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Abstract: The failure of hip prostheses is a problem that requires further investigation and analysis.
Although total hip replacement is an extremely successful operation, the number of revision surgeries
needed after this procedure is expected to continue to increase due to issues with both bone cement
types and cementation techniques (depending on the producer). To conduct a comparative analysis,
as a surgeon prepared the bone cement and introduced it in the body, this study’s team of researchers
prepared three types of commercial bone cements with the samples mixed and placed them in
specimens, following the timeline of the surgery. In order to evaluate the factors that influenced
the chemical composition and structure of each bone cement sample under specific intraoperative
conditions, analyses of the handling properties, mechanical properties, structure, and composition
were carried out. The results show that poor handling can impede prosthesis–cement interface
efficacy over time. Therefore, it is recommended that manual mixing be avoided as much as possible,
as the manual preparation of the cement can sometimes lead to structural unevenness.

Keywords: bone cements; biomaterials; mechanical properties; orthopedic; handling

1. Introduction

Biomaterials are now used successfully not just in dentistry [1,2] and orthopedic
surgery [3–5] but also in many medical specializations such as neurosurgery [6], ophthal-
mology [7], gynecology [8,9], cardiovascular surgery [10,11], general surgery [12–15] and
maxillofacial surgery [16].

Bone cements are defined as mixtures of substances consisting of a powder phase
and a liquid phase that, after mixing and homogenization, form a paste that can harden
and self-stabilize once implanted in the body [17–20]. These materials have the ability to
be modeled to ensure the fixation of the implant and act as an interface between bones
and the implant material. Bone cements are widely used as materials for endoprosthesis
replacement, vertebroplasty and cranioplasty. The two main types are calcium phosphate
cements (CPCs) and polymethylmethacrylate bone cements (PMMAs) [21]. The selection
of bone cements is carried out according to clinical needs.
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For a cement to properly perform the clinical function for which it was created, it
must simultaneously possess several characteristics: the ability to properly transmit static
and dynamic loads, biocompatibility, properties similar to those of bone (e.g., elasticity),
high fatigue resistance, crack resistance, resistance to abrasive processes, wear resistance,
high coefficient of friction, relatively short link creation time, adequate polymerization
temperature, high vibration damping factor, ease of handling, in vivo hardening in perfect
time, nontoxicity, close to neutral pH during attachment, a contraction as small as possible
during stabilization, good radiopacity and porosity. Although the requirements are known,
the perfect cement has not been found so far; each of the materials used to date has its
limitations. In current surgical interventions, the most frequently used cements can be
classified as acrylic bone cements and calcium phosphate bone cements [22–24].

The mechanical resistance of the total hip prosthesis and particularly the adhesion
quality between the implant and the bone primarily depend on the nature of the cement
used and its mechanical and geometrical characteristics [25]. Acrylic bone cements are part
of a group of materials that are created directly in their environment. They are obtained
from PMMA, a simple liquid polymer/monomer system that hardens in the cold. The
combination of the two components results in a viscous mass with a stabilization time
of 7–10 min, until mechanical stability is reached. It is currently the most widely used
biomaterial for fixing prostheses in arthroplasty and has a high performance due to its
very good properties [26–31]. The properties and applications of acrylic bone cement are
different, as shown in Figure 1 [32].
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Figure 1. Schematic data of the acrylic bone cements.

The general disadvantages of acrylic bone cement are the lack of osteoconductivity;
aseptic weakening over time [33]; exothermic reaction during polymerization with possible
local necrosis; reduced mechanical properties; lack of bioactivity [34]; hypersensitivity to
the cement components [35]; possible cardiovascular reactions to acrylic bone cement [36];
possible leaching of the unreacted monomer into the surrounding tissues, leading to
chemical necrosis [36]; and osteolysis due to the wear and tear of particles and debris from
the bone cement.

Calcium phosphate cements (CPCs) are more similar to bone due to the presence of
calcium phosphate [37,38].

Various papers describe the impact of cementation techniques on the clinical results of
total hip or knee prosthesis, revealing that the cement mantle thickness influences the poten-
tial prosthesis migration and inflammatory reactions due to various wear particles [39–42].
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Additionally, some failure analysis studies highlight the importance of intraoperative
activities such as bone cement preparation [43–46].

