W, V, Ti, Cu) and the distance X along the Jominy bar (1.5, 3, 6, 9, 12, 15, 18, 21, 24, 27, and
30 mm). The output feature parameter was the hardness value (in HRC). The relationship
between the hardness value and the selected features can be described by Equation (6).

HRC = f (C, Si, Mn, Cr, Ni, Mo, W, V, Ti, Cu, X). (6)

In order to further verify the relationship between alloying elements and hardenability,
a Pearson correlation map was calculated using the training data with blue and red colors
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indicating positive and negative correlations, respectively. A lighter tone indicates a less
significant corresponding correlation. The filled fraction of each pie chart in the graph
corresponds to the absolute value of the associated Pearson correlation coefficient. Here,
the hardness 15 mm away from the cold quenching end was taken as the hardenability
index, marked as J15. The Pearson correlation map for J15 and chemical elements is shown
in Figure 2. It can be seen that C had the greatest influence on hardenability of steels,
while hardenability increased with increasing C content. Alloying elements Cr, Ni, Mo,
W, and Si had positive correlations with hardenability, indicating that they could improve
hardenability to varying degrees. Micro-alloy elements V and Ti were negatively correlated
with hardenability, indicating that their addition reduced hardenability. For example, V
can consume C in the solution to form carbonitride, thus reducing hardenability [33]. Ti
probably reduces hardenability for the same reasons. The correlation of Mn and Cu with
hardenability was not obvious, indicating that Mn and Cu were not linearly correlated
with hardenability. In summary, the influence of alloying elements on hardenability was
basically consistent with the common knowledge of materials.
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2.3. Machine Learning Models

A variety of machine learning algorithms were applied to build prediction models of
hardenability curves using Weka 3.9. K-NN is a nonparametric method used for classifi-
cation and regression [34]. The mean of top k labels is used for the regression task, while
the mode of top k labels is used in the case of classification. Multilayer perceptron is a
feedforward artificial neural network model that is trained on a set of input–output pairs
and learns to model the correlation between those inputs and outputs. Training involves
adjusting the parameters or weights and biases of the model in order to minimize error.
Backpropagation is used to make these weight and bias adjustments relative to the error.
Multilayer perceptron classifier (MLP-C) and multilayer perceptron regression (MLP-R)
can handle classification and regression problems, respectively, and MLP-R was mostly
used to predict the hardenability curves in previous studies [24–26]. SVC is a classifier that
is used for predicting discrete categorical labels, while SVR is a regression algorithm that
supports both linear and nonlinear regressions, used for predicting continuous ordered
variables [35]. Radial basis function (RBF) networks were trained in a fully supervised
manner using WEKA’s optimization class by minimizing the squared error according to the
BFGS method [36]. Bagging (bootstrap aggregating) is a simple and effective integration
method to obtain training subsets on the basis of uniform random sampling with replace-
ment [37]. RF is an ensemble learning method for classification, regression, and other tasks
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that operates by constructing a multitude of decision trees at training time, which can
handle complex multivariable nonlinear problems with good generalization ability and
resistance to overfitting [38].

2.4. Model Evaluation

In order to reduce the influence of unfitting and overfitting problems on calculations,
appropriate evaluation methods and indicators need to be chosen for established models.
In this paper, 10-fold cross-validation was adopted, whereby the original sample set was
randomly divided into 10 equal-sized subsample sets, among which nine subsample sets
were used as training data and the remaining subsample set was used as validation data [39].
By repeating the above process 10 times, each subsample set was used as validation data
only once. For the classification model, the evaluation parameters were the values of
accuracy [40], F1-score [41], and area under curve (AUC) [42]. Accuracy can reflect the
ability of a classification model to judge the whole sample, as shown in Equation (7), where
TP is true positive, FP is false positive, FN is false negative, and TN is true negative. The
F1-score can be regarded as the weighted average of accuracy and recall rate, as shown in
Equation (8). Higher values of accuracy and F1-score indicate better discriminability of the
model. AUC is the area under the receiver operating characteristic (ROC) curve, which
enables a reasonable evaluation of the classifier in the case of unbalanced samples. The
classifier performs better if the AUC value is closer to 1.

Accuracy =
TP + TN

TP + FP + FN + TN
. (7)

F1− Score = 2· precision·recall
precision + recall

. (8)

One of the evaluation indicators of a regression model is the correlation coefficient
(CC, Equation (9)) [43], where xi, yi are the experimental values and predicted values, and
x, y are the corresponding average values, respectively. CC is a real number between −1
and 1, and a greater absolute value represents a higher correlation between input and
output features. Generally, an absolute value of CC greater than 0.8 is considered as highly
correlated. In this study, the minimum CC standard was set to be 0.95 to ensure reliable
prediction results.

