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Abstract: Unidirectional compressive properties of magnetorheological (MR) fluids have been in-
vestigated under slow compression and constant area with different magnetic fields and different
initial gap distances. Experimental tests of unidirectional compression were firstly carried out by
using a commercial plate–plate rheometer. The theoretical model based on the continuous squeeze
flow theory was developed to calculate the compressive stress. The comparisons between the mea-
sured and calculated compressive stresses of MR fluids were made. It showed that the compression
resistance of the MR fluid in the magnetic field was much higher than that predicted by the theory.
With the increasing magnetic flux density, the deviation between measured and calculated curves
accelerated. Characteristics of the compressive stress variation with the reduction in gap distance
have been analyzed. The structure strengthening effect induced by the chain structure aggregation in
squeeze mode has been used to explain this deviation.

Keywords: magnetorheological fluid; compression; unidirectional compression; constant area

1. Introduction

Magnetorheological (MR) fluid is a kind of intelligent material. Its rheological property
can be reversibly and instantaneously changed by a magnetic field, similar to electrorhe-
ological (ER) fluids [1–3]. Extensive research has been carried out to design and control
MR devices, such as brakes/clutches, dampers, actuators, etc. [4,5]. Under a zero magnetic
field, MR fluids behave much like Newtonian fluids and Bingham fluids under the applied
magnetic field [6]. There are three basic working modes for MR fluids in their applications,
shear mode, valve mode and squeeze mode. The properties of MR fluids in shear mode
have been thoroughly studied [7]. It is widely believed that the shear yield stress of MR
fluids is the most important parameter in the design for the shear mode. However, the
shear yield stress of MR fluid is so low that it is of no value in the clutches/brakes [8,9].
The experimental research has shown that the squeeze mode can provide ten times higher
shear yield stress than when sheared under the same magnetic field [10,11]. The squeeze–
strengthen effect is further demonstrated due to the formation of thick columns with strong
and robust ends under compression [8]. Therefore, great efforts have been carried out to
study the compressive property of MR fluid in the squeeze mode [12–14]. The studies
found that the initial gap distance, the magnetic field strength and the particle concentra-
tion have a significant influence on the compressive performance of MR fluids during the
compressive process [7–16]. The compressive stress is highly dependent and it increases
with the increasing magnetic field [7,15,17]. The high magnetic field may increase the
attraction between particles and result in the particles forming stronger and more robust
structures in the MR fluid [18]. The decreasing initial gap distance during compression has
enormous and simultaneous implications for the compressive stress and the shear yield
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stress of MR fluids [10]. The compressive speed has little influence on the compressive
stress when the concentration of MR fluid is low [15].

To predict the compressive resistance of MR fluids in the magnetic field, a continuous
media theory based on the Bingham or bi-viscous model has been developed [10]. The
relation between the compressive force and the gap thickness has been obtained based on
the Bingham mode under the slow squeeze flow [19]. However, the Bingham model was
later discovered to be too complex to use in simulations [17]. The bi-viscous mode was
found to be appropriate for the presentation of plastic fluids in the slow squeeze flow for
ER fluids [20]. A power–law relationship between the compressive force/stress and 1-ε,
with the exponent −2.5, has been predicted by the continuum squeeze flow theory, where ε
is the compressive strain [15,16]. In some cases, the validity of the continuum squeeze flow
theory can indeed be tested experimentally.

Most of the compression behavior literature reviewed above were often divided into
two categories: constant area and constant volume approaches. Constant volume usually
refers to plates that were larger than the sample and the radial interface as being free. In
constant area geometry, the sample radius was equal to or larger than that of the plates, and
the sample flowed out during compression. Here, the tests were performed under constant
area conditions. The experimental compressive stress has been found to be underestimated
by the continuum squeeze flow theory for ER fluids under the constant area condition,
but the validity of this theory for MR fluids has not been verified under the constant
area operation.