The main function of bone cement is to adhere the prosthesis to the bone, resulting
in the transference of body weight and mechanical loads from the prosthesis to the bone
and the immediate immobilization of the prosthesis. This ensures the adequate fixation
of the femoral component for from 10 to 15 years, but after this time failure is almost
inevitable, even using the latest intraoperative methods for performing surgery and obtain-
ing and handling cement. There are many reasons for endoprosthesis failure, such as the
body’s excessive inflammatory response to infection, poor handling, soft tissue failure [47],
aseptic loosening [48–50], improper mixing, failure to handle properly, poor stabilization,
exothermic reaction [51] and the mechanical failure of the cement layer.

Since cementing is affected by various factors including lavage, hemostasis, bone
density, the type of cement, mixing time, cement viscosity, timing, ambient temperature,
cementing technique, component design and the surgeon’s experience, it is important to
utilize reproducible cementing techniques [52,53]. There are different methods for handling
the cement used to fix the femoral component, other methods for fixing the acetabular
component and a completely different method for handling the cement used for BHR-
type prostheses. As specified in the instructions for the use of the BIRMINGHAM HIP
Resurfacing prosthesis (Surgical Technique), the low-viscosity cement is mixed and poured
into the head implant. Alternatively, it can be drawn up into a bladder syringe and injected
into the femoral component [54].

Although the stabilizing properties are primarily associated with the composition of
the cement, it has been found that many other parameters affect the properties of bone
cements, an important factor being the ambient temperature during handling. Higher
temperatures decrease both the working time and the stabilization time, which can influence
the handling of the cement [55]. The curing process is divided into four stages: (a) mixing,
(b) waiting, (c) working and (d) hardening. The mixing can be carried out by hand or with
the aid of centrifugation or vacuum technologies [18].

Previous results obtained by our group regarding the failure analysis of a hip-cemented
prosthesis reveal that the improper preparation of the acrylic bone cements is one reason
for prosthesis failure [56–58]. Figure 2 shows a hip resurfacing failure in which the defects
due to the poor handling of the bone cement are highlighted.
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Following these studies, the aim of this paper is to perform a comparative analysis of
three different acrylic bone cements used in clinical practice for the same hip prosthesis
fixation, Aminofix 1, Aminofix 3 and Simplex P, evaluating their surface and mechani-
cal properties. Table 1 presents the stabilization parameters of some commercial acrylic
bone cements.
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Table 1. Stabilization parameters of some commercial acrylic bone cements [59,60].

Bone Cement Working Time (min) Setting Time (min) Peak Temperature (◦C)

Fix 1 (Groupe Lepine) 3 7 57
Fix 2 (Groupe Lepine) 4 9 57

Aminofix 1 (Groupe Lepine) 4 8 57
Aminofix 3 (Groupe Lepine) 5 10 58

Simplex P(Stryker) 7 14.3 90
Palacos® + G(Heraeus) 5 12.5 73
CMW1(DePuy CMW) 6.5 11 88
Osteopal V (Heraeus) 8 14 56

KyphX HV-R 8 20 56

2. Materials and Methods
2.1. Materials
Bone Cements Used

Bone cement samples were obtained directly in the operating room during surgery by
mixing the liquid monomer with the powdered polymer. Cement was converted from a
liquid to a solid state by an exothermic reaction.

Table 2 presents the chemical compositions of the commercial products used in this
research: Aminofix 1 (Groupe Lépine, Genay, France) encoded as sample 1, Aminofix 3
(Groupe Lépine, France) encoded as sample 2 and Simplex P (Stryker, Kalamazoo, MI,
USA) encoded as sample 3.

Table 2. Chemical composition of the experimental samples of acrylic bone cements.

Sample 1 Sample 2 Sample 3

Liquid
component 14.4 g 16.4 g 18.79 g

Methyl
methacrylate Monomer 12.28 13.99 18.33

Butyl
methacrylate Monomer 1.90 2.16 -

N, N-dimethyl-p-
toluidine Activator 0.22 0.25 0.46

Hydroquinone * Inhibitor 20 ppm 20 ppm 60 ppm
Powder

component 40 g 40 g 41 g

Polymethyl
methacrylate

Pre-polymerized
polymer 33.68 33.52 6.00

Benzoyl
peroxide Initiator 0.96 1.12 0.50

Methyl
methacrylate—

styrene
copolymer

Pre-polymerized
copolymer - - 30.00

Barium sulphate Radiopaque agent 3.84 3.84 4
Gentamicin

sulfate Antibiotic 1.52 1.52 -

Erythromycin Antibiotic - - 0.50
Colistin

Sulphomethate
Sodium EP

Antibiotic - - 3.00 million I.U.

