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Abstract: The microstructure and mechanical properties of semisolid rheo-diecasting Al-xZn-2Mg-
1.5Cu alloys with different Zn contents were investigated by scanning electron microscopy (SEM), X-
ray diffraction (XRD), hardness testing (HV) and room temperature tensile testing. Results show that
the as-cast microstructure mainly consists of spherical α-Al and Mg(Al, Cu, Zn)2 phases. Furthermore,
a small amounts of Al7Cu2Fe phases were also detected along the grain boundary. Increasing the Zn
contents from 8–12%, the volume fraction of the Mg(Al, Cu, Zn)2 phases increases from 4.9–7.4%.
After solution heat treatment at 470 ◦C for 8 h, most of the Mg(Al, Cu, Zn)2 dissolves into the
α-Al matrix, while the Al7Cu2Fe phase keeps with remains. The yield strength linearly increases
from 482 ± 5 MPa of 8% Zn to 529 ± 5 MPa of 12% Zn. While, the ultimate strength of 10% Zn is
584 ± 2 MPa, which is higher than that of the other two alloys. Moreover, the average elongation
dramatically decreases from 13% for the 8% Zn alloy to 2% for the 12% Zn alloy.

Keywords: Al-Zn-Mg-Cu alloys; rheo-diecasting; microstructure; mechanical properties

1. Introduction

The Al-Zn-Mg-Cu alloys with high strength and toughness are widely used in the
aerospace industry and are usually manufactured by wrought technique which is more ex-
pensive than the traditional casting methods [1,2]. However, Al-Zn-Mg-Cu alloys prepared
by conventional casting methods are prone to form casting defects such as hot tearing and
shrinkage porosity which will make the tensile properties worse [3,4]. The semisolid metal
forming technology has many advantages and can directly cast Al-Zn-Mg-Cu wrought alu-
minum alloys [5,6]. The many advantages of semi-solid metal forming are due to its unique
microstructure, a portion of the liquid phase that solidifies first is globular grains and
suspended in the remaining liquid phase, which can be obtained by creating convection,
such as vibration [7]. Such microstructure is more uniform during the die filling process
than the fully liquid microstructure. Furthermore, there are better castability because the
solidification shrinkage is smaller than fully liquid state. As so far, some literatures have
reported the successful preparation of Al-Zn-Mg-Cu alloys by semi-solid metal forming
methods [8–14]. Al-Zn-Mg-Cu alloys are usually manufactured by plastic deformation
or rolling technique, and as-cast microstructure is not globular grains of the semi-solid
metal but dendritic grains. After plastic deformation of the alloys, fibrous grain structure
appeared and storage energy was generated, and recrystallization occurred in subsequent
heat treatment such as solution heat treatment. Therefore, the microstructures of Al-Zn-
Mg-Cu alloys prepared by the semi-solid metal forming technique and traditional plastic
deformation technique are quite different.
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The mechanical properties of Al-Zn-Mg-Cu alloys were mainly determined by the
contents of Zn, Mg and Cu elements and heat treatment. The ultra-high strength of Al-
Zn-Mg-Cu alloys was achieved by the precipitation strengthening mechanism [15,16]. The
precipitation sequence of Al-Zn-Mg-Cu alloy is as follows [17–22]:

GP Zone→ η′ → η (MgZn2)

GP Zone and η′ are transition phases before the formation of equilibrium phase MgZn2,
which are also mainly composed of the major alloy elements Zn and Mg. Liu et al. [23]
reported that in the T6 state, the volume fraction and number density of the precipitates
increased with increasing Zn content, and thus the mechanical properties of Al-Zn-Mg-Cu
alloys increased. Iwamura et al. [24] found that adding higher Zn element to Al-Zn-Mg-Cu
alloys has greater strengthening effect. Marlaud et al. [25] confirmed that Al-Zn-Mg-Cu
alloys with higher Zn content have higher hardness, which is related to the increase of
the volume fraction of precipitates. The increase of Zn content related to the increase of
volume fraction and number density of precipitates. In order to enhance the strength of the
Al-Zn-Mg-Cu alloys, the Zn content was gradually increased.

Mahathaninwong et al. [26] optimized the T6 heat treatment of the semisolid rheo-
casting 7075 Al alloy, which is different from the same alloy prepared by plastic deformation
method. The strength of the alloy in the T6 temper was then obtained, which was about
90 MPa lower than the wrought alloy target. Curle [27] prepared a semisolid rheo-diecasting
7075 alloy and obtained mechanical properties in T6 condition, which were not as high as
those of the wrought alloy goal. The heat treatment and mechanical properties of Al-Zn-
Mg-Cu alloys prepared by semisolid rheo-casting method and plastic deformation method
are obviously different.

