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Abstract: Fiber-reinforced polymer (FRP) rebars are increasingly being used as an alternative to steel
rebars in reinforced concrete (RC) members due to their excellent corrosion resistance capability
and enhanced mechanical properties. Extensive research works have been performed in the last
two decades to develop predictive models, codes, and guidelines to estimate the axial load-carrying
capacity of FRP-RC columns. This study utilizes the power of artificial intelligence and develops an
alternative approach to predict the axial capacity of FRP-RC columns more accurately using data-
driven machine learning (ML) algorithms. A database of 117 tests of axially loaded FRP-RC columns
is collected from the literature. The geometric and material properties, column shape and slenderness
ratio, reinforcement details, and FRP types are used as the input variables, while the load-carrying
capacity is used as the output response to develop the ML models. Furthermore, the input-output
relationship of the ML model is explained through feature importance analysis and the SHapely
Additive exPlanations (SHAP) approach. Eight ML models, namely, Kernel Ridge Regression, Lasso
Regression, Support Vector Machine, Gradient Boosting Machine, Adaptive Boosting, Random Forest,
Categorical Gradient Boosting, and Extreme Gradient Boosting, are used in this study for capacity
prediction, and their relative performances are compared to identify the best-performing ML model.
Finally, predictive equations are proposed using the harmony search optimization and the model
interpretations obtained through the SHAP algorithm.

Keywords: fiber-reinforced polymer (FRP) rebar; reinforced concrete columns; axial capacity;
machine learning; ensemble learning; harmony search optimization

1. Introduction

Fiber-reinforced polymers (FRP) have gained popularity in construction as a viable
replacement for steel rebars in reinforced concrete (RC) members due to their corrosion
resistance, higher strength, lightweight, and ease of fabrication [1]. Extensive research
works have been carried out in the last two decades to investigate the performance of
the different types of FRP reinforcement [2–10]. Some of the studies in this area were
experimental in nature [11–19], whereas others aimed to develop more accurate, novel
methods of prediction for structural performance using various techniques of artificial
intelligence and optimization [20–25]. Murad et al. [23] used gene expression programming
on FRP-RC beams to predict flexural strength. As the variables affecting the flexural
strength, the beam cross-sectional dimensions, concrete compressive strength, the area, the
elasticity modulus, and the ultimate tensile strength of the FRP reinforcement were selected.
An experimental database consisting of 116 samples was used to develop the predictive
model. Protchenko et al. [24] used an experimental database composed of 102 samples
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to further improve the existing predictive models in the ACI 440.1R-15 code pertaining
to the flexural capacity of FRP-RC beams. While a relatively large amount of research in
the literature deals with the experimental study of FRP-RC columns, the literature that
deals with the applications of machine learning techniques for the predictive modeling
of these structures is somewhat limited. Raza et al. [22] developed a large database of
279 specimens of GFRP-RC columns to develop an improved, ANN-based predictive
model to estimate the axial capacity. Bakouregui et al. [25] applied the eXtreme Gradient
Boosting (XGBoost) algorithm for the prediction of the axial load-carrying capacity of
FRP-reinforced concrete columns. An experimental database consisting of 283 samples was
chosen to train the model. The model output was interpreted using the SHAP algorithm to
determine the effects of the various input parameters on the model output. In addition to
the load eccentricity, the gross cross-sectional area, concrete compressive strength, column
slenderness ratio, and the spacing between the transverse reinforcements were found to
have the greatest impact on the axial load-carrying capacity of FRP-RC columns.

The current study focuses on the concentric loading case. In addition to the XGBoost
algorithm, seven other ML algorithms are applied to a portion of the database compiled
by Bakouregui et al. [25], which consists of samples with concentric loading. One of the
objectives of the current study is to perform a systematic comparison between different
ensemble ML models to predict the compressive capacity of FRP-RC columns, which is
missing in the existing literature. The relative computational efficiency of the different ML
algorithms is presented as well. To fulfill the objective, we select 117 FRP-RC column test
specimens from an existing database [25]. The existing database consists of 283 FRP-RC
column test specimens that include both short and slender column specimens subjected
to concentric and eccentric loading. The other objective of the current study is to develop
opensource, Python-based ML models to estimate the axial load-carrying capacity of
FRP-RC columns to further help researchers utilize the developed models to improve the
framework once additional experimental data are available.

