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Abstract: In this study, sodium methylsilicate and lime were selected to prepare the same proportion
of Imitation Site Soil, and according to the principle of carbonation reaction of restoration materials,
the effect of carbonation reaction on the performance of restoration soil of earthen sites was studied.
The study has good significance for the conservation and restoration of earthen sites. The samples
were cured with CO2 concentration and curing age as variables. After curing, the samples were
tested to determine their water-resistant properties, uniaxial compressive strength, and pH value
and a micro scanning electron microscope was used. The results indicated that the carbonation
reaction can quickly improve the water resistance and compressive strength of imitation site soil,
and reduced the water absorption by 16.67% compared to the specimens conditioned at 0.03% CO2

concentration. The UCS of specimens at 5%, 10%, and 15% CO2 concentrations increased by 72.22%,
131.19%, and 219.27%, respectively, compared with those at 0.03% CO2 concentration after the
specimens were environmentally maintained in the carbonation chamber at 0.03%, 5%, 10%, and 15%
CO2 concentrations for 120 h, respectively. The internal particle gradation of the imitation site soil
improved after carbonation. These results provide a basis for improving the restoration technology
of earthen sites.

Keywords: imitation ruins; carbonation reaction; disintegration; shear strength; particle-size distribution

1. Introduction

Earthen sites are an important carrier of civilization transmission, and they provide
rich historical and cultural connotations and contain non-renewable information. Some
earthen sites collapse and disappear due to weathering by wind, sun, rain, and other
environmental effects. In such situations, many scholars have performed reinforcement
research on earthen archaeological sites [1–4]. The research results have promoted studies
on improving the earthen archaeological sites to a certain extent. Owing to the differences
in the materials and environment considered in strengthening earthen archaeological sites,
some earth sites offer problems such as rainwater scouring, fall off, and color difference
after reinforcement. The subjective reason is that some researchers have insufficient un-
derstanding of the composition, formation mechanism, and mechanical properties of the
earthen archaeological site. The fundamental reason is the basic characteristics, prepara-
tion technology, adaptive conditions, and reinforcement technology of the reinforcement
materials [5,6].

In ancient times, lime, glutinous rice slurry, river sand, pottery fragments, or other
materials were widely used and mixed with soil to form a triad to improve the strength
and durability of the earthen archaeological site. Lime can be employed as a remediation
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material [7,8] because it can react with water and CO2 to produce Ca(OH)2 and CaCO3 to
enhance soil cohesion between particles [9–11]. However, the carbonation reaction of lime
in the natural environment is slow. Relevant studies have reported that it takes 240 days
for lime to be completely carbonized into calcium carbonate [12]. Faster carbonization
of lime and other materials under rich CO2 conditions had a better performance than
naturally cured materials [13,14]. After repairing and reinforcing the existing earthen
archaeological site, lime cannot completely carbonize into CaCO3, thereby resulting in
surface cracking, peeling off, and alkali flashes in varying degrees due to the influence
of the surrounding environment and efflorescence. As shown in Figure 1, the surface of
the Kaifeng City Wall, which was newly repaired in 2020, has been damaged through
efflorescence and surface upwarping, indicating defects in the technology used to repair
the Kaifeng City Wall. In addition, domestic and foreign studies have shown that capillary
water can affect soil strength and reduce resistance to wind erosion [15–17]. Accelerating
the carbonation reaction of restored earthen ruins and improving their water-resistant
properties are essential for the consolidation of earthen ruins. Therefore, when reinforcing
the earthen sites, it is not only necessary to improve their mechanical properties, but also
to consider the impermeability and water resistance [2,18–20]. Sodium methylsilicate
(CH3Si(OH)2ONa) is an inorganic chemical waterproof material with excellent waterproof
performance. It is widely used in waterproof, hydrophobic, material protection, and other
fields [21,22].
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Figure 1. Deterioration of the Kaifeng City Wall.

This paper considers the Kaifeng City Wall soil as the object of study and configures
the imitation earthen archaeological site accordingly. The imitation earthen archaeological
site is reinforced with sodium methylsilicate and lime, and the sample is cured with CO2
concentration and curing time as variables. A disintegration test, uniaxial compression
test, pH value, and micro scanning electron microscope test were performed on the cured
samples to explore the effects of different curing conditions on the restoration and protection
of the imitation earthen archaeological site in order to provide technical support for the
restoration of the earthen archaeological site.