Viscosity standard low low
* Hydroquinone was added in relation to the liquid component.

The investigated bone cements are used for different procedures in orthopedic surgery.
The difference between preparing the cement in the laboratory and preparing it in the
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operatory is that some surgical procedures take longer than others, so the cement cannot
settle too quickly or too slowly. Therefore, some manufacturers produce several different
types of bone cement, each designed for particular circumstances.

Bone cement performance is directly linked to various parameters such as the mixing
method, chemicals used, viscosity, porosity, antibiotics used in the cement composition,
sterilization, working temperature, physical and mechanical properties and biocompati-
bility [61,62]. Additionally, different procedures for intraoperative handling of the bone
cements are used in clinical practice. For classical hip arthroplasty, the bone cements are
pressured inside the prepared bone and prosthesis components are inserted after into the
cement (Figure 3), but in some specific cases such as hip resurfacing prostheses (e.g., Birm-
ingham Hip Resurfacing Prosthesis), the bone cements are pressured inside the femoral
head before the insertion of the prosthesis component into the prepared bone (Figure 4).
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radiography; (d) failed BHR hip prostheses [63].

2.2. Methods
2.2.1. Scanning Electron Microscopy Coupled with Energy Dispersive Spectroscopy

The morphology of the experimental samples and the elementary chemical compo-
sition were evaluated using a QUANTA INSPECT F scanning electron microscope (FEI
Company, Eindhoven, The Netherlands) equipped with an energy-dispersive X-ray spec-
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trometer detector (EDAX) (FEI Company, Eindhoven, The Netherlands) with a 132 eV
resolution at MnK.

2.2.2. Contact Angle Measurements

The samples’ wettability was assessed by contact angle measurements performed
using the KRÜSS DSA30 Drop Shape Analysis System.

The contact angle measurements were performed using the sessile drop method, with
each measurement being repeated five times. The samples were fixed on a support to ensure
flatness, and, using the automatic dosing system, drops of distilled water with variable
volumes were deposited (5–15 µL) depending on the available flat surface. Once the drop of
distilled water was deposited, an image was captured using the built-in measuring system
camera. The obtained images were processed with the help of the ImageJ software, with
which the contact angle was determined.

2.2.3. Compressive Strength Measurements

The mechanical properties of the experimental samples were also evaluated, follow-
ing their compression strength. The contact area of the acrylic cement with the bone is
intensely mechanically stressed, so the determination of the compressive strength is very
important [64,65].

This study was designed to determine the properties of the bone cements, mainly
their structural characteristics, based on the viscosity information reported by the pro-
ducer and their mechanical properties using a compression test. For the compression
tests, the experiment was randomized. The sample size was influenced by the volume of
available materials.

The compression tests were performed conforming to the ASTM D695 Standard Test
Method for Compressive Properties of Rigid Plastics specifications using cylindrical specimens
with a length double the diameter (ø20 mm × 40 mm). These were subjected to a mechanical
compression test using a Walter + Bai LFV 300 device. Figure 5 schematically shows the
system used for the compression test and the behavior of the cement during this test.
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The compression test parameters were set according to the ASTM D695 specifications:
The test was controlled by displacement using a speed of 1.3 ± 0.3 mm/min until the
yield point was reached; then, the speed was increased to 5 mm/min. The repeatability,
reproducibility and accuracy of the test results were verified against previous data [2,66,67].
The calibration and accuracy check of the testing machine were performed by the producer,
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and interlaboratory tests were performed regularly. Following the compression test, the
software automatically generated the stress–strain diagram for all tested samples.

3. Results and Discussion
3.1. Scanning Electron Microscopy Coupled with Energy-Dispersive Spectroscopy Determinations

SEM analysis was carried out to evaluate the structure of the experimental samples
and reveal the presence of potential agglomerations that could affect its homogeneity. The
elemental composition of the samples was determined using EDS analysis.

