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Abstract: Young’s modulus is a key parameter of materials. The method of its calculation in the
current paper is concerned with the mismatch of the mechanical impedance at the bar/specimen
interface for a compression SHPB (split Hopkinson pressure bar) test. By using long and thin
specimens, the signal recorded in the transmission bar presents itself as a multistep signal. The ratio
between the heights of two successive steps represents the experimental data that are considered in
the formula of the elastic modulus this article is devoted to. The oscillatory nature of the real signals
on the horizontal or quasi-horizontal segments prevents a precise determination of the two successive
step heights ratio. A fine tuning of this value is made based on the characteristic time necessary for
the signal to rise from one level to the next one. The FEM (Finite Element Method) simulations are
also used in calculation of the Poisson coefficient of the tested complex concentrated alloy.

Keywords: elastic modulus; mechanical impedance mismatch; SHPB test

1. Introduction

The modulus of elasticity is an intrinsic property of materials and a key parameter in
the design and development of materials. Thus, for engineering applications it is vital to
understand this characteristic with high precision in order to both perform finite element
calculations or to define constitutive models. However, the test methods currently used,
either for static or dynamic regime, have some accuracy issues [1].

The tensile test is the main static method used for the calculus of the elastic modulus
and involves the calculation of the stress–strain diagram slope on the region where only
elastic deformations are present. The main problems associated with measuring accuracy
for this method are related to alignment, deformation measurement, and data analysis. For
homogeneous and isotropic materials, Young’s modulus may also be obtained from a static
bending test [2]. Another static testing method applicable to thin films is indentation [3,4].
The compression test is not considered a reliable method for the Young’s modulus as long
as machine compliance affects the accuracy of the measurements.

For the dynamic regime, a wide variety of testing methods have been developed,
including resonance, impact excitation, and acoustic wave propagation methods [5–10].
The scattering of the elastic modulus values measured by these methods is usually lower
than in the case of static methods and the accuracy is influenced by the possible damages
to the samples caused by mechanical processing, by the surface finish quality, and by the
dimensional tolerances [1]. Despite the mentioned challenges, the dynamic methods have
the advantage to use small-size samples and being relatively fast and simple [1], which
makes them suitable for the study of material properties in the development phase. A piece
of widely-used equipment for material dynamic behavior research is the split Hopkinson
pressure bar (SHPB). However, the SHPB classic configuration does not allow the study of
material behavior when small strains, of elastic nature, are induced in samples, which is
a prerequisite to study and determine a material’s Young’s modulus. The reason behind
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this shortcoming is the occurrence of high frequencies harmonics [11] which travel along
the SHPB bars with a velocity smaller than the speed of sound [12]. Considerable effort
has been made over time to eliminate this shortcoming through various changes in SHPB
configuration [13–19]. The improvements thus obtained paved the way for the use of the
SHPB to determine the longitudinal elastic modulus [20–23]. However, the conclusions
regarding the possibility of using simple short cylindrical samples of metal alloys for this
purpose are negative [20].

On the other hand, research on thin and excessively long samples of PMMA has shown
that a step signal incident pulse becomes a multi-step one in the transmitter bar [23]. This
particular form of the signal was used to establish the characteristic time necessary to travel
back and forth on the sample, a value later used for sound velocity calculus, respectively,
the longitudinal elastic modulus [23]. As shown in [23] the repeated signal jumps recorded
in the transmission bar are characterized by a microseconds time rise. Nevertheless, this
aspect is not discussed by the authors of the previously-mentioned study in terms of
determining the characteristic time used to calculate the Young’s modulus. In this context,
the subject of the current paper addresses longitudinal elastic modulus measurement for a
small size sample made from Al5Cu0.5Si0.2Zn1.5Mg0.2, an experimental concentrated alloy
complex (CCA). The complex concentrated alloy, derived from high entropy alloy concept
(HEA) [24], is a metallurgical concept based on the assumption that the existence of a large
number of main elements allows for easier control of the solid solution structures [25].
Even if the interest for this new class of alloys is high [26–30], given their potential in terms
of mechanical and thermal properties, in the development phase, the small size ingots do
not allow classical static tests to determine the longitudinal modulus of elasticity

Therefore, in this work, we intend to measure Young’s modulus of metallic alloys
by using long and thin samples and a classic SHPB. The proposed algorithm exclusively
uses the signal recorded in the transmitted bar and its multi-step specific shape. In the
mathematical processing of the acquired data, the existence of finite jump times, from one
step to another, is admitted and used in calculations.