CCxy = ∑(xi−x)(yi−y)√
∑(xi−x)2 ∑(yi−y)2

. (9)

The mean absolute error (MAE, Equation (10)) and root-mean-square error (RMSE,
Equation (11)) are used to evaluate the difference between experimental and predicted
values [43], where xi is the experimental value, yi is the predicted value, and n is the
number of samples. Lower values of MAE and RMSE denote better consistency between
measured and predicted hardness, as well as a more accurate learning model. According to
the evaluation thresholds of CC > 0.95 and MAE/RMSE < 3 HRC, an optimal model was
obtained to predict hardenability.

MAE(y, ŷ) = 1
n

n
∑

i=1
|xi − yi|. (10)

RMSE(y, ŷ) =
[

1
n

n
∑

i=1
|xi − yi|2

] 1
2

. (11)

3. Results and Discussion
3.1. Classification Model

The mutual interaction of various alloying elements in steel is undoubtedly complex,
which leads to a significant difference in the hardenability curves of steels. Therefore, the
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preliminary classification of steels based on the calculated DI was the first stage of the
hardenability modeling method. The calculation formula of DI is shown in Equation (12).

DI = 25.4× fGZ· fC· fMn· fSi· fNi· fCr· fMo· fCu· fV , (12)

where fGZ is the calculation factor of the grain size grade, and fC, fMn, fSi, fNi, fCr, fMo,
fCu, and fV are the calculation factors of alloying elements, which can be obtained from the
American Society for Testing Materials A255-20a (ASTM A255-20a). In this study, fGZ was
1.0, corresponding to the calculated factor value for a granularity of 7. When the calculated
DI of steel was greater than 80, it was regarded as a high-hardenability steel. Otherwise, it
was considered as a low-hardenability steel.

Classification models were established using bagging, k-NN, MLP-C, SVC, and RF.
Figure 3 shows the training results. As can be seen, the accuracy rate and F1-score value of
RF were the highest, both reaching 92.1%. The AUC of RF was also the maximum, being
0.953. The accuracy and F1-score of k-NN and MLP-C were 91.3%. However, the AUC of
k-NN was 0.917, lower than that of RF. MLP-C had a similar AUC value to RF, but RF had
higher accuracy and stronger generalization ability than MLP-C. Therefore, RF was taken
as the optimal classification model.

Materials 2022, 15, x FOR PEER REVIEW 7 of 14 
 

 

𝐷𝐼 = 25.4 × 𝑓𝐺𝑍 · 𝑓𝐶 · 𝑓𝑀𝑛 · 𝑓𝑆𝑖 · 𝑓𝑁𝑖 · 𝑓𝐶𝑟 · 𝑓𝑀𝑜 · 𝑓𝐶𝑢 · 𝑓𝑉 , (12) 

where 𝑓𝐺𝑍 is the calculation factor of the grain size grade, and 𝑓𝐶, 𝑓𝑀𝑛, 𝑓𝑆𝑖, 𝑓𝑁𝑖, 𝑓𝐶𝑟, 𝑓𝑀𝑜, 

𝑓𝐶𝑢, and 𝑓𝑉 are the calculation factors of alloying elements, which can be obtained from 

the American Society for Testing Materials A255-20a (ASTM A255-20a). In this study, 𝑓𝐺𝑍 

was 1.0, corresponding to the calculated factor value for a granularity of 7. When the cal-

culated 𝐷𝐼 of steel was greater than 80, it was regarded as a high-hardenability steel. Oth-

erwise, it was considered as a low-hardenability steel. 

Classification models were established using bagging, k-NN, MLP-C, SVC, and RF. 

Figure 3 shows the training results. As can be seen, the accuracy rate and F1-score value 

of RF were the highest, both reaching 92.1%. The AUC of RF was also the maximum, being 

0.953. The accuracy and F1-score of k-NN and MLP-C were 91.3%. However, the AUC of 

k-NN was 0.917, lower than that of RF. MLP-C had a similar AUC value to RF, but RF had 

higher accuracy and stronger generalization ability than MLP-C. Therefore, RF was taken 

as the optimal classification model. 

  

Figure 3. The performance of classification models on the training set: (a) accuracy and F1-score; (b) 

ROC curves. 

3.2. Regression Model 

Regression models included the bagging, k-NN, MLP-R, SVR, RBF, and RF models. 

In order to make a more intuitive comparison, scatter diagrams were adopted to show the 

training results of these models, as shown in Figures 4 and 5. In these scatter plots, darker 

colors represent smaller absolute values in error. For absolute values of error greater than 

18 HRC, the point was colored gray. More points concentrated on the line y = x indicated 

better performance of the model. 