Although the validity of the continuum squeeze flow theory has been proven to
underestimate the experimental compressive stress for ER fluids under the constant area
condition [21,22], it has not been proven for MR fluids. Few studies have been published
which consider whether this theory is suitable to manage the unidirectional compression
under constant volume [15,16]. Guo et al. found that the power law indices agree with the
theoretical analysis of continuous media theory only when the concentrations of MR fluids
are between 10% and 25% [15]. The index deviates from the theoretical value when the
concentration reaches 30%. José et al. discovered the deviations of the curves of normal
force versus compressive strain at small strains under constant volume operation [16].
The similar deviations have also been found in the compression study of ER fluids under
constant area [21–23]. They found that this theory underestimates the compressive stress at
small initial gaps and high voltages. Therefore, there is still a lack of detailed experimental
and theoretical research on the compression behavior of MR fluids under constant area
operation. Moreover, in order to better understand the compressive mechanism of MR
effect, it is essential to investigate the relationship between the compression behavior and
chain structure aggregation.

In this study, the unidirectional compressive experiments under different magnetic
field and initial gap distances at a low compressive speed were conducted under constant
area by using a commercial plate–plate rheometer. The theoretical model, based on the
continuous media theory, was first described in detail and then carried out to calculate the
compressive stress. The experimental results under different magnetic fields and initial
gap distances were presented. The comparison between the measured and calculated
compressive stresses of MR fluids was made. Deviations from the continuous squeeze flow
theory were discovered and attributed to the structure strengthening effect induced by the
chain structure aggregations in squeeze mode.

2. Experimental Details

All analyses of the squeeze flow behavior of MR fluids were conducted using an Anton
Paar rheometer (Model: MCR302) with Ti plates with a rim to use with their commercial
magnetocells. It has a diameter of 20 mm for both plates. The maximum of the measurable
normal force is 50 N. The magnetic field is generated by the coils. The range of applied
current generated by the coils is 0~5 A. In this research, the MR fluid of MRF-2035 from
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Ningbo Shangong Co. Ltd., Ningbo, China, was employed in this experiment. It is based
on dimethyl silicon oil and iron powder. It has the particle volume fraction of 35%.

To obtain the shear yield stress, the shear stress versus shear rate of the MR fluid was
tested by this rheometer under different applied magnetic fields. To obtain the compressive
stress, two sets of experiments were conducted. At first, the initial gap distance h0 = 1 mm
and different current values (1, 2, 3 and 4 A, corresponding to 0.28, 0.45, 0.63 and 0.81 T,
respectively) were applied. Then, the upper plate moved downward at a constant com-
pressive speed v to compress the MR fluid. Between the constant normal force applied
or the constant compressive speed, the constant compressive speed was chosen in these
experiments at a displacement control mode. To guarantee the low S numbers and the
so-called filtration regime of operation, the low compressive speed v = 50 µm/s was used.
During compression, the applied current was kept constant and was withdrawn after the
compression. The same procedure was carried out in the second set of experiments, except
for the initial gap distance h0 = 2 mm. For instance, when h0 = 2 mm, the applied currents
are 1, 2, 3, and 4 A, respectively. Moreover, the compressive speed is kept constant i.e.,
v = 50 µm/s.

The compressive stress can be calculated as P = F/S, where F is the compressive force
and S is the area of the plate. The compressive strain can be expressed as ε = (h0 − h)/h0,
where h is the instantaneous gap distance between the two plates. The magnetic flux
density versus the applied current is shown in Figure 1. All experiments were performed
at room temperature.
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3. Theoretical Analysis

Under squeeze flow, MR fluids are compressed between two parallel plates with a
radius r and a gap distance h, as shown in Figure 2. The upper plate moves slowly at
the speed v toward the static bottom plate to compress the MR fluid. According to the
squeeze flow theory by Williams et al. using the Bi-viscosity model instead of the Bingham
model [24,25], the compressive stress can be represented as:

P =
2τyr0
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where τy is the dynamic yield shear stress, which is taken as a form for τy = K(B)m (K and m
are the constants related to the material); r0 is the radius of the upper plate; k (the coefficient
of viscosity) is the ratio of ηH and η (η and ηH are the pre-yield and post-yield viscosity in
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the Bi-viscous model, respectively), k is the value of 10−5~10−2 and τy = τ0 (1 − k), τ0 is
the static yield shear stress; G, β and W are the parameters defined, respectively, by:

G =
ηvr
h2τy

; β = G|r=r0
; W = − h

2τy

dN
dr

, (2)

where G is a plasticity number, W is a dimensionless pressure gradient, and it is often
defined as:
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Figure 2. The sketch of the compression of MR fluids between two parallel plates.