2. Theory
2.1. Elastic Longitudinal Wave Propagation in Bars

When an external force is applied to a body, internal deformations and stresses occur,
both in the vicinity and remotely from the force application area. However, internal stresses
that occur remotely cannot be transmitted instantly. Thus, with finite speed, state and
motion disturbances propagate through the body in the form of waves.

The study of the elastic wave propagation in long bars, in terms of elastic strains, leads
to relationship [31]:

c0 =

(
dσ/dε

ρ

)1/2
=

√
Ea

ρ
(1)

where c0 is the speed of sound, σ stands for bar axial stress, ε indicates bar axial strain, ρ
denotes bar density, and Ea represents the bar elastic modulus.

The thermodynamic transformation triggered in the environment by a longitudinal
elastic wave is adiabatic and isentropic. For this reason, the modulus of elasticity expressed
by (1) differs in value from the isothermal modulus of elasticity, Ei, which is considered to
be specific to static and quasi-static test methods [1]. The mismatch is due to the fact that
the adiabatic transformation implies a change in the environment temperature, respectively,
of the elastic strain as a result of the dilatation of the environment [32]. For most metals
this difference is about 0.5% [1].

2.2. Influence of Impedance Mismatch on the Longitudinal Wave Propagation in Bars

The product ρc0 has a constant value for a given material and is called acoustic
impedance. In some technical applications, such as the split Hopkinson pressure bar, where
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the tested sample is positioned between two identical bars, longitudinal elastic waves are
generated by impact and pass bodies with different cross sections and acoustic impedances.

The product between the acoustic impedance and the cross-section area is called the
mechanical impedance, Z, and is defined as the ratio between the driving force, F, and the
material velocity, um [33]:

Z =
F

um
= Aρc0, (2)

where A is the cross-section area.
Due to the specific SHPB mechanical impedance discontinuity, a sudden shift from

the bar mechanical impedance Aρc0 to the sample mechanical impedance A′ρ′c′0, a process
of reflection and partial transmission of the wave on the incident bar/sample interface,
is exhibited. The process is repeated on the sample/transmitter bar interface, the waves
traversing the sample back and forth until the elastic pulse is ended.

Thus, at the first back and forth pass of the elastic wave through the sample, only a part
of the incident stress, σi, fraction σt, is passed to the transmitter bar. The rest of the stress,
σr, is reflected in the incident bar as a rarefaction wave that overlaps the incident wave.

To quantify stresses that are reflected and transmitted at the interfaces, it is necessary
to understand the dynamics of each interface. At each sample/bar contact interface, the
velocities of the two bodies are equal, as long as they remain in contact during the test.
Moreover, the forces on the left and those on the right of the interface must be equal to
satisfy the equilibrium condition. By imposing these two conditions, we can write the
equations that describe the effects of interfaces on wave propagation. The systems of
equations for these two interfaces, for the first back and forth pass of the elastic wave into
the sample, are the following:

• For the incident bar/sample interface{
σi−σr

ρc0
=

σ′t
ρ′c′0

A(σi + σr) = A′σ′t
(3)

• For the sample/transmitter bar interface{
σ′t−σ′r
ρ′c′0

=
σt

ρc0

A′(σ′t + σ′r) = A σt

(4)

where σ′t is stress transmitted in the sample at the incident bar/sample interface and the σ′r
stands for stress reflected in the sample at the sample/transmitter bar interface.

By defining the transmission coefficient α, as a ratio between the incident waves and
the transmitted wave,

α =
σt

σi
(5)

the following values are obtained for these two interfaces:

α1 =
2Aρ′c′0

Aρc0 + A′ρ′c′0
(6)

α2 =
2A′ρc0

Aρc0 + A′ρ′c′0
(7)

where index 1 identifies the incident bar/sample interface and index 2 identifies the
sample/transmitter bar interface.

