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Abstract: The integration of electronic components in/onto conductive textile yarns without com-
promising textile qualities such as flexibility, conformability, heat and moisture transfer, and wash
resistance is essential to ensuring acceptance of electronic textiles. One solution is creating flexible
and stretchable conductive yarns that contain tiny surface-mounted electronic elements embedded at
the fiber level. The purpose of this work was to manufacture and subsequently evaluate the physical
features and electromechanical properties of stainless steel yarn with light-emitting surface mounted
devices (SMDs) embedded in it. The SMDs were successfully integrated into a conductive stainless
steel yarn (SS) by inserting crimp beads and creating a bond through hot air soldering machines,
resulting in what we call an E-yarn. The relationship curves between gauge length and electrical
resistance, and the relationship curves between conductive yarn elongation and electrical resistance,
were explored experimentally. The results of the analysis demonstrated that E-yarn had a lower
tensile strength than the original electrically-conductive SS yarn. The effects of the washing cycle on
the conductivity of the E-yarn were also investigated and studied. The results showed that E-yarns
encapsulated at the solder pad by heat shrink tube still functioned well after ten machine wash cycles,
after which they degraded greatly.

Keywords: smart textile; wearable textile; conductive yarn; E-yarn; surface mounted devices; light
emitting diode; e-textile

1. Introduction
1.1. Smart Textile

Smart textiles are a new generation of textile that play critical roles in a wide range
of technical applications. Smart and intelligent textiles refer to a new generation of fibers,
fabrics, and materials that can detect and react to changes in the environment, such as
mechanical, chemical, thermal, magnetic, electrical, and optical changes, in a predetermined
way [1–3]. For practical appliances, smart textiles have five purposes. They can operate as
sensors, data processing elements, actuators, power storage devices, and communication
devices [4].

Smart textiles can be constructed in numerous forms. Most commonly, smart textiles
have been created in the form of electronic textiles (e-textiles) [5]. E-textiles are textile yarns
or textile fabrics in which electronics and circuits are implanted. The oldest technique for
embedding conductive materials into a textile substrate to form conductive fiber networks
or circuits is to incorporate tiny conductive metals, e.g., by twisting them into the textile
yarns [6]. However, thin metals cannot withstand abrasion, especially during laundry
cycles, so more solutions that are robust are required.

Integration of electrical components such as LEDs, resistors, thermistors, capacitors,
and inductors on or in conductive fabrics is a major application area of wearable e-textiles
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and has been extensively researched in recent decades [7]. For the integration, it is necessary
to construct reliable textile-based transmission tracks during the first phase of the e-textile
structure construction. Researchers have tried several mechanisms of interconnection of
electronic device with textile substrates, as discussed in the following section.

1.2. Methods of Integration

Several researchers have conducted studies on joining methods for electrical com-
ponents and textile fabrics using various techniques, by highlighting their merits and
drawbacks. These techniques included mechanical interconnection, stitching and sewing,
embroidering, soldering and adhesives [8,9].

1.2.1. Mechanical Interconnection

Various methods of mechanical interconnection of electronics and textiles have been
used, such as snapper plugs, zippers, hook and loop connectors, and magnetic connec-
tors [10]. These either use rigid parts or are not suitable for many connections due to
their bulk or weight, thereby becoming burdensome. Furthermore, due to the reduced
dimensional rigidity of the components, the freedom of motion by a fabric substrate is
restricted [11].

1.2.2. Sewing and Embroidery

Functional smart textiles have been developed by embedding SMDs using a Brother
PR-650e embroidery machine [12]. The results showed that failure occurred at the connec-
tion point between the stitched thread and the SMD, which resulted in poor performance
of the product. Researchers have effectively integrated SMD onto a textile fabric in the
form of bendable electronic sheets in sequin [13]. In addition, stitching has been used to
attach SMDs onto a fabric substrate [14]. However, the uninsulated conductive thread was
susceptible to corrosion during washing, and subsequently the added plastic insulation
base altered the material’s feel. Furthermore, the LEDs were prone to breaking off during
twisting. In addition to stitching, subtractive technologies and 3D printing have been used
to make flexible and functional sequins for handheld embroidery textile applications [15].
Electronic sequins can be embroidered or stitched onto textile fabrics with electrically
conductive thread. A conductive thread, however, is susceptible to mechanical abrasion.

1.2.3. Adhesives

Electronic components have been attached onto a textile circuit with a non-conductive
glue using pressure force to transfer the glues and make a secure mechanical bond and
electrical connection. The thermoplastic adhesive adhered the electronics to the fabric by
applying pressure and heat [16]. Li and Wong [17] worked with conductive glues to replace
solder in electronic packaging applications. However, this type of technology is not widely
available and has a number of drawbacks, including poorer electrical conductivity, little
conductivity fatigue resistance, and a limited lifespan.