As the difference in as-fabricated microstructures led to the differences in microstruc-
tures and mechanical properties in the subsequent processing, this paper hence aims to
investigate the evolution of microstructures and mechanical properties of Al-Zn-Mg-Cu al-
loys produced by semisolid rheo-diecasting process. Little study reported about the effects
of Zn content on the microstructure and mechanical properties of semisolid rheo-diecasting
Al-Zn-Mg-Cu alloys. In this study, we explored the influence of Zn content on microstruc-
ture and mechanical properties of semisolid rheo-diecasting Al-xZn-2Mg-1.5Cu alloys.

2. Materials and Methods

The experimental alloys were prepared with high-pure Al (99.99%), pure Zn (99.9%),
pure Mg (99.9%), Al-50Cu and Al-5Ti-B master alloys (all compositions are in wt.% unless
otherwise noted) supplied by the HeBei Lizhong Non-ferrous Metal Group Co., Ltd., Hebei,
China. The chemical composition of the studied alloys, calibrated by ICP-AES, was shown
in Table 1. The alloys were melted in a resistance furnace at 720 ◦C and degassed with
argon using a rotary impeller. The molten melt was poured into a crucible with an internal
diameter of 78 mm and a height of 210 mm at 650 ◦C. The semisolid slurry was prepared
by the Swirled Equilibrium Enthalpy Device (SEED, developed by Alcan, Canada) process
at an eccentric rotation speed of 180 rpm (swirling). The prepared semisolid slurry was
transferred to the Buhler 340-ton die-casting machine with a boost pressure of 95 MPa
and a filling speed of 0.2 m/s. The casting has a diameter of about 45 mm and a length of
100 mm. Subsequently, the as-cast samples were solution heat treatment at 470 ◦C for 8 h
(as-solution) and water quenched, then aging at 120 ◦C for different hours.

The microstructure observation and local chemical analysis of the unetched samples
were investigated using a scanning electron microscope (SEM, JSM-7610F-JOEL, Tokyo,
Japan) equipped with an Oxford energy-dispersive X-ray spectroscope (EDS, Aztec, Oxford
Instruments, Oxford, UK) working at an accelerating voltage of 20 kV. The information
of grain size and shape factor of the spherical α-Al and the volume fraction of the non-
equilibrium phases were accurately analyzed by an image processing and analysis software
(IPP, Image-Pro Plus 6.0 software developed by Media Cybernetics, Rockville, MD, USA).
The grain size was calculated as: d = (4 A/π)1/2(where A represents the area of a grain). The
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shape factor was calculated as: F = 4π A/P2 (where P represents the perimeter of a grain).
The X-ray diffraction (XRD) patterns of the samples were examined using the Bruker D8
Advance diffractometer (Bruker, Karlsruhe, Germany) operating at 40 kV and 40 mA with
Cu Kα radiation in the range of 10–90◦ at a scanning speed of 8◦/min. The microhardness
was measured by a Vickers-hardness tester (HV-30, Shanghai, China) according to the
Vicker hardness test standard (GB/T4340.1-1999). For each composition 5 tests were
performed and the average value has been calculated. Tensile testing was conducted at
room temperature on a tensile tester (E45.305, Shenzhen, China) with an initial strain rate
of 1.6 × 10−4 s−1. Dog-bone shaped tensile test bars with a gauge diameter of 5 mm and
gauge length of 25 mm were used in the tensile test.

Table 1. Nominal composition of the investigated alloys (in wt.%).

Alloys Zn Mg Cu Ti Fe Si Al

8 Zn alloy 8.22 2.04 1.49 0.094 0.012 0.018 Bal.
10 Zn alloy 10.21 2.01 1.48 0.077 0.011 0.0114 Bal.
12 Zn alloy 13.64 2.14 1.70 0.14 0.014 0.0123 Bal.