Thus, at the first pass of the elastic wave through the sample/transmitter bar interface
in the transmitter bar a stress occurs, σt1, given by the formula:

σt1 = α1α2σi (8)
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If the duration of the elastic pulse is longer than the time required for the elastic
wave to travel the sample back and forth, the reflection and transmission phenomena are
repeated at these two interfaces. Based on the same conditions used to write (3) and (4), the
stress reached in the second bar can be calculated after n passes of the wave through the
sample/transmitter bar interface with the formula:

σtn = α1α2σi

(
1 + h + · · ·+ (h)n−1

)
(9)

where

h =

(
Aρc0 − A′ρ′c′0
Aρc0 + A′ρ′c′0

)2

(10)

represents the square of the ratio between the difference and the sum of the mechanical
impedances of the bars and the tested sample.

Consequently, the evolution of the stress in the transmitter bar, under the conditions
of a step-like shape of the initial elastic pulse, in which the value of the incident stress
σi remains constant throughout the pulse, is presented as a multi-step signal, Figure 1.
The ratio between two successive steps is equal to the subunit value h as it results from
the relation:

σtn − σtn−1

σtn−1 − σtn−2
− = h (11)Materials 2022, 15, x FOR PEER REVIEW 5 of 15 
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Figure 1. Transformation of a single-step elastic pulse into a multi-step elastic pulse when passing
through a sample with a different mechanical impedance than the bars.

Processing the recorded data from such a test is limited to the determination of the
dimensionless value h which faithfully reproduces the ratio between the heights of two
successive steps from the signal recorded by a strain gauge placed on the transmission bar.
For this reason, the classic data processing procedures used in SHPB tests are not necessary.
Using (10) and the value of the experimentally determined constant h, the modulus of
elasticity of the sample is calculated as:

E′ =

(
1−
√

h
1 +
√

h

)2
A2ρ2c2

0
A′2ρ′

(12)

An analysis of the sensitivity of the Young’s modulus calculated value to the measure-
ment errors of this parameter is required. Figure 2 shows the variations of the Young’s
modulus according to the variations of the parameter h for three distinct values. It is
observed that as the value of h increases, the measurement errors have a greater impact on
the calculated value of the Young’s modulus.
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Regarding the characteristic time necessary for the elastic wave to travel back and
forth on the sample, this is calculated with the following formula:

τ′ =
2l′

c′0
(13)

where l′ is the sample length.
The rewriting of the relation (13) allows expressing the sound velocity in the sample

according to the characteristic time and the sample length:

c′0 =
2l′

τ′
(14)

which finally leads to express the elasticity of the sample as

E′ = ρ′
(

2l′

τ′

)2

(15)

3. Experimental Setup and Numerical Model
3.1. Tested Materials

The tests were performed on an Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy specimen with a di-
ameter of 8.20 mm and a length of 68.7 mm, manually placed between the bars. The
3800 kg/m3 density complex concentrated alloy was obtained by melting higher purity
elements (purity > 99.5%) in a laboratory induction furnace type Linn MFG-30 (Linn High
Therm GmbH, Eschenfelden, Germany), with a controlled atmosphere. The alloying pro-
cess was performed at 700–800 ◦C and 0.6 ÷ 0.8 bar in argon atmosphere, and the melting
crucible used was made of alumina. The prepared alloy was then cast in a copper mold
under protective atmosphere. The chemical composition of the resulted specimens was
determined by the ICP-OES method. The results obtained are presented in Table 1. The
chemical analysis shows a resulted composition close to the nominal composition of the
alloy without significant differences.

Table 1. Complex concentrated alloy composition.