The input variables of the database used in this paper are the slenderness ratio, gross
cross-sectional area, the type of cross-section (circular or rectangular), the type of con-
crete (light-weight or normal-weight concrete), compressive strength of concrete, type of
composite material used in the longitudinal reinforcement (GFRP or CFRP), longitudinal
reinforcement ratio, elasticity modulus of the longitudinal reinforcements, the ultimate
strength of the longitudinal reinforcements, type of the transverse reinforcement material
(GFRP, CFRP, or steel), the configuration of transverse reinforcement (i.e., spirals or ties),
and the spacing of the transverse reinforcement. The output variable is the axial load-
carrying capacity of the corresponding specimen. The database is split into a training and
test set in 90% to 10% ratio, and the performances of the different machine learning models
are compared using four different accuracy metrics. Afterward, the SHAP algorithm is uti-
lized to determine the most significant input variables and their interdependencies. Three
different, closed-form equation formats are proposed based on the outcome of the SHAP
algorithm. All three of these equations depend on a certain number of parameters that
can be optimized to minimize the difference between the equation output and the actual
axial load-carrying capacity measurements. A well-established, metaheuristic optimization
technique called harmony search optimization is applied in this optimization process. Then,
the performances of these two equations are compared using different accuracy metrics.
The current study is unique in its attempt to obtain closed-form equations for the prediction
of the axial load-carrying capacity of FRP-RC columns based on ensemble machine learning
algorithms, the SHAP procedure, and metaheuristic optimization. Relatively high accura-
cies were observed from the obtained equations. The following sections further elaborate on
the process of obtaining predictive models for these structures based on experimental data.

2. Machine Learning and Optimization Methodologies

Eight data-driven machine learning models were applied to the database consisting of
117 samples. Each of these samples contained seven continuous-valued input variables,
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five discrete-valued input variables, and one continuous-valued output variable, the axial
load-carrying capacity. The statistical distribution of these variables is shown in Figure 1.

Figure 1. Correlation matrix of the dataset.

Figure 1 shows the correlation plot for the seven non-categorical, continuous-valued
input variables together with the output variable Pexp. Ag, fc’, EFRP, fuL, spacingH, and
Pexp stand for the gross cross-sectional area, concrete compressive strength at 28 days,
elasticity modulus of the longitudinal reinforcements, the ultimate strength of the longitu-
dinal reinforcements, spacing between transverse reinforcements, and the experimental
axial load-carrying capacity, respectively. A list of all the variable names and abbreviations
used in this paper can be found in Appendix A. In Figure 1, for each variable on a diagonal
tile, the scale of this variable is shown either on the left vertical or the right vertical axis.
In addition to the vertical axes, for each variable, the same scaling is shown on one of the
horizontal axes as well. The lower triangle in this plot contains bivariate scatter plots with
regression lines, while the diagonal contains histograms showing the distributions of all
variables. The upper triangle contains the Pearson correlation coefficients (rxy) which can
be computed using Equation (1). In Equation (1), x and y are two sequences of variable
values between which the Pearson correlation is being computed. A Pearson correlation
value close to 1 indicates a high correlation between the two variables. The significance of
the correlation is indicated with stars in the upper triangle where the number of stars is
proportional to the level of significance. According to Figure 1, the gross cross-sectional
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area Ag has the greatest correlation with Pexp followed by the transverse reinforcement
spacing and the concrete compressive strength. The remaining continuous-valued input
variables are negatively correlated to Pexp.

rxy =
n ∑n

i=1 xiyi −∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
(1)

In what follows, the machine learning models applied in this study are briefly presented.

2.1. Machine Learning Models

All models presented in this section were trained and tested using both the continuous-
valued and discrete-valued input variables. The discrete-valued input variables, namely,
the type of cross-section, type of concrete, type of material used in the longitudinal and
transverse reinforcements, and the configuration of the transverse reinforcements were
one-hot encoded before being used in the training and testing of the machine learning
models. The machine learning models applied in this study are briefly presented as follows.
For further details of the algorithms presented in this section, it is suggested that the reader
checks the references [26–37].