3. Results
3.1. As-Cast and As-Solution Microstructure

Figure 1 shows the as-cast microstructure of the alloys which mainly consists of
spherical α-Al instead of dendritic grain and white non-equilibrium phases on the grain
boundaries. The average grain size and shape factor statistics of α-Al were shown in
Figure 2a. It can be seen that the Zn content has little effect on the grain size and shape
factor of the alloys, which was about 65 µm and 0.75, respectively. During solidification,
the external conditions of the melt were the same and only the Zn content of the alloys
was different, so α-Al cannot be refined by increasing the degree of undercooling or
heterogeneous nucleation [28,29]. Figure 2b shows the statistical results of the volume
fraction of the non-equilibrium phases on the grain boundaries in the as-cast state. With the
increasing Zn content, the area fraction increases from 4.9% of 8 Zn, 5.4% of 10 Zn to 7.4%
of 12 Zn. The content of the Zn element increases, and the content of the non-equilibrium
phases precipitated during the solidification also increases.
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In order to dissolve the non-equilibrium phases into the α-Al matrix, so that the
nano-sized strengthening phase precipitated in α-Al matrix during aging, the as-cast alloys
were subjected to solution heat treatment at 470 ◦C for 8 h. The SEM images after solution
heat treatment were shown in Figure 3. Comparing with Figure 1, it can be seen that
most of the white non-equilibrium phases on the grain boundaries dissolves into the
α-Al matrix. Furthermore, the phases of as-cast and as-solution microstructures were
analyzed by XRD, and the results were shown in Figure 4. It is clearly seen that the as-
cast microstructure with different Zn contents mainly consists of α-Al and MgZn2. Many
earlier studies [30–35] reported that the different non-equilibrium phases of Al-Zn-Mg-Cu
alloys like MgZn2, Al2CuMg, Al2Mg3Zn3 and Al7Cu2Fe. The type of non-equilibrium
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phases is mainly determined by the Zn, Mg and Cu contents. It has been found that a
relatively higher Zn content with lower Cu content contribute to the formation of MgZn2
instead of Al2CuMg [36,37]. The Zn content of the studied alloys is relatively high and
the Cu content is only 1.5 wt.%, so the main non-equilibrium phases is MgZn2. Some
investigators have also reported that the phase is MgZn2 in alloys with higher Zn content
and lower Cu content [38,39]. In other words, the type of the non-equilibrium phases of
the as-cast alloys were not affected by the Zn content. After solution heat treatment, most
of the diffraction peaks of the MgZn2 phase disappears, indicating that most of the MgZn2
dissolves into the α-Al matrix. However, small amounts of diffraction peaks of MgZn2
phase were still detected, meaning that the MgZn2 did not completely dissolves into the
α-Al matrix. Combining with XRD and SEM microstructure characterization, the non-
equilibrium phases in the alloys were confirmed. SEM images of as-cast and as-solution
alloys were shown in Figure 5. The composition of the phases present in Figure 5 was
shown in Table 2. It can be seen that the atom ratio of Mg to the sum of Al, Cu and Zn is
about 1:2. Al and Cu replace Zn of binary η (MgZn2), which can be described as Mg(Al,
Cu, Zn)2 [40] and the composition of Mg(Al, Cu, Zn)2 has been found in Al-Zn-Mg-Cu
alloys [41]. The deep gray phase in the as-cast microstructure contains Cu and Fe, and the
composition is close to Al7Cu2Fe phase (spot 3 and 5 in Figure 5). It did not dissolve into
the α-Al matrix after solution heat treatment [31,32,35]. However, the content of Al7Cu2Fe
phase was very small, so there was no diffraction peaks were observed in Figure 4.
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Table 2. EDS results of selected constituent particles highlighted in Figure 5 (in at.%).

Point Al Zn Mg Cu Fe Closest Phase

1 56.97 18.04 18.92 6.06 - Mg(Al, Cu, Zn)2
2 64.36 16.67 14.63 4.34 - Mg(Al, Cu, Zn)2
3 65.19 13.16 8.07 9 4.57 Al7Cu2Fe
4 65.29 18.86 12.08 3.76 - Mg(Al, Cu, Zn)2
5 86.78 4.22 - 3.13 5.88 Al7Cu2Fe
6 87.83 3.32 3.07 5.79 - Mg(Al, Cu, Zn)2
7 90.58 2.17 2.65 3.18 1.42 Al7Cu2Fe
8 61.64 13.31 17.33 7.71 - Mg(Al, Cu, Zn)2
9 85.16 2.16 2.73 6.85 3.1 Al7Cu2Fe

10 81.68 6.37 2.7 9.26 - Mg(Al, Cu, Zn)2
11 78.33 1.29 1.84 12.27 6.26 Al7Cu2Fe
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3.2. Mechanical Properties