3D Printing

3D printing has also been used to make electrical and mechanical contacts between
SMD electronic parts and textiles [18]. However, the contact resistance between 3D-printed
conductive tracks and conductive yarns was too high for practical usage and should
be lowered. Furthermore, the contact between the 3D printed area and the electronic
components that were afterwards inserted was still not satisfactory.

1.2.4. Soldering

Buechley and Eisenberg [19] studied the technique of integrating fabric and PCBs via
soldering using silver crimping bead attachments onto the terminals of surface-mounted
LEDs with lead-free solder. However, needs further processing steps are needed for the LED
sequins before they can be sewn onto the textile fabric with conductive thread. The crimp
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beads can be soldered to the SMD perpendicularly, allowing a thread to move through it
and be crimped. In addition, the interconnection of electronic components with a smart
textile has been done using pulsed laser soldering techniques [20]. The results showed that
the textile-integrated, varnish-insulated copper strings had successful contacts. However,
the nearby polyester knitted fabric was heated and melted. From this, it can be seen that
the interconnection of electronic devices and textile substrates, especially textile fabrics,
can be successfully performed. However, the integration still suffers from inconsistencies
between smooth, elastic, pliable textile fabrics and stiff electronic components, particularly
because sequins are already larger than the pure SMD. This has a significant impact on the
final design and properties of the textile fabric.

In order to accomplish higher degrees of incorporation and user comfort, scholars
have developed and studied stretchable and bendable electronic parts for smart textile
applications [21]. In addition, the development of E-yarns by integrating miniaturized
electronics into textile fibers or yarns has also been carried out. E-yarn with integrated
electrical components can be used as a building block for smart textiles, allowing for
the creation of electronically functional wearable textiles, for instance, wearable sensors,
wearable heaters, and wearable color changing displays [22]. The difficulty with these is
the correct positioning of the E-yarn so that the component is in the correct position, as
the component is present in the yarn before the yarn is placed in the circuit, as opposed to
the methods presented which form the circuit first and then attach a component at each
necessary position.

1.3. Integration of Electronics at Yarn Level

A recent development by Rein et al. [23] developed LEDs integrated into copper metal-
lic wires or high-melting-temperature tungsten during the extrusion process of drawing a
fiber. Due to the impossibility of extracting the filaments quickly after extrusion without
destroying the copper wire connections, the extrusion technique produces a yarn with low
tensile strength [24]. This has an impact on the copper wire’s capacity to be processed in
normal textile manufacturing procedures. Moreover, it is limited to conductive materials
for co-drawing, and it is also limited to electronic devices with two terminals. This will
limit the number of electronic devices that can be used and the functionality of E-yarn.

A method for embedding SMDs on 2 mm wide flexible plastic strips has been devised
by the ETH Zurich wearable computing laboratory [25,26]. In the weft direction, the
components were weaved into a cloth. However, the degree of bending of the strips was
limited due to the use of a typical bare die, and the strips were not ideal for knitting or
embroidery. Combinations of electronics on stretchy plastic strips with textiles, during the
weaving process, have also been investigated.

The E-thread® [27] was developed by the PASTA project, in which the die was embed-
ded into two conductive wires and the die and interconnects were masked with a fibrous
blanket. This E-thread® was not appropriate for washing, and the chips were not enclosed.
Only two-pin electronic devices could be used in the E-Thread® manufacturing, and this
limited the range of electronic devices and thus the functions that could be incorporated.

An E-yarn was developed consisting of a conductive core of multi-stranded copper
wire to which semiconductor dies were attached by direct soldering [28]. The E-yarn was
then covered in a mastic micro-pod, which was successively surrounded by a textile casing
that also protected the copper wires. Due to their copper conductors, they either were not
bent at a 90◦ angle or had a limited number of bending cycles [29]. In turn, the thickness of
the sealing material led to an increase in the diameter of the E-yarn. Large yarn diameters
reduce the comfort of the textile. They can also hinder moisture and heat transfer, which
are critical performance properties [30].

The development and electro-mechanical characterization of e-conductive yarns are
important for their subsequent applications in wearable e-textiles [31,32]. The electrical re-
sistance of a conductive yarn is a critical design factor for E-yarns [33]. Besides investigating
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their electro-conductive properties, there is a need to investigate their electro-mechanical
behavior for different applications of smart textiles [34,35].

In e-textile, low linear resistance E-yarns are used to transfer electrical signals. How-
ever, these yarns are subjected to significant strains during production or usage, which can
lead to conductive track failure. Therefore, for the design and fabrication of safe and reliable
e-textiles, electrically conductive textiles made from conductive yarns require thorough
characterizations of their properties. For this reason, the physical and electromechanical
behavior of the E-yarn should be investigated.