2.1.1. Kernel Ridge Regression (KRR)

Let (Pn, xn) ∈ R×R17, where xn is the n-th training sample containing the information
of 17 one-hot encoded and continuous input variables. Let x be any sample outside of

the training set. The kernel ridge prediction
ˆ
P for this new sample is calculated using

Equation (2) where κ is a kernel function, and N is the total number of samples in the
training set [26].

ˆ
P =

N

∑
n=1

ˆ
θnκ(x, xn) (2)

The coefficients
ˆ
θn of the kernel ridge regressor are computed using Equation (3),

where C is the regularization constant, κ is the kernel matrix, I is the identity matrix,
^
θ =

[
ˆ
θ1, . . . ,

ˆ
θN

]T

, and P = [P1, . . . , PN]
T.

(κ+ CI)
^
θ = P (3)

2.1.2. Support Vector Regression (SVR)

The Support Vector Regression technique aims to reduce the computational complexity
by limiting the training operations to a subset of the training set. Equation (4) shows the
predictive model for a vector x from outside the training set [27].

ˆ
P =

N

∑
n=1

(
an −

ˆ
an

)
κ(x, xn) + b (4)

In Equation (4), an and
ˆ
an are the Lagrange multipliers that satisfy the conditions

0 ≤ an ≤ C and 0 ≤ ˆ
an ≤ C. The regularization parameter C works towards reducing the

noise in the training set as the smaller values of C correspond to greater regularization. In

Equation (4), only the training samples for which an −
ˆ
an 6= 0 have an impact on the model

output, and they are called the support vectors.
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2.1.3. Lasso Regression

The Lasso Regression technique is based on the linear predictive model shown in
Equation (5) [28].

y(x) = β0 +
17

∑
n=1

βnxn (5)

The model coefficients βn in Equation (5) are estimated through the minimization of
the objective function shown in Equation (6). The second term in Equation (6), calculating
the L1 norm of the coefficient vector, leads to some of the model coefficients associated with
the less significant input variables being set to zero. This yields a predictive model that
depends on a smaller number of variables which can also be called a sparse model [28].

N

∑
i=1

(
Pi − β0 −

17

∑
j=1
βjxij

)2

+ λ
17

∑
j=1

∣∣∣βj

∣∣∣ (6)

2.1.4. Gradient Boosting Machine (GBM)

GBM is based on the idea of consecutively fitting models to data to increase the model
accuracy so that the new base learners h(x, θ) have maximum correlation with the negative
gradient gt(x) of the loss function ψ(y, f) [29]. In every iteration of the GBM algorithm, the
best gradient descent step ρt is calculated as in Equation (7), and the estimator function is
updated as in Equation (8) [29,30].

ρt = argminρ

N

∑
i=1
ψ
[
yi, f̂t−1(xi) + ρh(xI, θt)

]
(7)

f̂t := f̂t−1 + ρth(x, θt) (8)

2.1.5. Adaptive Boosting (AdaBoost)

AdaBoost is an ensemble learning technique that iteratively runs weak regressors
ht(x) and merges them to produce a strong regressor. The procedure for obtaining the final
strong regressor hf(x) is given in Equations (9) and (10), where εt is the loss associated with
ht(x) [31].

hf(x) = inf

y ∈ Y : ∑
t:ht(x)≤y

log
(

1
βt

)
≥ 1

2 ∑
t

log(1/βt)

 (9)

βt =
εt

1− εt
(10)

2.1.6. Random Forest (RF)

Random Forest is another ensemble learning algorithm that merges the output of
decision tree models trained on subsets of the training set for a more accurate prediction. In
addition to the random subsampling of the training set for the training of the decision trees,
in the node splitting phase while generating a tree, a randomly selected subset of the input
variables is utilized. The format of the Random Forest model is given in Equation (11),

where
ˆ

mj represents one of the decision trees [32,33].

ˆ
m(x) =

1
M

N

∑
i=1

ˆ
mj(x) (11)

2.1.7. Extreme Gradient Boosting (XGBoost)

XGBoost is a tree boosting algorithm that differentiates itself through high scalability
and computational speed. The algorithm is capable of scaling to billions of samples in dis-
tributed settings. The output of the XGBoost model can be summarized as in Equation (12),
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where fk denotes a regression tree, and K is the total number of regression trees [25,34].
The optimum values of the leaf weights w∗j that minimize the loss can be computed as in
Equation (13), where l denotes the loss function, and Ij is the set that contains the indices of
the data samples associated with the j-th leaf [35].