For low-hardenability steels, as shown in Figure 4, the predicted values of k-NN were 

more concentrated on the oblique 45° line compared with other algorithms; k-NN had the 

highest trained CC value of 0.983 and the smallest MAE and RMSE, 1.2 HRC and 2.2 HRC, 

respectively. On the other hand, SVR had the worst prediction performance with CC equal 

to 0.773, and MAE and RMSE equal to 5.9 and 7.5 HRC, respectively. It can also be seen 

that the prediction values of k-NN had the strongest correlation with the experimental 

data. 

Figure 5 shows the results of the training model for high-hardenability steels. It can 

be seen that the calculated data points were more concentrated in the vicinity of oblique 

45° reading line for RF, with the largest CC value (0.994) and the smallest error values, 

with MAE being 0.75 HRC and RMSE being 1.1 HRC. The training results of SVR were 

also the worst, with the lowest CC value and the largest error values, indicating that SVR 

is not suitable for the regression prediction of the hardenability of steels. Since the RF 

algorithm performed very well for both high-hardenability steels and low-hardenability 

Figure 3. The performance of classification models on the training set: (a) accuracy and F1-score;
(b) ROC curves.

3.2. Regression Model

Regression models included the bagging, k-NN, MLP-R, SVR, RBF, and RF models. In
order to make a more intuitive comparison, scatter diagrams were adopted to show the
training results of these models, as shown in Figures 4 and 5. In these scatter plots, darker
colors represent smaller absolute values in error. For absolute values of error greater than
18 HRC, the point was colored gray. More points concentrated on the line y = x indicated
better performance of the model.

For low-hardenability steels, as shown in Figure 4, the predicted values of k-NN were
more concentrated on the oblique 45◦ line compared with other algorithms; k-NN had the
highest trained CC value of 0.983 and the smallest MAE and RMSE, 1.2 HRC and 2.2 HRC,
respectively. On the other hand, SVR had the worst prediction performance with CC equal
to 0.773, and MAE and RMSE equal to 5.9 and 7.5 HRC, respectively. It can also be seen that
the prediction values of k-NN had the strongest correlation with the experimental data.

Figure 5 shows the results of the training model for high-hardenability steels. It can be
seen that the calculated data points were more concentrated in the vicinity of oblique 45◦

reading line for RF, with the largest CC value (0.994) and the smallest error values, with
MAE being 0.75 HRC and RMSE being 1.1 HRC. The training results of SVR were also the
worst, with the lowest CC value and the largest error values, indicating that SVR is not
suitable for the regression prediction of the hardenability of steels. Since the RF algorithm
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performed very well for both high-hardenability steels and low-hardenability steels, it was
further used to establish the optimal prediction model of the hardenability of steels.
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Figure 4. Training results of regression models for low-hardenability steels: (a) bagging; (b) k-NN;
(c) MLP-R; (d) SVR; (e) RBF; (f) RF.
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Figure 5. Training results of regression models for high-hardenability steels: (a) bagging; (b) k-NN;
(c) MLP-R; (d) SVR; (e) RBF; (f) RF.

3.3. Model Validation

In order to verify the accuracy of the classification model and further determine the
optimal regression model, the hardenability curves of five randomly selected steels with
different compositions were chosen as test samples. The chemical compositions of these
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test samples are shown in Supplementary Table S4. The number of instances in the test
datasets is shown in Supplementary Table S5. Among these steels, #1 and #2 steels were
low-hardenability steels, while #3, #4, and #5 steels were high-hardenability steels. The
hardenability curves of these five steels were used as the verification set; thus, data of
these five steels were not included in the training set. RF could accurately classify steels,
playing a very important role in the subsequent calculation of the regression model. These
five steels were classified by RF, and an accuracy of classification of 100% was obtained,
indicating that RF could accurately classify steels, enabling the hardenability curve to be
accurately calculated by the regression model.