The physical and mechanical properties (tensile strength and elongation) and electrical
properties of conductive textile yarns were studied in [36,37]. Furthermore, the elec-
tromechanical properties of textile structures for wearable sensors made of silver-coated
conductive Statex® yarn were also studied [38,39].

Overall, the research done so far is limited, and therefore, there are inadequate data
on the electrical and electromechanical analyses of E-yarns, especially flexible, conductive
yarns with SMD light emitting diode (LED) electronics embedded, which are more complex
components to characterize than resistors.

The purpose of this study was to develop a functional SMD LED-embedded E-yarn
using commercially available stainless steel conductive yarn and miniature SMDs. Hot air
soldering methods were used to establish the integration between each micro-SMD and
the stainless steel yarn. Afterward, the features, physical and electromechanical properties
of the E-yarn were investigated. The resulting E-yarn can be used for fashion, safety
equipment or light treatment garments.

2. Materials and Methods
2.1. Materials

In this experiment, a commercially available BEKINOX, VN.12.2.2.175 stainless steel
(SS) multi filament, 2/1 ply, 555 Tex conductive yarn manufactured by the bundle drawing
process was used. These conductive threads were purchased from BEKAERT (Belgium)
and were halogen free, flexible, durable, and corrosion resistant. They can be easily woven,
knitted, sewn, or embroidered. In addition, white SMD 8000 K (Assembly chip DC3 3.4 V,
150 mA) super bright LEDs (light emitting diodes) with dimensions 1.6 × 1.2 × 2 mm
(L × W × D) were used. The selection of the SMD type was based on the stainless
steel conductive yarn’s properties, such as fineness, flexibility, low weight, and relatively
low cost. For assembling purposes, 1.5 mm cylindrical silver crimp beads were used.
Furthermore, a 2 mm heat shrink tube served to insulate the connection point of the SMD
and the stainless steel yarn, as shown in Figure 1.
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Figure 1. Image of stainless steel conductive yarn (A), SMD LED components (B), silver crimp beads (C),
and heat shrink tube (D).

2.2. Methods
Development Process of Stainless Steel Yarn with Embedded SMD Components

The SMD electronic components were selected to be integrated into stainless steel
conductive thread. For connecting the SMD with a SS conductive thread, a soldering
method was applied. However, direct soldering of stainless steel yarn is difficult due to
the existence of a thick passive oxide (Cr2O3) film that blocks the melted solder paste from
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sticking to the surface of the SS textile thread [40]. Therefore, other additional alternative
techniques of direct soldering were required.

A unique integration method was developed. First, a surface preparation of the
stainless-steel yarn was performed. The tips of the SS conductive yarn were heated via
50 ◦C hot air for 2 min and a small drop of 85% concentrated H3PO4 paste (phosphoric
acid-based paste) was applied. The surface preparation was used to polish the thick oxide
layer at the surface of SS thread. In addition, it helps with activating the SS thread in order
to connect and stick them together for the next step. A proper connection of the SMD
and conductive SS yarn with the 1.5 mm silver crimp beads was performed by applying
a mechanical force by using pliers on the bead after inserting the SS tip. Furthermore,
the final integration of the SMD into the stainless steel conductive thread was done by
using a four-in-one 909 D hot air gun soldering rework station, immediately after cleaning.
Thereafter, to create a protective layer on the solder pad, a 1.5 mm heat shrink tube was
transplanted over at the connection joints. The steps used to create the E-yarn are shown in
Figure 2.
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Figure 2. Steps to perform soldering.

The soldering steps in Figure 2:

A. Two pieces of 15 cm stainless steel yarn to be connected at both ends into crimp
beads were cut.

B. The tip of the stainless steel thread was bent to form a loop, which was inserted into
the 1.5 mm cylindrical crimp beads. The loop at the tip improved the connection in
the crimp bead.

C. The crimp bead was pressed securely by using flat nose pliers, to flatten and hold
the yarn firmly.

D. The terminals of the SMDs were connected to the tip of flat crimp beads by adhesive tape.
E. Solder paste was applied on the connection point of the SMD and crimp beads.
F. Controlled temperature was applied with hot air onto the soldering paste, which

melted without damaging the component, thereby connecting the crimp beads to the
pads of the SMD.

G. As an optional extra step, a 2 mm heat shrink tube was placed over the joints, and hot
air was applied to shrink them and create an insulating layer over the solder joints.