ˆ
yi =

K

∑
k=1

fk(xi) (12)

w∗j = −
∑i∈Ij

gi

∑i∈Ij
hi + λ

, gi =

∂l
(

yi,
ˆ
y
(t−1)

i

)
∂

ˆ
y
(t−1)

i

, gi =

∂2l
(

yi,
ˆ
y
(t−1)

i

)
∂

(
ˆ
y
(t−1)

i

)2 (13)

2.1.8. Categorical Gradient Boosting (CatBoost)

CatBoost is another gradient boosting algorithm that performs particularly well in the
presence of categorical data. In addition to the better processing of categorical features,
the implementation of ordered boosting contributes to better accuracy in this algorithm.
CatBoost addresses a particular issue called prediction shift, which is present in other
gradient boosting algorithms such as XGBoost [36,37]. CatBoost overcomes the issue
of prediction shift through the implementation of ordered boosting with ordered target
statistics, the details of which can be found in [37].

2.2. Harmony Search Optimization

Metaheuristic algorithms have been applied to a large number of engineering problems
in recent years. These algorithms are shown to effectively address problems characterized
by high nonlinearity or non-differentiability [38]. One of the most widely used and well-
established algorithms in this category is the harmony search algorithm. The algorithm was
invented by Geem et al. [39] and has been applied to a wide range of engineering problems
such as the optimum design of retaining walls [40,41], laminated composite plates [42,43],
highway bridge plate girders [44], concrete-filled steel tubular columns [45], reinforced
concrete cylindrical walls [46–48], and tuned liquid dampers [49].

The algorithm starts with the generation of an arbitrarily sized population consisting
of optimum-solution candidate vectors, also called harmony vectors (HV). The number
of harmony vectors in this population is called the harmony memory size (HMS). Each
harmony vector has a size equal to the number of parameters being optimized. After the
generation of the initial population, all harmony vectors go through the harmony search
iterations. These iterations are defined by Equations (14)–(17).

k = int(rand·HMS), rand ∈ (0, 1) (14)

xi,new = xi,min + rand·(xi,max − xi,min),
if HMCR > rand

(15)

xi,new = xi,k + rand·PAR·(xi,max − xi,min),
if HMCR ≤ rand

(16)

HMCR = 0.5
(

1− i
max(i)

)
, PAR = 0.05

(
1− i

max(i)

)
(17)

After each harmony search iteration, the newly generated HVs are compared to the
existing ones in terms of their performance and, in cases where they demonstrate better
performance, they replace the old HVs. After each iteration, the best-performing HV is
identified. The process is repeated until the performances converge to an optimum level.
For further details of the harmony search algorithm, it is suggested that the reader see
reference [50].
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3. Results and Discussions

This section presents the performances of eight different machine learning algorithms
in predicting the axial load-carrying capacity of FRP-RC columns based on the experimental
database of 117 samples collected from the literature [25]. The performances of these
algorithms were measured using four different metrics of accuracy, the details of which
have been given in Appendix B. The machine learning algorithms were ranked according
to their accuracy in predicting the axial load-carrying capacity and their computational
speed. The impacts of different input variables on the machine learning model output were
investigated using the SHAP methodology. After the determination of the most significant
input variables and their dependencies, three different equation formats were proposed
for the prediction of the axial load-carrying capacity. A harmony search algorithm was
utilized for the development of these equations. Finally, the performances of the proposed
equations are presented.

3.1. Machine Learning Model Performances

The machine learning models were trained after splitting the database of experimental
samples into a training set and a test set in a 90% to 10% ratio. The accuracies and
computational speed of these models are presented for training and test sets separately.

A list of algorithms and their accuracies with respect to four different metrics of
accuracy can be found in Table 1. In Table 1, for each algorithm, the time that elapses from
the beginning of the model fitting process to the end of the predictions for the test set is
listed. According to Table 1, the Gradient Boosting Machine (GBM) algorithm emerges
as the most efficient algorithm considering both prediction accuracy and time elapsed,
since this model delivered the most accurate predictions next to XGBoost in 58% of the
time. Among the other predictive models, Random Forest (RF) and Lasso Regression can
be counted as models that delivered a greater than 95% R2 score on the test set in less
than 3 s. The CatBoost algorithm was observed to take a significantly longer time with
a relatively low R2 score on the test set compared to the top-performing models. The
model performances in terms of accuracy metrics and speed of computation are visualized
in Figure 2, where the horizontal axes represent the metrics of accuracy and speed. In
Figure 3, the experimental axial load-carrying capacity values are plotted against the model
predictions. The straight black lines in these plots represent a perfect match between the
predicted and actual values, whereas the dotted red lines represent a ±10% deviation from
a perfect match.