Alloy
Al5Cu0.5Si0.2Zn1.5Mg0.2

Composition, wt. %

Al Cu Si Zn Mg

Nominal 49 11.54 2.05 35.64 1.77
Experimental 43.86 11.39 2.02 38.66 2.02

Al5Cu0.5Si0.2Zn1.5Mg0.2 is a complex concentrated alloy that contains elements in
higher proportion than the conventional aluminum alloys. Al5Cu0.5Si0.2Zn1.5Mg0.2 was
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selected based on the inexpensive combining elements, ease of formation of solid solutions
with light elements, high corrosion resistance of the elements, and potential for increased
mechanical resistance. Optical analyses of the Al5Cu0.5Si0.2Zn1.5Mg0.2 alloy shows a fine
dendrite structure with a number of 3 major phases and 2 eutectic structures. The percent-
age of solid solutions is higher than the inter-metallic compounds.

3.2. SHPB Equipment

The SHPB system used for tests has 20 mm diameter steel bars of 7800 kg/m3 density
and 210 GPa elasticity modulus. The projectile has a length of 385 mm and the bars a length
of 2000 mm. The strain gauge bridges were mounted at 800 mm on the bars ends. The
signals generated at the Wheatstone bridge strain gauge were conditioned with Ectron
778 signal conditioners (Ectron Corporation, San Diego, CA, USA) and recorded with
a 6000 series Picoscope (Pico Technology, St Neots, UK). In order to attenuate the high
frequencies that occurred at the impact, the end surface of the projectile was covered with a
paper adhesive band.

3.3. Numerical Model

In order to verify the validity of previously-stated hypotheses for the elastic modu-
lus evaluation, a Ls-Dyna numerical simulation was performed. The numerical model
geometry and mesh are detailed in Figure 3.

For the mesh as depicted in Figure 3, a hex shape solid element was used (type SOLID
1—constant stress solid element).

For higher accuracy, the numerical model was set-up considering the following aspects:

â A 3D modeling approach based on the real dimensions of the bars and samples,
and also the real initial and boundaries conditions, is preferable. Both incident and
transmitted bars are 20 mm in diameter and 2000 mm in length. The striker length is
385 mm. The specimen has 67.8 mm length and 8.2 mm diameter.

â A fine mesh must be imposed for the longitudinal direction in order to capture the real
phenomena. Thereby, a 0.25 mm length mesh was considered, a value smaller than
the one usually used in mesh sensitivity analyses for similar SHPB tests [21,34,35].
The number of elements and nodes of every component of the SHPB are presented in
Table 2.

â The contact between parts must be as real as can be simulated which leads to the use
of the *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ID card. For the initial
striker velocity, the *INITIAL_VELOCITY_GENERATION card was used.

Table 2. Mesh characteristics.

SHPB Component Elements Nodes

Striker 80,192 94,640
Incident bar 391,040 463,097

Sample 138,752 148,240
Transmitted bar 391,040 463,097

Linear elastic constitutive behaviors were assigned to the bars and specimens. The
Hopkinson bars are made of steel with the following material and geometric characteristics:
elastic modulus—210 GPa, Poisson’s ratio—0.3, density—7800 kg/m3, diameter—20 mm,
and length—2000 mm for both incident and transmitted bars. The striker length is 385 mm
and the specimen has 67.8 mm length and 8.2 mm diameter.
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in the sample cross section (down).

4. Results
4.1. Measured Data

The typical signals recorded during the tests, for both bars, are given in Figure 4.
The red curve represents the signal acquired by the Wheatstone bridge from the incident
bar and the green one represents the signal acquired by the Wheatstone bridge from the
transmitter bar. The multi-stepped feature of the transmitter bar predicted by Equation (9)
is present. Still, the real signal is not completely similar to the ideal signal from Figure 1.
Firstly, the time necessary to rise from a level to the next one is finite, a characteristic
observed in tests of a similar setup [23]. Secondly, the signal is oscillating on the segments
where it should be flat, which is proof of the existence of high-frequency harmonics.
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A better highlight of the existence of the threshold is obtained when several tests
performed on the same sample are overlapped repeatedly.

The signals recorded during the tests in the transmission bar, after scaling, are shown
in Figure 5.
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long sample.