2.3. Experimental Setup
2.3.1. Measurement of the Linear Electrical Resistance of the SS Conductive Yarn

The electrical properties of SS conductive yarn samples were determined by measure-
ment of current–voltage curves. The length-dependent electrical resistivity of a sample was
measured with a four-point conductivity measurement probe and evaluated at variable



Materials 2022, 15, 2892 6 of 17

lengths of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5 m with 10 repeats. For each
specimen, the average was taken for analysis. A standardized method for conductivity
measurements was performed according to the AATCC TM84 [34] test standard by using
both digital multimeter and Burster clamps four-point resistance measuring, as shown in
Figure 3.
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2.3.2. Measurement of the Stress-Dependent Electrical Resistance of SS Conductive Yarn

Investigating the electrical resistance of the conductive textile thread under load is an
essential factor for the applications where the smart textile is exposed to stress and bending.
The electrical resistance associated with extension under tensile stress at room tempera-
ture was examined using the four-point probe technique. The stress-dependent electrical
resistance of the stainless steel yarn and SMD embedded E-yarn was investigated using a
Mesdan universal strength tester machine under the guidelines of ISO, ISO 2062:2009 [41],
with 200 mm gauge length. A pretension 2N force was applied with a loading speed
of 20 mm/min. The conductive yarn was strained in its longitudinal direction, and the
measurement of the stress-based electrical resistance of the conductive thread was done
by attaching the electrodes of the multimeter at both terminals of the SS conductive yarn
specimen. Five samples were measured, and the average resistance was recorded.

2.3.3. Measurements of Total Electrical Resistance of E-Yarn

An LED circuit, commonly called an LED driver, is an electronic circuit that supplies
power to a light emitting diode (LED). This circuit must carry adequate current to turn on
the LED to the appropriate brightness while also preventing the current from damaging the
LED. With burster clamps, four-probe conductivity measurements were used to determine
the overall electrical resistance of the E-yarn. The resistance was tested on a 30 cm stretch of
E-yarn with one SMD implanted every 15 cm. The current and voltage flows in LED circuits
do not have a linear relationship. They cannot be modeled as governed by Kirchhoff’s second
law of the association between the voltage drop across the loop. However, the resistance of
the LED can be expressed using a piecewise linear model [42]. Figure 4 depicts the voltage
drop across each node in the circuit, and the voltage drop can be determined using Equation
(1). Furthermore, the overall resistance of the SMD embedded E-yarn was a function of the
conductive yarn resistance, solder connector resistances, and SMD resistor resistances.

VS = VSSL + VLC + VLED + VRC + VSSRorVS = IRSSL + IRLC + VLED + IRRC ++IRSSR, (1)

where Vsource, denotes voltage source; VSSL and VSSR is the voltage drop in left and right
conductive yarns, respectively; VLC and VRC are the voltage drop at left and right connec-
tors; and VLED represents the forward voltage drope at the SMD LED. Furthermore, I is the
current flow in the circuit, RSSL denotes the resistance of the left conductive yarn. RLC is
the resistance of left solder pad connector, RLED, is the approximate resistance of the LED
at a specific input voltage and forward current, and RSSR is the electrical resistance of the
right conductive yarn.
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The LED characteristic curve was approximated as a series of linear segments, using a
range of current flows in the circuit set with a voltage source. This enabled us to model the
LED as a resistor with a forward voltage (V) and forward current (I), and utilize Ohm’s law
to obtain an LED as resistor, as shown in Figure 4. We have:

RLED(ILED) =
VLED

ILED
, (2)

where VLED denotes the forward voltage drop at SMD LED and ILED represents the current
in the circuit corresponding to this voltage drop.

As a result, the total resistance of the SMD integrated E-yarn is a function of the
current and depends further on the resistance of the conductive yarn and resistance of the
connectors. The total resistance of the SMD LED-embedded E-yarn was computed via
Equation (3).

RT = RSSL + RLC + RLED + RRC + RSSR and RSSL + RLC + RRC + RSSR=
(Vsource − VLED)

ILED
, (3)

where this last expression is a constant, independent of the current or applied source
voltage Vsource.

2.3.4. Measurements of the Power of SS Conductive Yarn and E-Yarn

In addition to electrical resistance, power is a primary purpose of transmission lines
in wearable electronics. Since the SS conductive yarn acted as a resistor in the circuit, as
shown in Figure 4, the power dissipated at the conductive threads and also at the SMD LED
are important factors in Joule heating. The output heat power (W) produced by a conductor
material is proportional to the product of its resistance R (Ω) and the square of its direct
current I, according to Lenz–Joule law. The experiment was verified by applying a variable
voltage to the two ends of the SS conductive thread and the E-yarn using a four-point probe
clamping device with an EL301R power supply source. The voltage drop between the two
ends was measured by a 0.001 V-accuracy multimeter. Afterwards, the resistance at each
node was calculated by using Equation (1). Five samples were examined with a variable
input voltage (Vsource), from 0 V to the registered failure of current flow in the circuit. For
the power, we have