Table 1. Performance comparison of different machine learning algorithms.

R2 RMSE MAE MAPE Time Elapsed

Train (KRR) 0.903 744 492 0.243
2.40 sTest (KRR) 0.841 768 548 0.299

Train (SVR) 0.522 1646 604 0.182
2.67 sTest (SVR) 0.520 1334 652 0.304

Train (Lasso) 0.971 399 236 0.096
2.36 sTest (Lasso) 0.955 244 194 0.101

Train (GBM) 0.999 57.9 44.1 0.022
2.54 sTest (GBM) 0.975 182.9 146 0.063

Train (AdaBoost) 0.973 384 284 0.119
2.64 sTest (AdaBoost) 0.910 345 283 0.117

Train (RF) 0.993 193 80.7 0.027
2.95 sTest (RF) 0.969 204 142.4 0.066

Train (XGBoost) 0.999 22.3 7.5 0.003
4.41 sTest (XGBoost) 0.982 153.8 112.7 0.054

Train (CatBoost) 0.999 35.7 28.9 0.013
29.92 sTest (CatBoost) 0.931 301 197.4 0.119
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Figure 2. Comparison of predictive models with respect to accuracy and speed; (a) R2; (b) RMSE;
(c) MAE; (d) MAPE; (e) Time [s].
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Figure 3. Comparison of experimental and predicted p values; (a) XGBoost; (b) GBM; (c) Random
Forest; (d) Lasso; (e) AdaBoost; (f) CastBoost.

3.2. Application of the SHAP Algorithm

The SHAP algorithm was applied to the XGBoost model, which demonstrated the best
overall performance. The SHAP summary plot is an information-intense representation
of how the various design variables affect the axial load-carrying capacity. The SHAP
summary plot in Figure 4 shows the SHAP values of the different variables together with
a color bar that indicates whether a variable has a high or low value. Figure 4 shows
the SHAP values calculated for each variable at each sample point, where every dot
corresponds to a sample. Around certain SHAP values, the dots have greater concentration.
For the most significant nine variables, the SHAP values were computed separately. For
the remaining variables, the SHAP values were summed, and they are represented in
Figure 4 as a single variable. For any sample represented in Figure 4, the color of the
corresponding dot has a shade of red if a variable has a high value at this sample, and the
dot has a shade of blue if the variable has a low value. Positive and negative SHAP values
indicate increasing and decreasing effects on the model output, respectively. According to
Figure 4, the gross cross-sectional area of the column, the concrete compressive strength,
the horizontal reinforcement spacing, and the slenderness ratio (λ) have the greatest impact
on the model output. Furthermore, increasing the values of Ag and fc’ also affects the
prediction, whereas the opposite can be said for the slenderness ratio.

The feature dependence plots in Figure 5 contain information that supplements the
SHAP summary plot. In Figure 5, the feature dependence plots of the four most significant
design variables can be seen. For each one of these variables, the variation of another
variable that is most dependent on it is presented using color. For each dot in Figure 5, a
shade of red indicates a high value of the most dependent variable, whereas a shade of
blue indicates a low value of the most dependent variable. The main information contained
in Figure 5 is the relationship between the values of a variable and the associated SHAP
values. Figure 5 shows that increasing the values of Ag and fc’ also leads to an increase
in the corresponding SHAP values, which indicates an increasing effect on the model
output. On the other hand, the slenderness ratio and the model output are inversely
proportional. Furthermore, increasing the horizontal reinforcement spacing does not have a
significant effect on the model output. The developed Python-based ML models to estimate
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the axial capacity of FRP-RC column can be found at https://github.com/ccakiroglu/
FRPRCColumn (accessed on 4 April 2022).

Figure 4. SHAP values of the design variables for the XGBoost model.