The scaling was necessary because the impact velocities were similar, but not identical,
and allowed the deformations in the sample to be kept below the threshold occurrence of
plastic deformations. The occurrence of elastic deformation was checked by measuring
the sample length after each test. Simultaneous plotting of the signals clearly shows the
existence of thresholds in the signals. At the same time, it is observed that due to the
oscillations presence we can actually see an interval in which h can vary and for which
the thresholds drawn on the basis of h overlap with the horizontal signal segments. The
same figure shows the thresholds for two values of h, 0.78 and 0.744, which roughly
represent the limits of this interval. Based on these two values, using the Formula (12), the
elastic modulus can be calculated being obtained as59 GPa, respectively, 83 GPa, with the
difference between the two being unacceptable.

4.2. Methodology for Refining the Value of the Modulus of Elasticity

However, in order to refine the solution, we also have the characteristic time necessary
for the elastic wave to traverse the sample back and forth given by Formula (13). Thus,
an analysis of the real signals superimposed in Figure 5 indicated that the time difference
between the starting moment of one level and the starting moment of the next level is
approximately constant for all three jumps. An approximate average value of 0.0347 ms
is obtained. If we admit that the previously indicated time intervals could represent the
characteristic time of the wave passing the sample back and forth and using Formula (13),
in which the value of 67.8 mm is introduced as the length of the sample, we obtain for
the sound velocity the value of 3910 m/s, which corresponds to a modulus of elasticity of
58.1 GPa and a dimensionless characteristic value h of 0.781, a value that is found outside
the range 0.744 to 0.78. This situation indicates that the characteristic time to be used in
Formula (13) is shorter.

An additional analysis of Figure 5 shows that the jumps from one level to another
are made in time intervals of about 0.0079 ms and can be approximated with straight
lines with different inclinations, which is why the quasi-horizontal signal segments have
approximately the same length in time, of about 0.0268 ms, as seen in Figure 5. If one
admits that the previously established time intervals could represent the time needed by
the elastic wave to move back and forth through the sample and considering Formula (13)
as custom for a 67.8 mm sample length, a result of 5060 m/s value for the sound velocity
corresponding to a modulus of elasticity of 97.3 GPa and a dimensionless characteristic
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value h of 0.726 (a value that is found outside the range 0.744–0.78) is achieved. This result
indicates that the characteristic time that must be used in Formula (13) is longer.

However, the admission of the existence of a fixed value for the rise time from one
level to another leads to a constant ratio of the slopes of the lines that schematize two
successive rises, with the value being also given by the Formula (10). In other words,
the schematization of the signals by succession of horizontal lines and inclined lines is
controlled by two dimensionless parameters, h and H, and by two temporal parameters,
the rise time τvar and the step time τstep, which are found depending on the branches (16)
which describe the graph in Figure 6. The admission of Formula (16) also assumes the
existence of a characteristic time τconst = τstep − τvar

f (x) =



x−H
τvar

, 0 ≤ 0 ≤ τvar

−H, τvar < x < τstep

x−Hh
τvar

+
(τstep−τvar)(H(1+h))+τstep H

τvar
, τstep ≤ x ≤ τstep + τvar

−H(1 + h), τvar + τstep < x < 2τstep

x−Hh2

τvar
+

(2τstep−τvar)(H(1+h+h2))+2τstep H(1+h)
τvar

, 2τstep ≤ x ≤ 2τstep + τvar

−H
(
1 + h + h2), τvar + 2τstep < x < 3τstep

x−Hh3

τvar
+

(3τstep−τvar)(H(1+h+h2+h3))+2τstep H(1+h+h2)
τvar

, 3τstep ≤ x ≤ 3τstep + τvar

−H
(
1 + h + h2 + h3), τvar + 3τstep < x < 4τstep

(16)

It is obvious that the function admits a generalization for the case of the existence of a
certain number of n jumps.
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Figure 6. Schematic signal given by the branches function f (x).

To determine these four parameters based on an existing signal, the following method-
ology was defined: for the second and third jumps, the inclined lines that best approximate
them are calculated using the least square method. Dividing the slope of the line corre-
sponding to the third jump to the slope of the line corresponding to the second jump, the
value of h is obtained. This information is sufficient to calculate the elastic modulus in
Formula (12) and the sound velocity by which the characteristic time is calculated.