Taking k = 10−4 << 1, Equation (3) can be simplified as:

W = 1 +
√

2G (4)

Substituting Equation (4) into Equation (2) and combining with Equation (1), the
compressive stress can be obtained as:

P =
2r0

3h
τy +

4r0

7h3 τy
√

2G (5)

The curves of shear stress versus shear rate is measured using the rheometer MCR 302
at different applied currents, as shown in Figure 3a. The shear yield stress with magnetic
field is fitted using the Bingham model as τy = 10,859B1.53, as shown in Figure 3b. Taking
r0 = 20 mm, η = 0.24 Pa/s, v = 100 µm/s and τy = 10.9B1.53 (the units of τy and B are
Pa and mT, respectively), the compressive stress can be calculated by Equation (5) under
different magnetic flux density B. For example, P = 21,054/h + 0.23/h3 when B = 0.45 T
and P = 52,316/h + 0.57/h3 when B = 0.81 T. The plasticity number G is always found to
be smaller than 0.03, which is agrees with the result for G < 0.05 by Vicente et al. [10]. The
second term in Equation (5), in this case, is always found to be less than 10 because G < 0.03.
Under this condition, the viscous effect has little contribution to the compressive stress
P and may be negligible. Therefore, when k ≈ 0 (namely, MR fluids are Bingham fluid),
Equation (5) can be simplified as:

P =
2r0

3h
τy (6)
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When k = 1 (namely, MR fluids are Newton fluids), taking τy = τ0 (1 − k), MR fluids
degenerate into a pure squeeze flow of Newtonian fluids. Hence, Equation (5) can be
simplified as:

P =
3ηr2

0v
2h3 (7)

At this time, it is pure squeeze flow of Newtonian fluid and can no longer reflect the
bearing of a fluid with yield stress; therefore, it does not belong to in the scope of this study.

The shear yield stress of MR fluid is a function of the magnetic field and can be calcu-
lated by τy = KBm (m = 1.5 for moderate fields and m = 2 for small magnetic fields). The
study also found that the shear yield stress τy of MR fluids is proportional to the instanta-
neous gap distance h with an exponent as τy = A/hm (A and m is constant, m = 1.5~2) [26].
By introducing the relationship of τy = A/hm, Equation (6) can be rewritten as:

P =
2Ar0

3hm+1 (8)

When the instantaneous gap distance h takes from the initial gap distance h0, the
special compressive stress P0 can be written as:

P0 =
2Ar0

3hm+1
0

(9)

Dividing Equation (8) by Equation (9), the natural logarithmic form can be obtained:

lnP = W - (m + 1) lnh (10)

where W = lnP0 + (m + 1) lnh0. Because the slope of (m + 1) is a constant for a given MR
fluid, lnP0 plus 0.69(m + 1) is constant when h0 is fixed. Equation (10) means that W is the
intercept and (m + 1) is the slope in the linear function between lnP and lnh. It shows that
in the ln–ln plot, lnP varies linearly with lnh with a constant slope of –(m + 1), no matter
what the magnetic flux density, the initial gap distance and the material property factor A.