Six regression models were then used to predict the hardenability curves of steels.
The correlation coefficients and error values are shown in Figure 6. For #1 steel, the CC
value of k-NN was relatively higher than others; the MAE and RMSE of k-NN were the
smallest, 2.2 HRC and 3.0 HRC respectively. RF was better than k-NN in predicting the
hardenability curve of #2 steel. However, the performance of RF was worse than that of
k-NN in the training set. Therefore, k-NN was chosen as the optimal prediction model for
low-hardenability steels. For high-hardenability steels, it can be seen that the CC values of
all algorithms were all higher than 0.95. For #4 and #5 steels, the error values of RF were the
smallest, with MAE being 0.3 and 0.4 HRC and RMSE being 0.8 and 0.8 HRC, respectively.
As for #3 steel, the data distribution led to SVR having the smallest MAE and RMSE in the
test set. However, the MAE and RMSE of SVR for #4 and #5 steel were higher than those
of RF, and the performance of SVR in the training set was the worst. Therefore, SVR was
not considered as the optimal model. RF was, thus, selected as the prediction model for
high-hardenability steel.
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Finally, these classification and regression models were combined to form a CML
model to calculate the hardenability curves of non-boron steels, and the flow chart is shown
in Figure 7. In the CML model, non-boron steels were divided into high-hardenability
steels and low-hardenability steels by RF. Then, the k-NN model was established to predict
the hardenability curves of low-hardenability steels, and the RF model was used for
the calculation of the hardenability curves of high-hardenability steels. The optimized
parameters and package version of the models are shown in Supplementary Table S3.
The applicability of the CML model depends largely on the training dataset and the
generalization ability of the arithmetic. Therefore, it can be considered that the present
CML model has relatively high prediction accuracy for steel in the range of compositions
listed in Supplementary Table S1.
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3.4. Comparison of CML Model with Others

In order to further verify the accuracy of the present CML model, the prediction
results of CML were compared with the DI method, the MNE model, and the commercial
software JMatPro. In the empirical formula and JMatPro, the grain size was also set to 7.
The comparison of errors calculated by different methods is shown in Figure 8, and the
comparison results of calculated hardenability curves are shown in Figure 9, where the
black line indicates the experimental results, while the red, blue, orange, and green lines
represent the prediction results of the CML, JMatPro, DI , and MNE models, respectively. It
can be seen that the present CML model could accurately predict the hardenability curve
of steels and was superior to the DI method, the MNE model, and JMatPro. The present
CML model had the smallest calculation errors, and the predicted hardenability curves of
CML were more consistent with the experimental ones than the curves of others, especially
for the #1, #4, and #5 steels. For example, the MAE and RMSE of CML were both smaller
than 3 HRC, except for #2 steel, but the errors of #2 steel were still much smaller than those
of other models. For #1 and #2 steels, the overall change trends predicted by JMatPro were
away from experimental ones. The calculation error of JMatPro started to increase when X
was greater than 10 mm for #3 and #4 steels. Although the MAE and RMSE of JMatPro for
#5 steel were small, 1.4 HRC and 1.6 HRC, respectively, the hardenability curve predicted
by the CML model was closer to the experimental one than that of JMatPro. Therefore, the
accuracy of JMatPro for the overall prediction of the steel hardenability curve was not high
enough. Compared with CML model, the errors of MNE and DI were quite large for both
low-hardenability steels and high-hardenability steels.
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In summary, an effective CML model to predict hardenability curves of steels was
established only on the basis of chemical compositions and distance along the Jominy
bar, making the prediction of hardenability curves more convenient and accurate during
alloy design.

4. Conclusions

A combined machine learning (CML) model including classification and regression
was developed to predict the hardenability curves of non-boron steels using chemical
composition and distance along the Jominy bar. Bagging, k-NN, MLP-C, MLP-R, SVC, SVR,
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RBF, and RF algorithms were applied on experimental datasets, and an optimal model
was selected by comparing the results of 10-fold cross-validation, in terms of correlation
coefficients and error values. In the present CML model, steels are first classified into
low-hardenability or high-hardenability steel by RF. For low-hardenability steels, k-NN
had the best prediction performance and was, thus, selected as the optimal model. For high
permeability steels, RF was adopted as the optimal model for hardenability curves.

The accuracy of the present CML model was verified by comparing the predicted
results with experimental ones and prediction results of JMatPro, the ideal critical diameter
method, and modified nonlinear equations. A superior predictive performance was ob-
tained by the present CML model with a classification accuracy of 100%, high correlation
coefficients, and low error values.

The findings of this work can realize the potential of big data mining. By using existing
experimental data and machine learning algorithms to calculate the process curves and
mechanical properties of steels, the experimental cost can be reduced, and the development
of new materials can be accelerated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15093127/s1, Supplementary Table S1: Range of composition
(wt.%), austenitizing temperature (AT, ◦C) and Jominy equivalent cooling rate (Jec, ◦C/s) of the
steels; Supplementary Table S2: Number of instances in the training datasets; Supplementary Table
S3: Optimized parameters and package; Supplementary Table S4: Chemical composition of test set
(wt.%); Supplementary Table S5: Number of instances in the test set; Supplementary Note S1: The
basic principles of machine learning algorithms [44–51].
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