P = I V, (4)

where P is power, I is the current flow in the circuit, and V is the voltage. The power in
each part of the circuit can be obtained. For the yarn and the contact points, this will be
dissipated as heat; for the LED it will be dissipated as heat and emitted light, with an
efficiency of 30% to 70%, depending of the type of LED and current applied.
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2.3.5. Effect of Washing

The samples were washed for up to 25 washing cycles in a domestic washing machine
with standard BS EN ISO 6330:2012 [43], to assess the usability and performance of the
SMD embedded E-yarn. The machine was packed with cotton polyester blended textiles in
addition to the conductive yarn and E-yarn samples to attain its standard weight of 2 kg.
After each wash cycle, the samples were dried at room temperature for 12 hr For each cycle,
three sample readings were taken, and the electrical resistance was determined by applying
3.0 V using the four-point probe. The change in resistance was computed using a resistance
ratio to determine a trend and the impacts of laundering on the resistance properties of
both the SS conductive yarn and the SMD embedded E-yarn:

CR% =
Rf − Ri

Ri
× 100 (5)

where Ri is the measured resistance of the SS conductive yarn or E-yarn before washing,
and Rf is the measured resistance after washing.

2.3.6. Measurement of Tensile Properties

The tensile strength of stainless steel conductive yarn and fabricated SMD integrated
E-yarns was measured using the Mesdan universal yarn strength tester. The tensile test
was carried out following the procedures of ISO: ISO 2062:2009 [44]. According to the
standard, the sample breaking time was achieved at the extension rate of 20 mm/min at
the constant rate of an elongation type machine. The maximum loading cell capacity used
was 500 N, along with a gauge length of 200 mm. Tensile tests were implemented on five
samples of SS conductive yarns and five samples of E-yarns. Finally, the comparison of
tensile characteristics, i.e., tensile strength, elongation, tenacity, and initial modulus, of the
conductive yarn and SMD embedded E-yarn was investigated and analyzed.

3. Results and Discussion
3.1. Electrical Conductivity

Regarding the electrical properties, the conductive yarn’s electrical resistance was
measured, and the resistance of the conductive yarn was derived from it, based on the
yarn’s length. Figure 5 depicts the relationship between yarn resistance and yarn gauge
length for individual samples at gauge lengths of 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
and 0.5 m measured using the four-point probe method. The nearly linear trend is clearly
visible, indicating that the stainless steel conductive thread had a uniform makeup with
nearly constant resistance per unit length.
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The gauge length has a direct impact on the resistance of conductive yarn [44]; that is,
the resistance is length-dependent. In Tables 1 and 2, the experimental results show that
the dependence can be approximated with a linear function, RSS(x) = 14.41 x − 0.028, with
x being the gauge length. The slope is the most important parameter for characterizing the
conductivity of the yarn. The p-value for the slope is < 0.001 (statistically significant), and
the p-value of the intercept is 0.989 (not significant). In this case, the correlation coefficient
of the curve is R2 = 0.99.

Table 1. ANOVA analysis of length vs. resistance of SS conductive yarn.

Source SS df MS No. obs. = 100

Model 433.47 1 435.076 Prob > F = 0.000
Residual 0.638 98 0.0065 R-squared = 0.99
Total 435.71 99 4.401 Root MSE = 0.081

Table 2. Regression analysis of length vs. resistance of SS conductive yarn.

Resistance Coef. Std. Err. t P > t [95% Conf. Interval]

Length 14.41 0.056 258.47 0.000 14.41 14.64
_cons −0.028 0.017 −0.01 0.989 −0.035 0.034

3.2. Stress-Dependent Electrical Resistivity of Stainless Steel Yarn

The measured electrical resistance and the quadratic fitting curve of the SS conductive
yarn under tensile force are shown in Figure 6.
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The effect of applying strain (relative elongation) on the electrical resistance of SS
conductive yarn is demonstrated in Figure 6. The electrical conductivity decreased with
increasing extension [45–49]. The results show that the electrical resistance of a 0.2 m
gauge length piece of SS was a quadratic increasing function of elongation, given by
RSS(x) = −0.021x2 + 0.195x + 2.85, with x being the extension, and with p-values of the
coefficients <0.001, as shown in Tables 3 and 4. It is clear that the electrical resistance of
samples increased when the cross-sectional yarn area decreased or the extended length
increased [32]. One would expect that the more aligned the structural elements (microfibrils)
are, the larger the free path would be for electron movement, and that different fibers would
have less contact resistances as they more firmly pressed upon one another, leading to
lower resistance, but this is not the case. Instead, increasing resistance was found, and this
trend was significant.
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Table 3. Regression analysis of extension vs. resistance of SS conductive yarn.