Figure 5. Feature dependence plots for the XGBoost model; (a) Ag − f′c; (b) f′c − fuL;
(c) Slenderness− f′c; (d) spacingH − ρ.

https://github.com/ccakiroglu/FRPRCColumn
https://github.com/ccakiroglu/FRPRCColumn
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3.3. Development of the Predictive Equations

Based on the SHAP summary plot in Figure 4 and the feature dependence plots in
Figure 5, three different equation formats were proposed. The first one of these formats,
given in Equation (18), consists of the linear combination of three product terms. The first
one of these terms includes, besides the most important input variable Ag, the variables
fc, which is the most dependent variable on Ag, and fuL, which is the most dependent
variable on fc. The second term consists of the multiplication of the slenderness ratio λ and
fc, which is the most dependent variable on λ. Finally, the third term includes the effects
of the spacing between the horizontal reinforcements and the longitudinal reinforcement
ratio (ρ), which is the most dependent variable on it.

P = a0 + a1Aa2
g fa3

c fa4
uL + a5λ

a6 fa7
c + a8spacinga9

Hρ
a10 (18)

An initial population of 20 candidate solution vectors was created. In this population,
each solution candidate consists of a randomly generated, unique combination of the
coefficients a0 to a10, where all these coefficients take values in (−1, +1). Afterward, these
coefficients went through harmony search iterations. In order to train the coefficients of
Equation (18), the entire database of experimental results was split into a training set and a
test set in a 90% to 10% ratio. For each member of the population, the difference between
the actual experimental axial load-carrying capacities (Pexp) and the p values computed by
Equation (18) was calculated and stored in a vector that has the length of the entire training
set. As the metric that shows the accuracy of the proposed equation, the Euclidean norm of
this vector was calculated. Figure 6 shows the decrease in this vector norm throughout the
optimization steps.

Figure 6. Decrease in the total error throughout the harmony search iterations (Equation (18)). (a) First
500 HS iterations; (b) First 2500 HS iterations.

In Figure 6, the performances of the best- and worst-performing solution candidates
are shown with blue and red colors, respectively. Figure 6b shows that, after 2500 iterations,
a convergence to the minimum total error norm could be observed. The development of
the coefficients a0 to a10 in the optimization process are shown in Figure 7.
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Figure 7. Development of the coefficients in Equation (18); (a) a0; (b) a1; (c) a2; (d) a3; (e) a4; (f) a5;
(g) a6; (h) a7; (i) a8; (j) a9; (k) a10.

In Figure 7, for each coefficient, the values these coefficients took in the best- and worst-
performing members of the population are plotted in blue and red colors, respectively.
Using the limit values of the coefficients in Figure 7, Equation (18) can be rewritten as in
Equation (19).

P = 46.75 + 0.00207A0.901
g f1.085

c f0.02185
uL + (−0.0493)λ0.676f1.862

c + (−16.84)spacing0.122
H ρ−3.84 (19)
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Using Equation (19), the p values were computed for the test set and compared to the
actual measured values. This comparison can be seen in Figure 8, where the dotted lines
indicate the ±10% deviations from an exact match.

Figure 8. Comparison of experimental and predicted (Equation (19)) p values.

The accuracy metrics in Figure 8 show that Equation (19) outperformed five out of the
eight algorithms in Table 1. The machine learning algorithms that performed better than
Equation (19) were Random Forest, XGBoost, and GBM. Although good performance could
be obtained from Equation (19), a second equation format for practical use was proposed,
as in Equation (20).

P = a0 + a1 Aa2
g f a3

c + a4 Aa5
g spacinga6

H + a7 Aa8
g λa9 (20)

In Equation (20), the number of variables being considered in the prediction and the
total number of coefficients were reduced. The variables having the highest impact on the
model output according to the SHAP summary plot were selected. Equation (20) consists
of three product terms after a0. In each one of these terms, Ag is multiplied with one of
the three most significant variables after itself, according to the SHAP summary plot. The
harmony search procedure was repeated for Equation (20).

Figure 9a,b show the development of the error norm during the first 500 and 2500
harmony search iterations, respectively. Using the Euclidean norm of the difference vector
between the actual measurements and predictions of Equation (20), a minimum error of
2639 kN could be achieved. This error norm was slightly greater than the 2336 kN that
could be achieved using the Equation (18) format. Figure 10 shows the development of the
coefficients a0 to a9 in Equation (20) during the harmony search process.