The signal part corresponding to the last level is determined with the help of the least
squares method and the horizontal line, GH, which best approximates it. It is situated at a
distance H

(
1 + h + h2 + h3) from the horizontal. Thus, parameter H can be calculated.

Drawing a horizontal line at a distance H from the horizontal (the first level) allows
the determination of point B: the intersection point between the horizontal and the line that
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approximates the second jump. Drawing the horizontal line at the distance H(1 + h) allows
to determine point C (the intersection point of the second level with the line approximating
the second jump) but also to determine point D (the intersection point of the second level
with the line approximating the third jump). The time distance between points B and C
represents the characteristic rise time and the distance between points B and D represents
the characteristic time of a cycle. The determination of these characteristic times allows
a subsequent determination of points O, A, E, F, and G, and the plotting of the schematic
signal for all four jumps. If the schematic signal shows significant differences from the real
signals, an adjustment for the h value is required for a better match.

For the experimental data available, the following values were determined, h = 0.758,
τvar = 0.0085 ms, and τstep = 0.0346 ms. For these values, the schematic signal was built
up and superimposed over the experimental signals, as presented in Figure 7. The rep-
resentation is normalized so that the last jump of the schematic signal is at a distance of
one unit from the axis 0. As can be seen, the signal schematic accurately reproduces the
experimental signals except for the first jump, which corresponds to the first passage of the
elastic wave through the sample.
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The longitudinal elastic modulus calculated with Formula (12) has the value 73 GPa
and the characteristic time τ given by Formula (13) is 0.0309 ms.

4.3. Numerical Results

For the tested material, only the density (3800 kg/m3) and the longitudinal elastic
modulus (73 GPa) are known as they had been presented or determined in the previous
sections. In order to fully state an elastic material model, it is also necessary to define the
Poisson’s ratio. Since the exact value of this parameter is unknown, several simulations
were performed in which for the Poisson’s ratio the values 0.26, 0.28, 0.3, 0.32, and 0.34
were assigned.

The signals recorded by the virtual transducer placed on the same coordinates as
of the Wheatstone bridge used in the experiment on the transmission bar are shown in
Figure 8 along with the schematic signal obtained based on the real tests. It is clear that
the differences between the overlapping signals are imperceptible in terms of threshold
values. Instead, there are differences regarding the time values when the jumps occur,
differences that increase from one jump to another. This result highlights the influence that
the Poisson’s ratio value has on the characteristic times τvar and τstep. The two characteristic
times vary inversely with the Poisson’s ratio for a constant value of the longitudinal
elastic modulus.
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Figure 8. Comparison of schematic signal with the simulations results.

The simulation that succeeds to reproduce, with the highest fidelity, both the ratios
between the successive thresholds and the time durations of the signal segments corre-
sponding to the jumps and levels is the one in which the Poisson’s ratio was considered 0.3.

The numerical results are similar to the experimental ones which confirm the validity
of the used hypothesis considered for the construction of the schematic signal, namely,
constant jump times τvar.

As Figure 9 highlights, the overlap of the real and numerical signals for the first
jump of the signal is poor. For a further investigation of this discrepancy, a simulation
in which the incident bar impacts the sample directly was performed. The signal from
the transmission bar was collected from an element displaced at 5 cm from the sample–
transmission bar interface. For the recorded signal, the methodology for determining the
schematic signal was applied and ended in the following results: h = 0.758, τvar = 0.0058 ms,
and τstep = 0.0346 ms. In Figure 9, the signals recorded for the standard and the modified
configuration along with the two schematic signals are plotted. As can be seen, the signal
fit for the modified configuration case is also achieved for the first jump. This highlights
the fact that the matching problem for the first jump, observed both in the experimental
and standard configuration cases, is no longer an issue when the elastic pulse is generated
directly by the striker on the tested sample.
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The direct impact also eliminates the dispersion of the train of elastic waves during
wave propagation through the bars before acting on the sample and reaching the section
where the gauge was mounted.