2. Materials and Methods
2.1. Preparation of Soil Samples and Stabilizers

The soil samples were obtained from the vicinity of the Kaifeng City Wall. The physical
properties are listed in Table 1, and the particle-size distribution curve is shown in Figure 2.
Lime was purchased from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). The
main physical and chemical indexes were as follows: the relative molecular weight was
56.08, the CaO content was ≥98% and the pH value of sodium methylsilicate was between
12 and 14.
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Table 1. Physical Properties of Silty Clay.

Natural Moisture
Content/% Plastic Limit/% Liquid Limit/% Plasticity Index Maximum Dry

Density/(g·cm3)
Optimum Water

Content/%

13.2 21.03 37.63 16.6 1.68 14.32
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The collected silty clay was dried, crushed, and screened for later use. The compaction
test was performed for the soil mixed with 7% lime. The maximum dry density of the silty
clay is 1.68 g·cm3, and the optimal water content is 14.32%. The maximum dry density
of the imitation ruins mixed with 7% lime is 1.608 g·cm3, and the optimal water content
is 17.55%.

2.2. Sample Preparation

The silty clay, 2% sodium methylsilicate, 7% lime, and pure water were mixed evenly
and sealed. The mixture was allowed to stand for 24 h to promote the complete mixing of
the silty clay, sodium methylsilicate, lime, and pure water. After standing, samples of size
39.1 mm × 80 mm were placed in an environment with different CO2 concentrations for
carbonation curing and cured for 6 h, 12 h, 24 h, 48 h, 72 h, and 120 h. The different curing
conditions are listed in Table 2. In addition, the pure soil group was set aside as the control
group, and the silty clay and pure water were configured according to the water content of
17.55%. There were 25 test groups, and three parallel samples were set for each test group.

Table 2. Different Conservation Environments of the City Wall Restoration Soil.

CO2 (%) Curing Time (h) Gro

0.03 (in air)

6 1
12 2
24 3
48 4
72 5
120 6

5

6 7
12 8
24 9
48 10
72 11
120 12
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Table 2. Cont.

CO2 (%) Curing Time (h) Gro

10

6 13
12 14
24 15
48 16
72 17
120 18

15

6 19
12 20
24 21
48 22
72 23
120 24

control group 120 25

2.3. Experimental Method

1. Water-resistance test: in accordance with the standard for geotechnical test methods
(GB/T50123-2019), a double-cup disintegration instrument was adopted (BJ-2 by
Tianjin Tiangaung Optical Instruments Limited) and the sample quality was weighed
during the test. The outer layer of the instrument was made of plexiglass, and
the inner layer was composed of a beaker, wire mesh (10 cm diameter), ring knife
(6.18 cm diameter), and steel wire. The sample was placed on a hanging net and then
immediately placed into the beaker. The sample wetting at each stage was recorded
in real-time using a recording device for 24 h.

2. Unconfined compressive strength (UCS) test: The specimens were dried in an oven
at 105 ◦C for 48 h after curing and then subjected to the UCS test. The full-automatic
geotechnical triaxial compression test system (TSZ-10) was used with a loading rate
of 0.5 mm/min. When the pressure displacement curve in the test reached the peak
value, the pressure reduced continuously for a period of time, after which the test was
stopped, the peak pressure was recorded, test data were calculated, and a stress–strain
relationship curve of the improved, repaired soil was obtained.

3. Soil Sample pH value test: A Shanghai Sanxin PH5S soil pH sensor was used to
test the pH value under different curing conditions and different curing times. The
changes in the pH of the soil were observed, and the influence of the carbonation
reaction on the performance of the imitation earthen archaeological site was analyzed.

4. SEM test: SEM tests were performed using FEI Quanta 250 (Environmental Scan-
ning Electron Microscope), USA. The crushed specimens were dried and cut into
0.5 cm × 0.5 cm × 0.5 cm soil blocks. The development of the pore space in the soil
with was observed after the gold spray treatment to analyze the causes of macroscopic
property changes from a microscopic perspective.