4. Results and Discussion

For each initial gap distance h0 (1 and 2 mm), B0 were set to 0.28, 0.45, 0.63 and
0.81 T, respectively. The typical results of the compressive stress P versus the instantaneous
gap distance h in squeeze mode are shown in Figure 4 when the initial gap distances are
h0 = 1 mm and h0 = 2 mm. It shows that the curves of compression can be roughly divided
into two regions, as shown in Figure 4a. In the first region, the compressive stress increases
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sharply with the decrease in the instantaneous gap distance and a dramatic jump-like
increasing behavior can be observed in the curve. This first region may be called the elastic
deformation region, where the structure of chains is formed at the applied magnetic field
and becomes denser and denser without breaking during compression. In the second region,
the instantaneous gap distance is lower than 0.974 and 1.948 when h0 = 1 mm and h0 = 2 mm,
respectively. The compressive stress increases with the decrease in the instantaneous gap
distance. This second region can be called the plastic flow region, where the structure of
chains collapses, reorganizes and forms stronger and more robust column/body-centered
cubic (BCC) structures with the decreasing distance. Additionally, P at a higher applied
magnetic field is distinctly higher than that at a lower applied magnetic field when h
is certain.
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The larger experimental values of compressive stresses are obtained when h0 =1.0 mm
in comparison to the situation when h0 =2.0 mm has been set under B0 = 0.45 T and
B0 = 0.63 T, as shown in Figure 5. For instance, P is approximately 188 kPa and 146 kPa
when h0 = 1 mm and h0 = 2 mm, respectively, at ε = 0.091 and B = 0.63 T. It reveals that the
compressive stress of MR fluid is strongly affected by the initial gap distance, and a smaller
initial gap distance can generate a larger compressive stress when the compressive strain is
the same. This result is contrary to the result of Mazlan et al. [7], which indicates that the
compressive stress at a smaller initial gap distance is lower than that at a larger initial gap
distance. However, it agrees with the result for MR fluids [15] and ER fluids [21].
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The MR fluid was tested on the rheometer under different conditions of initial gap
distance and applied magnetic field, as listed in Table 1. The theoretical compressive
stresses, calculated from Equation (5), and the experimental compressive stresses (P = F/S)
at ε = 0.2 for each test are listed in the last column in Table 1. The comparison of com-
pressive stresses between the measured and calculated results is shown in Figure 6 under
B0 = 0.45 T when h0 =1.0 mm and h0 =2.0 mm. It shows that the calculated and experimental
compressive stresses do not agree well. Namely, the calculated compressive stresses are
smaller than the experimental ones. It means that the theoretical value underestimates the
compressive stress. Moreover, this deviation increases with the decrease in the instanta-
neous gap distance or the increase in compressive strain. Similar results have also been
obtained by Guo et al. concerning the compressive performance of MR fluids under a
nonuniform field [26].

Table 1. Test conditions and the calculated and experimental values of compressive stress.

Initial Gap Distance
(mm) Magnetic Field (mT) Experimental P (kPa)

at ε = 0.2
Theoretical P (kPa)

at ε = 0.2

h0 = 1 0.28 23 12.84
h0 = 1 0.45 108 25.98
h0 = 1 0.63 216 44.16
h0 = 1 0.81 306 64.89
h0 = 2 0.28 21 6.42
h0 = 2 0.45 93 12.99
h0 = 2 0.63 172 22.08
h0 = 2 0.81 230 32.47
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Figure 6. Comparison of compressive stresses between the measured and calculated results.
(a) h0 = 1 mm; (b) h0 = 2 mm.

Taking the logarithm of P and h values in Figure 4a,b, the experimental curves of lnP
versus lnh are shown in Figure 7a,b, respectively. The prediction lines calculated according
to Equation (10) are also shown in Figure 7 with m = 1.53. When h0 = 1 mm, fitting the
curves in Figure 7a with the linear functions, the equations for the curves are lnP = 2.74–3.01
lnh (0.28 T), lnP = 4.19–3.21 lnh (0.45 T), lnP = 4.91–3.37 lnh (0.63 T) and lnP = 5.17–4.24 lnh
(0.81 T). The experimental slope no longer agrees with the theoretical one and it is greater
than that of 2.53, as shown in Figure 7a. The average value of the slopes is 3.46. It shows
the trend that the slopes (m + 1) are obviously different from each other and increase with
the increase in the magnetic flux density. The traditional dipole model of MR fluid predicts
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a square dependence on the shear yield stress with the magnetic field, namely, m = 2. That
means that the prediction of the squeeze flow theory or the traditional dipole model both
underestimate the compression resistance of MR fluid, no matter if m = 1.53 or m = 2. This
phenomenon is also observed in other compressions of ER fluids [21].
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With the further increase in h0 to 2 mm, the experimental slopes vary from 2.68 to
3.46 with the increase in the magnetic flux density and their average value is 3.05, as
shown in Figure 7b. Obviously, the slope gets small as the initial gap distance increases.
Most of the test results of the slope are higher than 2.53 at h0 = 2 mm. It implies that the
compression resistance of the MR fluid increases more than the theoretical prediction with
the decrease in the instantaneous gap distance. These experimental results also indicate that
the description of compressive behavior of MR fluids with the squeeze flow theory might
not reveal the essential attributes of the MR effect during compression. The difference
between the theory and experiment at a smaller h0 is obviously greater than that at a
larger h0 when the magnetic flux density is the same, and it is also greater for the higher
applied magnetic field than the lower when h0 is the same. This suggests the failure of the
traditional description of the compression behavior of MR fluids based on the squeeze flow
theory, especially in the case of small initial gap distance and high applied magnetic field.
This result agrees with the result for ER fluids by Tian et al. [21].