Value Standard Error t-Value Prob > |t|

B

Intercept 2.85 0.002 1660.46 5.5 × 10-60

B1 0.195 0.003 66.26 9.13 × 10-28

B2 −0.021 0.001 −19.76 6.29 × 10-16

Table 4. ANOVA analysis of extension vs. resistance of SS conductive yarn.

DF Sum of Squares Mean Square F Value Prob > F

B

Model 2 0.28823 0.14 17852.54 0.000

Error 23 1.868 × 10−4 8.07 × 10−6

Total 25 0.29

3.3. Electrical Characteristics of E-Yarn

The approximate circuit of E-yarn with input voltage VS and internal SMD LED
resistance RLED are illustrated in Figure 4. The resistances of stainless steel yarn, crimp
bead connecter, and SMDs are shown in a series configuration electrical circuit model in
Figure 4A. The electrical resistance of the E-yarn was a direct function of the resistance of
stainless steel conductive yarn, resistance of the crimp bead connector, and the resistances
of SMDs. However, the resistance of the SMD LED is not governed by Kirchhoff’s 2nd law.
The average overall electrical resistance of the left and right conductive yarn was 4.03 Ω
(from Figure 5). The average LED SMD resistance and the total resistance of the SMD LED
embed E-yarn measured at various input voltages beginning at 2.35 V and the forward
current of 0.02 A were computed based on Equations (2) and (3). These values are presented
in Table 5. The overall solder connector resistance was 0.277 Ω. These indicated that the
soldering process between the silver crimp beads and tips of SMD LED was performed
well, and there was not any deterioration found on the solder connection after the voltage
and current flow in the circuit due to heat deception by the LED SMD.

The characteristic I–V plot of the SMD LED-embedded E-yarn exhibits an oblique
line showing that a small forward voltage change may result in a large change in current,
as shown in Figure 7. The resistance of the SMD LED-embedded E-yarn was obtained
from the current–voltage characteristic graph. From the graph it can be observed that
if the forward voltage was less than 2.35 V, there was almost no flow of current and the
resistance of the E-yarn was very high (2.2 kOhm); therefore, the LED was unlit. Between
2.35 and 2.5 V, the LED started to conduct. With more than 2.5 V forward voltage, the
resistance of the E-yarn was completely reduced and the LED began to shine. From physical
observation, we obtained that as the input voltage and current increased, the brightness of
the LED increased. After 3.4 V forward voltage, the luminescence of the LED SMD light
was decreased and subsequently the LED SMD to became completely damaged. From the
results we obtained a yarn and connector resistance of 4.32 Ohm. The yarn length used
was 30 cm, so this corresponds to 4.043 Ohm. As a consequence, we can conclude that
the connector resistance of the SMD yarn was (RLC + RRC) 0.277 Ohm. This proves the
connection made the LED with the E-yarn was very good and independent of the current.
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Table 5. Total electrical resistance of a LED circuit with specific forward voltages (2.35–3.4V).

Source
Voltage (VS)

(mV)

LED SMD E-yarn

Forward
Current (I)

(mA)

Forward
LED Voltage

(mV)

LED SMD
Resistance

(Ω)

Forward
E-Yarn

Voltage (mV)

Total E-Yarn
Resistance

(Ω)

2350 1 2246.60 2246.60 2333 2333.00
2400 20 2296.60 114.83 2383 119.15
2450 30 2312.40 77.08 2442 81.40
2500 94 2080.92 22.14 2487 26.46
2550 94 2127.92 22.64 2534 26.96
2600 94 2184.92 23.25 2591 27.56
2650 94 2231.92 23.75 2638 28.06
2700 94 2276.92 24.23 2683 28.54
2750 94 2327.92 24.77 2734 29.09
2800 94 2378.92 25.31 2785 29.63
2850 94 2420.92 25.76 2827 30.07
2900 94 2469.92 26.28 2876 30.60
2950 94 2518.92 26.80 2925 31.12
3000 94 2558.92 27.23 2965 31.54
3050 94 2605.92 27.73 3012 32.04
3100 96 2645.28 27.56 3060 31.88
3150 98 2586.34 26.39 3009.7 30.71
3200 110 2665.80 24.24 3141 28.55
3250 123 2648.64 21.54 3180 25.85
3300 135 2655.80 19.68 3239 23.99
3350 149 2639.32 17.72 3283 22.03
3400 162 2629.16 16.23 3329 20.55
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3.4. Power of SS Conductive Yarn E-yarn

In addition to electrical resistance characterization, the performances of the conductive
thread and E-yarn were investigated in terms of power and electrical resistance change
as current levels increased. The performances of the SS conductive threads and SMD
LED-embedded E-yarn in terms of their mean maximum attainable power before failure
are shown in Figure 8A. They began to emit photons, which are small packets of visible
light, and heated up, as shown in Figure 8.
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Figure 8. Power of SMD LED and E-yarn with a variable input voltage (A), IR thermographic image
of conductive yarn (spot 1and spot 3) and brightness of LED SMD with 3.0 V (B).