3. Experimental Results and Analysis
3.1. Effect of Curing Conditions on the Water-Resistant Performance of Imitation Earthen
Archaeological Soil

To further observe the water-resistant performance of the imitation earthen archaeo-
logical site in depth, the pure soil and the imitation earthen archaeological site maintained
in an environment with different CO2 concentrations were maintained for 120 h, The water-
resistance test was performed after drying, and the influence of the carbonation reaction on
the performance of the imitation earthen archaeological site was compared and analyzed.
The pure soil group (Figure 3(a1,a2)) underwent complete wetting and disintegration within
5 min and could not be weighed for mass. For the specimens maintained in 0.03% CO2
concentration (consistent with the CO2 concentration in air) environment (Figure 3(b1,b2)),
during the initial stage of the water-resistance test (Figure 3(b1)), the specimens exhibited
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no obvious wetting disintegration phenomenon, and tiny bubbles on the surface were
observed along with a small amount of water absorption. After 24 h of the water-resistance
test, (Figure 3(b2)), the color of the specimen changed because sodium methylsilicate did
not fully react with water and CO2, resulting in uneven water resistance of the specimen.
For the specimens of carbonization conservation in a 5% CO2 concentration environment
(Figure 3(c1,c2)), during the initial stage of the water-resistance test, (Figure 3(c1)) no bubble
generation and no obvious water absorption phenomenon were observed, and there was
a better water-resistance effect. After 24 h of the water-resistance test, (Figure 3(c2)) the
color of the outer surface was uniform, and there was no trace of water absorption. For the
specimens (Figure 3(d1,d2,e1,e2)) of intensive carbonization conservation in a 10% CO2 and
15% CO2 concentration environment, the water-resistance test resulted in a change in the
appearance of the specimens, similar to that observed in the 5% CO2 concentration envi-
ronment, with relatively uniform surface color and no obvious traces of water absorption.
This is because, under a high CO2 concentration and an intensive carbonation environment,
sodium methylsilicate can fully react with water and CO2 to generate a polysiloxane film
that can enhance the water resistance of the specimen. The specific chemical reaction is as
shown in Equations (1) and (2). Moreover, it can be initially concluded that the increasing
CO2 concentration is beneficial for improving the water-resistance effect of the imitation
site soil.

2CH3Si(OH)2Ona + CO2 + H2O→ 2[CH3Si(OH)3] + Na2CO3 (1)

n[CH3Si(OH)3]→ [CH3Si(OH)3/2]n + 3/2 H2O (2)
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Figure 3. Water-resistance performance test ((a): pure soil; (b): 0.03%; (c): 5%; (d): 10%; (e): 15%).

The effect of water absorption with time on the water absorption rate of the specimens
is shown in Figure 4. The water absorption rates of the specimens at 0.03%, 5%, 10%, and
15% CO2 concentrations were 22.59%, 5.92%, 5.49%, and 5.37%, respectively, after 24 h
of specimen water absorption. The water absorption rates of the specimens maintained
at 5%, 10%, and 15% CO2 concentrations were similar and decreased by 16.67%, 17.1%,
and 17.22%, respectively, compared with those maintained at 0.03% CO2 concentration.
This indicates that the water absorption of the imitation site soil does not decrease linearly
with the increase in the CO2 concentration, and the water resistance of the imitation site
soil can be improved by carbonization under 5% CO2 concentration. Maintaining proper
carbonation can rapidly improve the water resistance of the imitation site soil and prevent
the imitation site soil from collapsing when it is washed by rain.
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Figure 4. Effect of water absorption time on the water absorption rate of the specimen conditions.

The effect of time conservation on the water absorption of the specimens is shown in
Figure 5. The water absorption of the specimens at 5%, 10%, and 15% CO2 concentrations
under the same maintenance time was reduced to a greater extent than that of the specimens
at 0.03% CO2 concentration. The water absorption of the specimens maintained at 5%, 10%,
and 15% CO2 concentrations did not differ much under the same maintenance time. The
imitation site soil could achieve better water resistance after 12 h of maintenance at 5% CO2
concentration because the addition of sodium methylsilicate forms a polysiloxane film on
the surface of the specimen [23], and the imitation site soil has a strong water repellency. In
addition, the CO2 concentration (5%, 10%, and 15%) had little effect on the water absorption
of the specimens when the specimens were cured for more than 48 h. This may be because
the carbonation reaction of sodium methylsilicate is completed after the specimens are
maintained for 48 h at a 5% CO2 concentration. The increase in the CO2 concentration at
this point has a limited influence on the water-resistance performance.
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3.2. Effect of Carbonation on the Unconfined Compressive Strength of the Imitation Earthen
Archaeological Site