Moreover, it is observed that even in the case of direct impact, the characteristic time
τstep 0.0288 ms obtained for the schematic signal does not correspond to the characteristic
time τ′ given by Formula (13) for a modulus of elasticity of 73 GPa.

5. Discussions

The work of other researchers on this topic has focused mainly on assessing deviations
from the ideal assumptions generally used by the mathematical apparatus developed for
SHPB. To overcome these shortcomings, the FEM analysis and samples with complicated
shapes and accessorized with strain gauges were used [21,22].

Compared with the above, our approach is based on theoretical relations related to the
propagation of elastic waves in bars in the conditions of a sudden change of mechanical
impedance. Those relations lead to a mathematical equation, Formula (12), that shows the
connection between the adiabatic elastic modulus of the sample and h, the ratio between the
heights of two successive steps which occur when long and thin samples are used. However,
the pattern of real signals differs from the ideal one, with the presence of oscillations making
it difficult to determine exactly the value of h by using only Formula (12). To overcome
the existence of oscillations on the signals for the finite rise time of each step, another
inherent feature of real signals [23] can be used. By assuming that there is a signal pattern
in which not only the constant signal segments but also the jump segments have the same
durations at each step, τconst and τvar, a refined value of h and, consequently, a refined value
of Young’s module can be calculated.

A really interesting finding is the one related to the calculated value of characteristic
time τ′ necessary for the elastic wave to travel back and forth on the sample, given by
Formula (13) and mentioned in [23]. It has been shown that neither of the two characteristic
times, τstep and τconst, represent this characteristic time. This result shows that it is not pos-
sible to clearly delimit on the acquired signal which is the portion of time that corresponds
to the wave passing back and forth through the sample.

On the other hand, the fact that the sample is not in tight contact with the bars at the
beginning is a possible explanation for the difference between the schematic signal and the
real one observed at the first jump, Figure 7.

The results of the tests and the FEM simulations performed so far prove the validity
of the stated hypotheses on which this methodology was built. Moreover, as long as the
complex concentrated alloy Poisson coefficient was not determined experimentally, the
simulations were used for a supplementary investigation on the influence of the Poisson co-
efficient on the characteristic times. It was shown that the τstep and τvar times increase when
the coefficient value decreases; however, the influence is small and cannot be expressed by
analytical relations usable in the calculation of this coefficient.

It is necessary to observe that the possible errors in the measurement of the ratio h are
reflected in the final value of the modulus of elasticity, with the sensitivity increasing with
the value of h, Figure 2. Still, it is not recommended to use samples that lead to low values
of h because small steps can no longer be detected due to the existence of oscillations in
the signal.

Given the above, the main limitation of the method is the natural occurrence of the
wave scattering phenomenon during the propagation of the elastic pulse along the bars
which may affect the accuracy of the calculated value. Based on the direct impact simulation
results, there are reasons to consider the testing method suitable for accuracy improvements.
Moreover, the theoretical relationships for SHPB torsion tests indicate that the transverse
modulus of elasticity G can be determined in a similar way to Young’s modulus. Last
but not least, the possibility of applying the presented method in the case of bar-type
samples with a square or hexagonal cross section or made from orthotropic materials, such
as composites, is of interest.
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It can be concluded from the above discussions that our proposed method has the
advantage of using existing laboratory equipment in a simple way, being an affordable
alternative to existing test methods.

6. Conclusions

After conducting the SHPB compression tests for a long and thin metallic sample it
was confirmed that this type of test may provide experimental data that can be exploited to
accurately calculate the Young’s modulus of the tested material. The main findings of the
results analysis are summarized below:

(a) Despite the deduction of an analytical calculation in Formula (12), the real aspect of
the acquired data prevents its reliable use;

(b) The accurate calculation algorithm developed on the basis of a schematic signal, which
is much closer to the real shape of the acquired signal, admits the existence of a finite
jump time from one level to another, τvar;

(c) The results of the tests and the FEM simulations performed so far prove the validity
of the stated hypotheses on which this methodology is built;

(d) There is a certain potential for improving the method as well as the possibility to be
used in determining the transverse modulus of elasticity.
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