The powers of the SS-conductive thread and E-yarn increased when the input voltage
source increased from 2.35 to 3.4 V. The SMD LED-embedded E-yarn was able to sustain a
power of 597.03 mW. These powers occurred due to the heat dissipation and light emission
at the SMD LED electronic component. However, the power contribution of SS conductive
yarn was negligible, as shown in Figure 8. The heat dissipation was recorded with an IR
thermographic camera from Figure 8B, showing that only the LED increased in temperature
after 10 sec of operation due to the SMD LED start to lit. However, the temperature profile
of the SS conductive yarn (i.e spot 1 and spot 3) was near to room temperature. These
indicated that, the heat generated by the SS conductive yarn relative to SMD component
was insignificant and then the temperature was constant. According to these results, these
manufactured E-yarns can be used for the development of wearable electronic textiles.

3.5. Effects of Washing on Electrical Conductivity

The heat shrink tube was inserted onto the solder pad and was used to encapsulate the
junction of the crimp beads and terminals of the SMDs. This was mainly to protect against
mechanical abrasions on the solder pad, which was next subjected to 25 wash and dry
cycles. The change in electrical resistance (CR%) was measured in all conductive stainless
steel yarns, the standard SMD embedded E-yarn, and the E-yarn with encapsulated SMD
junctions, after each periodical laundering cycle, as shown in Figure 9. The measuring of
resistance of the E-yarn was performed with 3.0 V source voltage. The electrical resistance
of the SS conductive yarns was much lower than that of the SMD LED-embedded E-yarn,
as only the SS conductive yarn was present, which has low resistance. The change in the
electrical resistance of the SS conductive yarn was not problematic, whereas the change in
resistance of the E-yarn was. After 25 cycles of washing the CR% of the SS conductive yarn
was 9.25%. As the initial resistance was low (see Figure 5), this had only a small influence
on the efficiency of a circuit made with SS conductive yarn.

Additionally, Figure 9 shows that the E-yarns without heat shrink had a rapid increase
in electrical resistance after 10 washes. All the samples were considered to have failed
after 20 wash cycles. There was a complete lack of continuity due to partial fractures and
breakages that occurred at or near the junctions between the connecting parts of the SMDs
and the crimp beads. This implies that the solder connection point structures were strongly
influenced by the mechanical action of the laundry [50]. Adding the heat shrink protection
improved the situation for the E-yarn. Breakage no longer occurred, and at 25 cycles, the
increase in resistance was 23.9%. In absolute terms, this is much higher than the SS yarn
degradation and problematic for the correct working of the E-yarn. The increase occurred
due to deterioration at the solder joints, leading to a forward voltage drop at the LED, and
the resistance of the E-yarn increased. As a consequence, for the same source voltage, after
repeated washing, the brightness of the LED dropped.
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Figure 9. Effects of washing on the electrical resistance.

In conclusion, once SMD LEDs are integrated, it is possible to wash the samples
10 times, with or without heat shrink protection. After this, the degradation at the joints
becomes too great, and the E-yarn should no longer be used.

3.6. Tensile Strength of SS Conductive Yarn and E-Yarn

The specific load extension curves obtained for SS conductive yarn and SMD LED-
embedded E-yarn samples are shown in Figure 10. Both the SS conductive yarn and E-yarn
followed Hooke’s law. Tensile tests were performed on five samples of conductive SS yarn
and five completed E-yarns containing one SMD with or without a heat shrink tube.
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Figure 10. Strength of stainless steel conductive yarn and SMD LED-embedded E-yarns.

Figure 10 shows that the conductive yarn and E-yarn acquired neither yield points
nor strain hardening behavior (i.e., they followed a sharp plastic curve till they broke).
This means that the ultimate tensile and breaking strengths of the used material were
the same. Due to the straightening of the SS conductive thread structure at the necking
point, the specific load extension curve steeply declined to a lower level before breakage.
In Figure 10, a line graph is given before the breaking strength part. The SS conductive
yarn, the E-yarn, and the heat shrink-encapsulated E-yarn were extended up to 3.9%, 2.9%
and 3.9% before break, respectively. The average breakage forces were found to be 65.66,
54.44, and 59.09 N, correspondingly. Such stress-extension curves are typical for high
performance fibers; they show high strength and low extensibility. The biggest difference
is in tensile strength can be observed in the graph. We obtained that the conductive yarn
had a tensile modulus of 75.57 cN/dtex, and the E-yarn without a heat shrink tube had a
maximum tensile modulus of 66.07 cN/dtex. The heat shrink-encapsulated E-yarn had a
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maximum tensile modulus of 66.02 cN/dtex. The average values of strength characteristics
of both stainless steel conductive yarn and LED-embedded E-yarn with and without a heat
shrink tube are described in Table 6.