The effect of curing time on the UCS of the specimens is shown in Figure 6. The UCS
of the imitation site soil gradually increased with the increase of the CO2 concentration in
the conservation environment. After the specimens were maintained in the carbonation
chamber at 0.03%, 5%, 10%, and 15% CO2 concentrations for 120 h, the UCS of the imitation
site soil increased by 34.24%, 131.56%, 211.93%, and 329.29%, respectively, as compared
to that of the plain soil. The UCS of the specimens at 5%, 10%, and 15% CO2 concentra-
tions increased by 72.22%, 131.19%, and 219.27%, respectively, as compared to that of the
specimens at 0.03% CO2 concentration.
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Figure 6. Stress–strain curves of the simulated site soil under different CO2 concentration curing
conditions.

The UCS increased with the increase in the curing time under the same CO2 concentra-
tion environment. Figure 7a–c indicates that the compressive strength increased by 16.19%,
34.27%, and 31.4% for the specimens maintained for 12 h as compared to those maintained
for 6 h under 5%, 10%, and 15% CO2 concentration environments. The compressive strength
of the 24 h-cured specimen increased by 44.21%, 37.68%, and 6.7%, respectively, compared
with the 12-h specimen. The compressive strength of the cured 48-h specimen increased
by 4.9%, 11.36%, and 9.49%, respectively, compared with the cured 24-h specimen. The
compressive strength of the cured 72 h specimen increased by 3.59%, 3.58%, and 20.38%,
respectively, compared with the cured 48-h specimen and 11.94%, 4.27%, and 6.09% for
the specimens maintained for 120 h as compared to those maintained for 72 h. It can be
seen that the UCS growth rate tends to increase and then decrease with the increase in the
curing time. Moreover, the UCS growth rate is the highest at 24 h of curing time and then
starts to decrease slowly.
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Figure 7. (a) Stress–strain curve of the simulated site soil with curing under 5% CO2 concentration.
(b) Stress–strain curve of the simulated site soil with curing under 10% CO2 concentration. (c) Stress–
strain curve of the simulated site soil with curing under 15% CO2 concentration.
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Lime and sodium methylsilicate can effectively improve the compressive strength of
powdered clay, and CO2 concentration and curing time have important effects on the UCS
of the imitation site soil. A sufficient amount of CO2 accelerates the carbonation reaction
inside the imitation site soil, and CaCO3 precipitation and Na2CO3 can be produced rapidly.
The carbonate fills between soil particles, thereby enhancing the inter-particle bonding and
increasing the strength of the imitation site soil. This law provides an important basis for
optimizing the restoration process of the imitation site soil.

3.3. Effect of Carbonation on pH of Imitation Earthen Archaeological Site

Figure 8 shows the effect of the curing time on the pH of the specimens. With increasing
curing time and CO2 concentration, the pH of the specimens gradually decreased and
stabilized. Moreover, at the same CO2 concentration, the UCS and pH of the specimens
exhibited opposite trends with the increase in the curing time, that is, the smaller the
pH value, the larger the corresponding UCS. This was due to the conversion of strongly
alkaline Ca(OH)2 to neutral CaCO3 deposition, during which the pH of the imitation site
soil gradually decreased. Changes in pH values can reflect the state of CaCO3 deposition
from the side and provide a basis for analyzing its mechanical properties [24]. The strength
of the imitation site soil in the actual project can be preliminarily assessed from its pH value.
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Figure 8. Relationship between pH value, unconfined compressive strength, and curing time.