MR fluids are suspensions of magnetic micro-particles in a carrier fluid. The particles
become polarized and interact strongly with each other, forming chains along the direction
of the magnetic field under an applied magnetic field. To explain the compressive behavior
of MR fluid, the mechanical property of MR fluids under compression needs to consider
the evolution of particle aggregation.

The compressive resistance is primarily contributed by the chain resistances from the
field-induced yield stress [15]. The particle chains in MR fluids can be described by using a
slim rods model. According to the mechanics of compressed slim rods, the rod strength
(Pg) can be expressed by the following equation [16,21]:

Pg = f Q2 (11)

where f is a material parameter that is called the structure factor; Q is the aspect ratio
d/hg, where d is the rod diameter, hg is the rod length that is equal to the instantaneous
gap distance h of the compressed MR fluid. When the magnetic field is applied, the
particles in MR fluids form the chain structures along the direction of the magnetic field
in milliseconds, assuming that the rod/chain diameter and the rod/chain length are d
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and hg, respectively, before compressed. The particle chains collapse, reorganize and form
stronger and more robust column/BCC structures with the decreasing gap distance during
compression. Coarse columns composed of several chains and BCC structures have been
observed through microscopy [15,18]. Such structures have the effect of enlarging the
rod/chain diameter d. Therefore, the rod/chain length hg decreases and the rod/chain
diameter d increases during compression, which means the increasing of the aspect ratio
d/hg. The increasing aspect ratio Q during compression leads to the increase in the rod
strength/chain resistance Pg, which is similar to the squeeze–strengthen effect reported by
Zhang et al. [8]. For the different initial gap distance, the aspect ratio Q is mainly dependent
on h0 at the beginning of the compression. The longer the rod/chain length hg/h0, the more
likely the chain structures are to collapse during compression. The rod/chain diameter d is
constant at the same magnetic flux density and the aspect ratio Q at a smaller h0 is clearly
larger than that at a larger h0 at the beginning of the compression. Thus, the compressive
resistance of MR fluid at h0 = 1 mm is larger than that at h0 = 2 mm, as shown in Figures 5
and 7. Meanwhile, the more robust structures formed by compression increase the material
structure parameter f too, as reported by Tao et al. Therefore, the change in microstructure
leads to the greater increase in compressive resistance. However, the model, as assumed
in the William’s squeeze-flow theory, is built based on single chains and it is suitable for
the shear mode, but it is not always applicable in squeeze mode. The compressive stress
calculated from Equation (5) is much lower than the experimental, especially in the case
of small initial gap distance and high applied magnetic field, as shown in Figure 6. The
particle interactions mechanism in the microstructure of MR fluids under compression is
attractive and further research needs to be conducted.

5. Conclusions

In this study, the squeeze behaviors of MR fluids have been studied under different
magnetic fields and initial gap distances in slow compression. The experimental results
have revealed that compressions under different magnetic fields can always make MR fluids
strong. The compressive stresses have been calculated according to the theoretical model
based on the continuous squeeze flow theory. Experimental results of compressive stress
were compared with the calculated values. The difference between the experimental and the
theoretical curves significantly increases with the increasing magnetic field, which seems to
deviate from the prediction based on the continuous squeeze flow theory. Characteristics
of the compressive stress variation with the reduction in gap distance have been analyzed.
The structure strengthening effect caused by the chain structure aggregation is currently
utilized to account for this deviation in the compression of MR fluids, which may well be
referred to for use in quantitative research for MR strength.
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