Figure 6 shows the change in hardness of the studied alloys aging at 120 ◦C for
different time, the first data point on each curve is the as-solution hardness. The as-solution
hardness value in the 8 Zn, 10 Zn and 12 Zn alloys was 69, 88 and 104 HV, respectively.
With the increase of Zn content, the supersaturation degree in the α-Al matrix increased
after solution heat treatment (470 ◦C 8 h). Due to the effect of solid solution strengthening,
the hardness increased with the increase of Zn content. It can be seen that the hardness
increases rapidly with time and reaches the maximum value at about 24 h (T6 state). This is
attributed to the gradual precipitation of GP zone and η′ (MgZn2) phase in the α-Al matrix,
which can effectively prevent the movement of dislocations [42–47]. As the Zn content
increases, the hardness of the alloys also increases during aging process. The increase of Zn
content increases the supersaturation degree of α-Al after solution heat treatment (470 ◦C
8 h), which leads to the precipitation of more GP zone and η′ (MgZn2) phase during aging
heat treatment [23,25]. Figure 7 illustrates the typical stress-strain curve of the studied
alloys in T6 state (470 ◦C 8 h + 120 ◦C 24 h). The yield strength linearly increases from
482 ± 5 MPa of the 8 Zn alloy to 529 ± 5 MPa of the 12 Zn alloy. While, the ultimate
strength of the 10 Zn alloy is 584 ± 2 MPa, which is higher than that of the other two alloys.
Moreover, the average elongation dramatically decreases from 13% for the 8 Zn alloy to
2% for the 12 Zn alloy. After aging heat treatment at 120 ◦C for 24 h, the precipitation
phases of Al-Zn-Mg-Cu alloy are mainly GP zone and η′ (MgZn2) phase [48,49]. When
the dislocation moves in the α-Al and encounters the precipitates, it is required to cut
the precipitates, which hinders the movement of the dislocation [50]. Therefore, the yield
strength of the alloys increases. The higher the Zn content in alloy, the more precipitation in
the T6 state alloys. From this analysis, the yield strength of the alloys was shown to increase
with the increasing Zn content. Al-Zn-Mg-Cu alloys increase the strength but reduce the
elongation by T6 treatment [51]. However, this yield strength is lower than the same Al-
Zn-Mg-Cu alloy prepared by the plastic deformation method [23,52]. Compared with the
Al-Zn-Mg-Cu alloys that underwent plastic deformation, the deformation strengthening
effect of the studied alloys is very small and thus the yield strength is lower. The 12 Zn
alloy contains the highest Zn content in the studied alloys, and the as-cast microstructure
contains the most Mg(Al, Cu, Zn)2 phases (as shown in Figure 2b). The three alloys
underwent the same solution heat treatment (470 ◦C 8 h), so the 12 Zn alloy may have more
non-equilibrium phases that did not dissolved into the α-Al matrix. These undissolved
Mg(Al, Cu, Zn)2 phases are the area of the stress concentration and promote the crack
initiation and propagation, which reduces not only the plasticity, but also the ultimate
strength of the alloys. Therefore, the tensile strength of 12 Zn alloy is slightly lower than
that of 10 Zn alloy.
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3.3. Fracture Morphology

Typical fracture morphology of the alloys under T6 state were shown in Figure 8. The
fracture surfaces of the three alloys have a “rock candy” appearance which is a typical
intergranular fracture. However, there are also a small amount of fine dimples, and the
proportion of dimples tends to decrease with higher Zn content. A larger number of
shear zones and fine dimples could be seen in the 8 Zn alloy (Figure 8d). Therefore, the
8 Zn alloy has the highest elongation. It is in good accordance with the experimental
results of Figure 7. As in the previous discussion, the precipitation phases of the studied
alloys under T6 state are mainly GP zone and η′ (MgZn2) phase, and dislocations can cut
through it when encountered in the slip process. It led to the stress concentration and final
intergranular fracture behavior [50]. In addition, the intragranular strength is enhanced by
the precipitation phases, which also contributes to intergranular fracture [53]. During the
tensile deformation process at room temperature, when the dislocation meets the coarse
precipitates, it will accumulate and form microcracks around the precipitates. As a result of
gliding, the microcracks gradually grow and connect with each other, eventually forming
transgranular dimples [50,54].
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4. Discussion

According to the results of the above microstructure observations, as the Zn content
increases from 8–12%, the volume fraction of the non-equilibrium phases Mg(Al, Cu, Zn)2 in
the as-cast alloys increase from 4.9–7.4% (Figure 2b). After solution heat treatment (470 ◦C
8 h), most of the non-equilibrium phases Mg(Al, Cu, Zn)2 of the three alloys dissolve into
the α-Al matrix (Figure 3), indicating that with the increase of Zn content, more major
elements (Zn, Mg and Cu) dissolve into the α-Al matrix, that is, the supersaturation in the
α-Al matrix is greater. In the T6 condition (120 ◦C 24 h), the aging precipitates in the studied
alloys are mainly GP zone and η′ (MgZn2) phase [48,49]. Therefore, when the dislocation
encounters the GP zone and the finer η′ phase during slipping, it has to cut through them to
continue moving, and then accumulate at the grain boundary. The dislocation cuts the GP
zone and the finer η′ phase can improve the strength of the alloys, which can be expressed
by the following formula [55]:

∆σ = c1fmrn

where c1, m and n are constant; f is the volume fraction of the precipitates, r is the radius of
the precipitates.