Under 5%, 10%, and 15% CO2 concentrations, the pH of the imitation site soil decreased
significantly before 24 h and 12 h, and the growth rate of the compressive strength was also
larger than that of other maintenance periods. However, after 24 h and 12 h, the pH of the
imitation site soil and the growth rate of compressive strength decreased slowly. When
Ca(OH)2 was partially converted to CaCO3 in the imitation site soil, the pH value of the
imitation site soil was stabilized. This shows that increasing the CO2 concentration in the
maintenance environment of the imitation site soil can effectively improve the carbonation
reaction and the compressive strength of the imitation site soil. Moreover, it can accelerate
the stabilization of the pH value of the soil, thereby improving the stability of the imitation
site soil.



Materials 2022, 15, 2958 9 of 11

3.4. Microscopic SEM Analysis

To investigate the microscopic changes inside the mock site soils, the internal particle
morphology and pore characteristics of the imitation site soil samples at different magnifi-
cations were analyzed using SEM. Soil specimens were analyzed in the pure soil group.
Moreover, the soil specimens were maintained at 0.03% and 15% CO2 for 120 h to further
investigate the mechanism of improving the water-resistant performance and unconfined
compressive strength of the imitation site soil under different maintenance conditions.

Figure 9a–c shows that the internal porosity of plain soil was large, the arrangement of
the soil particles was loose, and the particle grading was poor, resulting in weak adhesion
between particles and that on the surface of soil particles. It can be seen from group
6 samples in Figure 10a–c that lime, sodium methylsilicate, and reaction products filled
the gap between soil particles, improved the integrity of the soil skeleton, densified the
filling between soil particles, enhanced the particle gradation, improved the adhesion
between particles, reduced the porosity of the test sample, and effectively improved the
disintegration resistance and unconfined compressive strength of the samples. From the
24 sets of samples in Figure 11a–c, it can be seen that the gap between the soil particles
was small. Silicate gel particles in sodium silicate filled the pores of silty clay. The Ca
(OH)2 and CaCO3 crystals generated from lime undergo a chemical reaction in the soil
to make the dispersed soil particles cohesive into a whole. The deposition of CaCO3
can enhance cementation between soil particles, to improve the overall stability of the
earthen archaeological site. The site imitation earthen archaeological site cured at 15% CO2
concentration can quickly generate CaCO3 crystals in 12 h curing time, further improving
the disintegration resistance and unconfined compressive strength of the site imitation
earthen archaeological site.
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4. Conclusions

In this study, the Kaifeng City Wall was selected as the research object, and lime
and sodium methylsilicate were selected as enhanced materials to prepare the Kaifeng
City Wall imitation earthen archaeological site. The properties of the imitation earthen
archaeological site were analyzed with test indices such as the specimen water absorption
rate, compressive strength, microanalysis, and pH change of the imitation site soil. The
following results were obtained:

1. The effect of carbonization maintenance on improving the water resistance of the
imitation site soil was significant. Moreover, the imitation site soil can achieve better
water resistance through carbonization maintenance under 5% CO2 concentration
with the same maintenance time.

2. Carbonation curing has an obvious effect on improving the compressive strength of
imitation earthen archaeological sites. The compressive strength of the samples cured
in different CO2 concentration environments increased with the increase in CO2 con-
centration. Under the same CO2 concentration environment, the compressive strength
increased with increasing curing time. The growth rate of the unconfined compressive
strength was large with the curing time of 24 h, and then it decreased slowly.

3. Under the same curing conditions, the pH value of the imitation earthen archaeo-
logical site first decreased with increasing curing time and then gradually stabilized.
Under the same carbonization curing time, the pH value of the imitation earthen
archaeological site decreased with increasing CO2 concentration. The compressive
strength showed a negative correlation with the pH value, that is, the smaller the
pH value, the greater was the corresponding compressive strength. The interior of
the soil sample was observed through SEM, which showed that the improved soil
was densely filled among soil particles, the particle gradation was improved, and
the adhesion between the particles was good. Moreover, we found that the porosity
of the soil sample was reduced, the voids were less and dense, and CaCO3 precip-
itates were formed, which effectively improved the overall stability of the earthen
archaeological site.

Increasing the CO2 concentration in the maintenance environment can make the
carbonation reaction of the imitation earthen archaeological site uniform and rapid, promote
CaCO3 precipitation, and effectively improve the specimen water absorption rate and
compressive strength of the imitation site soil. Moreover, it can enhance the overall stability
of the imitation earthen archaeological site.
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