Table 6. Strength characteristics of SS conductive yarn and E-yarn.

Material Modulus
(cN/dtex)

Maximum Load
(N)

Tenacity at Max
Load (cN/tex)

Tensile strain at
Max Load (%)

SS conductive yarn 75.57 65.66 11.9 3.8
E-yarn without heat

shrink tube 66.07 56.44 9.8 2.9

E-yarn with heat
shrink tube 66.02 59.09 10.1 3.9

Based on the results shown so far, further investigations were performed by using an
optical microscope, as shown in Figure 11. It is clear from Figure 11 that, during the tensile
strength test, the failures of the SMD-embedded E-yarns were due to the breakage at the
connection points between crimp beads and SMD terminals. The elongation at break of the
E-yarns was less than that of the conductive yarn due to the formation of weak points in the
solder joints between the terminals of SMDs and crimp beads. These weak points occurred
due to the partial fracturing of the terminal parts of SMDs. However, the fractures’ effect
on the pullout strength was considered to be very small. These weak points cannot hold
the tensile stress relative to SS conductive yarns. Therefore, the strengths of the conductive
SS yarn and the SMD E-yarn were significantly affected, though the resulting strengths
were still sufficiently high for use in most e-textile applications. The heat-shrink-tube yarns
gave better results that the pure E-yarn, but it should be noted that adding heat shrink
tubes reduces the bending properties of the yarn. As seen in the previous section, this helps
with washing resistance, but leads to a worse texture of the resulting yarn.
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3.7. Proof of Concept

The brightness of the SMD’s display is essential to determining appropriate applica-
tions for a wearable textile for the reason that the luminosity of the display is dependent on
this performance characteristic. In very bright situations, low-light displays are difficult to
distinguish. Figure 12A shows an actual image of the fabricated SMD-embedded E-yarn.
Three SMD-integrated stainless steel E-yarns were lit by supplying 7.68V DC input voltage
with 0.05A current, verifying that the E-yarn was functional, as shown in Figure 12 B. The
LEDs within the E-yarns provided great illumination. In addition, the fabricated E-yarn
showed constant light emission despite bending stress on the conductive yarn, with any
bending radius. This result shows that when compared to that of Kim et al. [46], the device
tolerated greater bending stress. This proof of concept and all the above results regarding
electrical conductivity and other E-yarn properties showed that the resulting E-yarn is
promising for flexible, wearable textile sensors and actuators in items that do not require
frequent washing.
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4. Conclusions

In this research work, the integration of light-emitting surface mounted devices into
stainless steel conductive thread with a combination of 1.5 mm crimp beads was performed.
The techniques for insertion of SMDs into SS conductive yarn involved using hot air
soldering method without damaging the SS conductive thread and the tiny SMDs. The
investigation of electro-mechanical characteristics of the selected conductive yarns was
performed. The influences of clamping gauge length and the strain of the conductive yarn
on the electrical properties were studied for both the conductive yarn and SMD-integrated
E-yarns. It is clear that as the clamping length increases, the resistance of the conductive
yarn increases. The dependence of electrical resistance on clamping length showed that the
SS conductive yarn has fairly linear behavior. According to the experimental data, the SS
conductive yarn was built in a uniform manner resulting in no irregularities structurally.
Furthermore, we presented data and findings on the effects of tensile strain on the electrical
resistance of SS conductive threads and SMD-embedded E-yarn. The analytical finding
showed that, due to the elastic deformation of the SS conductive yarn under strain, its
cross-section decreased and the electrical resistance grew proportionally. In addition,
the experimental results showed that breakage of all samples of E-yarn occurred at the
connection point between the SMD terminal and crimp beads. This occurred likely due to
poor mechanical bond formation during soldering process. All SMD-integrated E-yarns
remained functional after twenty cycles of machine washing. The E-yarn, on the other
hand, had a substantially greater failure rate before 20 washing cycles if its solder pad was
not enclosed by a heat shrink tube. E-yarns’ ability to be washed is critical to their future
use in the e-textile sector for wearable applications. This method enhanced the capacity to
create E-yarns needed for the development of prototype electronic textiles, but washing
resistance should be improved. One option might be using special washing techniques, but
this would make electronic textiles less consumer friendly.
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