With the increase of Zn content, the volume fraction and number density of the pre-
cipitates increase [23,25], and according to the above formula, the yield strength increases
with the increase of Zn content. When the dislocations cut through the precipitates, they ag-
gregate at the grain boundaries, causing stress concentration and promoting intergranular
fracture [50]. However, when the dislocation encounters the coarse precipitation η′ phase
during slipping, it can only bypass it, which increases the resistance of the dislocation
movement, thereby improving the strength of the alloys. The strengthening effect can be
expressed by the following formula [56]:

∆σ = c2f1/2r−1

where c2 is constant; f is the volume fraction of the precipitates, r is the radius of the
precipitates.

When the dislocations bypass the precipitates, they will accumulate and form micro-
cracks around the precipitates, and then the microcracks grow and connect each other
to form transgranular dimples [50,54]. As discussed earlier, as the Zn content increases,
the supersaturation degree of the alloy increases, and thus the driving force for aging
precipitation also increases resulting in more coarse precipitates in the 8 Zn alloy. Therefore,
the number of dimples in the 8 Zn alloy is the largest indicating that the plasticity of the
alloy is the best (Figure 8). Furthermore, the strength and plasticity of materials have
always been in a contradictory relationship [57]. With the increase of the volume fraction
and number density of the precipitates, the resistance of dislocation motion becomes larger,
and the yield strength of the alloy increases. However, plastic deformation is a process
of dislocation multiplication and movement, and the resistance of dislocation movement
increases, making it difficult to continue plastic deformation, so the plasticity of the alloy
deteriorates. Therefore, when the Zn content is greater than 8%, the average elongation of
the alloy decreases sharply, from 13% of the 8 Zn alloy to 2% of the 12 Zn alloy. In this study,
the mechanical properties of the 8 Zn alloy are optimal, the yield strength is 482 ± 5 MPa,
the tensile strength is 564 ± 3 MPa, and the elongation is 13 ± 1%. When the Zn content is
8%, the Al-xZn-2Mg-1.5Cu alloy prepared by semisolid rheo-diecasting has the feasibility
of using.

5. Conclusions

In this paper, the effects of Zn content on the microstructure and tensile properties
of Al-xZn-2Mg-1.5Cu alloys prepared by semisolid rheo-diecasting were systematically
studied. The main results obtained from the experiments are as follows:

1. There are globular α-Al grains in the as-cast microstructure of three Al-xZn-2Mg-
1.5Cu alloys with different Zn contents prepared by semisolid rheo-diecasting, and
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the non-equilibrium phases on the grain boundary are mainly Mg(Al, Cu, Zn)2. As
the Zn content increases from 8% to 12%, the volume fraction of the Mg(Al, Cu, Zn)2
phase increases from 4.9% to 7.4%. After solution heat treatment (470 ◦C 8 h), most of
the non-equilibrium phases Mg(Al, Cu, Zn)2 of the studied alloys dissolve into the
α-Al matrix indicating that with the increase of Zn content, more elements dissolve
into the α-Al matrix, that is, the supersaturation degree of the α-Al increases.

2. In the T6 condition (120 ◦C 24 h), the yield strength of the alloy increases with
increasing Zn content, but the elongation decreases sharply, from 13 ± 1% for the 8 Zn
alloy to 2 ± 1% for the 12 Zn alloy.

3. The fracture surfaces of the studied alloys in the T6 state are “rock candy” appearance,
which is a typical intergranular fracture. In addition, the fracture surfaces of the three
alloys contain a small amount of fine dimples, and the 8 Zn alloy has the largest
number of dimples confirming its better plasticity.

Based on the research results of this paper, a kind of Al-Zn-Mg-Cu alloy composition
prepared by semisolid rheo-diecasting with good tensile properties, namely Al-8Zn-2Mg-
1.5Cu, was obtained. However, this tensile properties is lower than that of the same alloy
prepared by the plastic deformation method. This may be related to the fibrous grain
structure produced by the plastic deformation process, and the dislocation density after
deformation is higher than that of the alloys studied in this paper. In the future, employing
TEM analyze the precipitation of the Al-Zn-Mg-Cu alloys prepared by semisolid rheo-
diecasting during the aging process will be particularly important, such as the volume
fraction, size distribution and precipitation location etc.
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