Figure 6 shows the SEM images and corresponding EDS spectra for all the inves-
tigated samples. The SEM images highlight typical microstructures for PMMA-based
cements: beads from the polymer powder; the matrix of the polymerized monomer; and
the radiopacifying element—in this case, barium sulphate (BaSO4) and pores.
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The most homogeneous structure was observed for sample 3. For sample 1, SEM
images display a slight tendency of barium sulphate to form agglomerates, and some pores
could be observed. For sample 2, in contrast, the SEM images highlight agglomerations of
the radiopacifying element due to an improper mixing of the cement’s components. As a
first conclusion, we recommend centrifugal mixing for this type of cement and avoiding
the manual mixing of the cement.
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The EDS analysis confirmed the composition of the commercial bone cement and
highlighted the presence of the C and O from the two polymer phases (majority elements)
and the Ba and S from the radiopacifying element composition.

Regarding the clinical significance of the results shown in this section, we should
mention that the mixing is a very important step in bone cement preparation. If the
bone cement is not well mixed, agglomerations can appear in the structure with a strong
influence on the mechanical properties.

3.2. Contact Angle Determination

The values of the contact angles and the corresponding images for each investigated
sample are presented in Table 3 and Figure 7.

Table 3. Contact angle values for the experimental samples.

Sample/Bone Cement Liquid Contact Angle (◦)

Sample 1 water 59.33 ± 2.68
Sample 2 water 60.67 ± 4.59
Sample 3 water 55.10 ± 3.57
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The hydrophilic versus hydrophobic state of a material gives information about its
biocompatibility because the surface properties strongly influence the interfaces between
biomaterials and tissues [68]. In the literature, polymethylmethacrylate has an intrinsic
contact angle of less than 90. The contact angles for the investigated samples in this study
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were very close to each other and to the PMMA angle, which was around 69◦ [69,70].
The obtained results indicated that the sample surfaces were hydrophilic. A hydrophilic
surface reflects a good wettability and adhesiveness and thus a better osteointegration.
Osteointegration is very important from the clinical point of view. An optimal contact angle
for cell adhesion is around 55◦ [71,72], and we obtained the closest angle in this research
with sample 3 (55.1◦), followed by sample 1 and sample 2.

3.3. Compression Strength Determination

The aspects of the samples before and after performing the compression test are
presented in Figure 8. For each investigated bone cement, we used three specimens (except
for sample 1, for which 4 specimens were used), each of which had a cylindrical shape.
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Following the compression test, the software automatically generates the stress–strain
diagram for all tested samples as well as a comparative diagram with the values obtained
from all samples (Figure 9). From this figure, we can observe, after the compression test,
ductile behavior in all the investigated samples. The numerical values after the compression
test performed on the investigated samples are presented in Table 4.
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From the values obtained for yield strength, we observed that all the investigated bone
cements fulfilled the minimum value established by the ASTM F451 standard (70 MPa).
The best value was recorded for sample 3, an average of 92.94 MPa, followed by sample 1
(78.01 MPa) and sample 2 (77.55 MPa). Regarding the modulus of elasticity of the investi-
gated samples, the values were close. The average modulus of elasticity of the Aminofix 1
sample (sample 1) was 2433.75 ± 263.68 MPa. The Aminofix 3 (sample 2) had an average
modulus of elasticity of 2265.47 ± 582.60 MPa, and for the Simplex P (sample 3), the average
was 2308.03 ± 32.15. Maximum stress represents the highest stress recorded during the test,
and the two types of cement manufactured by the same manufacturer had similar values
(~85 MPa).
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Table 4. The compression test results for the bone cement samples.

Sample Code Modulus of
Elasticity (MPa) Yield Strength (MPa) Maximum Stress

(MPa)

1.1 2070.74 78.46 85.21
1.2 2456.87 77.44 87.88
1.3 2507.49 79.17 87.16
1.4 2699.90 76.98 84.30

Sample 1 average 2433.75 78.01 86.14
2.1 1610.59 65.59 71.60
2.2 2459.59 78.73 84.02
2.3 2726.22 88.33 96.55

Sample 2 average 2265.47 77.55 84.06
3.1 2272.86 94.59 107.84
3.2 2335.92 90.01 101.04
3.3 2315.32 94.22 100.41

Sample 3 average 2308.03 92.94 103.10

In Figure 10, we compare the modulus of elasticity, the yield strength and the maxi-
mum stress variations, which were later tested using an ANOVA.

Materials 2022, 15, x FOR PEER REVIEW 10 of 15 
 

 

Sample 2 average 2265.47 77.55 84.06 
3.1 2272.86 94.59 107.84 
3.2 2335.92 90.01 101.04 
3.3 2315.32 94.22 100.41 

Sample 3 average 2308.03 92.94 103.10 

From the values obtained for yield strength, we observed that all the investigated 
bone cements fulfilled the minimum value established by the ASTM F451 standard (70 
MPa). The best value was recorded for sample 3, an average of 92.94 MPa, followed by 
sample 1 (78.01 MPa) and sample 2 (77.55 MPa). Regarding the modulus of elasticity of 
the investigated samples, the values were close. The average modulus of elasticity of the 
Aminofix 1 sample (sample 1) was 2433.75 ± 263.68 MPa. The Aminofix 3 (sample 2) had 
an average modulus of elasticity of 2265.47 ± 582.60 MPa, and for the Simplex P (sample 
3), the average was 2308.03 ± 32.15. Maximum stress represents the highest stress recorded 
during the test, and the two types of cement manufactured by the same manufacturer had 
similar values (~85 MPa). 

In Figure 10, we compare the modulus of elasticity, the yield strength and the maxi-
mum stress variations, which were later tested using an ANOVA. 

 
(a) 

 
(b) 

 
(c) 
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In a three-level ANOVA (for sample 1, we only used the first three values) of the
modulus of elasticity and of the yield strength of the bone cement, the null hypothesis was
accepted at α = 0.05; the expectation was that there would be no variation, as observed in
the results shown in Tables 5 and 6.

Table 5. The ANOVA results for the elastic modulus.

Source for
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Squares F0 Fcrit

Treatments 6868.58 2 3434.29
0.0249 5.1439Error 829,084 6 138,181

Total 835,952 8

Table 6. The ANOVA results for the yield strength.

Source for
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Squares F0 Fcrit

Treatments 450.18 2 225.09
4.909 5.143Error 275.10 6 45.85

Total 725.28 8

Regarding the maximum stress, the results presented in Table 7 show that there was
variation within the results; thus, the alternative hypothesis was accepted.

Table 7. The ANOVA results for the maximum stress.

Source for
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Squares F0 Fcrit

Treatments 636.99 2 318.49
5.48 5.14Error 349.02 6 58.17

Total 986.01 8

4. Conclusions

In the early stage of arthroplasty, it was difficult for orthopedic surgeons to identify
the importance of the cementing technique and the bone cement selected, facts that led to
numerous implant failures [73–78]. It is imperative for the clinical personnel who intraoper-
atively prepare the bone cements to precisely know all the required steps, mixing techniques,
polymerization characteristics and handling procedures of the bone cements used in order
to obtain a durable and high-quality fixation of the prosthesis components [55].

The investigated samples showed a structure that is typical for acrylic bone cements,
with a tendency to form agglomerates due to improper mixing, specifically in the case of
sample 2, which clearly demonstrated that manual product preparation can sometimes
lead to structural unevenness. The wettability measured by determining the contact
angle indicated the hydrophilicity of the investigated samples. In terms of mechanical
properties, all investigated samples showed optimal values in accordance with the ASTM
F451 standard; sample 3 achieved the best yield strength.

From the obtained results, we can conclude that the cement handling process (mixing
stage, sticky/waiting stage, working stage) has an important role to play in the structural
integrity and mechanical properties of bone cements and that manual mixing is to be
avoided in the specific case of low-viscosity bone cements.

Although this study presents some limitations related to the small number of samples
used and the reproducibility of the in vivo working conditions, we consider that the impor-
tant information obtained will be of use to specialists in bone cement production as well as
the clinicians who use bone cements.
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In this paper, we found that there is no universal bone cement that can be used for all
hip prostheses and that the selection and use of bone cements for hip prosthesis fixation
must be correlated with hip prosthesis design, the fixation technique and devices used and
the material properties.
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