Figure 9. Decrease in the total error throughout the harmony search iterations (Equation (20)). (a) First
500 HS iterations; (b) First 2500 HS iterations.
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Figure 10. Development of the coefficients in Equation (20); (a) a0; (b) a1; (c) a2; (d) a3; (e) a4; (f) a5;
(g) a6; (h) a7; (i) a8; (j) a9.

In both Figures 7 and 10, it can be observed that the coefficients of the worst population
member demonstrated much wider fluctuations than the best member. However, after a
certain number of iterations, both the best and worst member coefficients converged nearly
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to the same values. Using the limit values of the best member coefficients, Equation (21)
was obtained.

P = −131.77 + 0.002608A0.93058
g f0.955

c + (−38.76)A−93.69
g spacing−15.07

H + 7.58A−19.54
g λ−146.67 (21)

The negative powers in the second and third products of Equation (21) make these terms
close to zero so that Equation (21) can be used in a simplified format, as in Equation (22).

P = −131.77 + 0.002608A0.93058
g f0.955

c (22)

Figure 11 shows the comparison of the experimental axial load-carrying capacities
to the p values predicted by Equation (22). According to the accuracy values in Figure 11,
Equation (22) was able to outperform the KRR, SVR, AdaBoost, and CatBoost algorithms.
A comparison of Figures 8 and 11 shows that Equation (22) was able to achieve comparable
performance to Equation (19) in a much simpler format. In order to eliminate the bias terms
in Equations (19) and (22), a third equation format that consists of a single product term
was proposed in Equation (23).

P = a0Aa1
g fa2

c spacinga3
Hλ

a4ρa5 fa6
uL (23)

Figure 11. Comparison of experimental and predicted (Equation (22)) p values.

Figure 12 shows the development of the error norm for the best- and worst-performing
harmony vectors for the first 500 and 2500 iteration steps.

Figure 12 shows that a minimum error norm of 2286 kN could be achieved after 2500
iterations which is less than the error norms achieved through Equations (18) and (20).
After inserting the limit values of the coefficients a0 to a6 into Equation (23), we obtain
Equation (24).

P = 0.00123A0.9946
g f0.9266

c spacing0.01124
H λ−0.1474ρ0.08769f0.0589

uL (24)

The performance of Equation (24) in predicting the axial load-carrying capacity has
been presented in Figure 13, where the actual p values are plotted against the p values
predicted by Equation (24). Finally, a list of all three equations proposed in this paper can
be found in Table 2 with the corresponding R2 values. A comparison with the R2 values in
Table 1 shows that Equation (24) outperformed all of the predictive models except for the
XGBoost model. It should be noted that the proposed equations are data-driven, and the
performance of those equations depends on the characteristics of the data used to develop
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the ML models. The equations are only applicable for the range of maximum and minimum
values of the input parameters.

Figure 12. Decrease in the total error throughout the harmony search iterations (Equation (23));
(a) First 500 HS iterations; (b) First 2500 HS iterations.

Figure 13. Comparison of experimental and predicted (Equation (24)) p values.

Table 2. Proposed equations.

Equation R2

P = 46.75 + 0.00207A0.901
g f1.085

c f0.02185
uL + (−0.0493)λ0.676f1.862

c + (−16.84)spacing0.122
H ρ−3.84 0.958

P = −131.77 + 0.002608A0.93058
g f0.955

c 0.950

P = 0.00123A0.9946
g f0.9266

c spacing0.01124
H λ−0.1474ρ0.08769f0.0589

uL 0.978

4. Summary and Conclusions

This work aimed to address an important gap in the research literature dealing with
FRP-RC columns under concentric axial loading by applying various machine learning
techniques to identify the most significant design variables affecting the axial load-carrying
capacity. Particularly, ensemble learning techniques, such as Gradient Boosting Machine,
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Random Forest, and XGBoost, were observed to predict the axial load-carrying capacity
with high accuracy. The coefficient of determination, root mean square error, mean absolute
error, and mean absolute percentage error were used to quantify the accuracy of the predic-
tions made by eight different machine learning models. Based on the predictive model with
the best performance, the SHAP algorithm was utilized to identify those variables that have
the greatest impact on the structural response. The gross cross-sectional area was found
to have the greatest impact on the model output, followed by the concrete compressive
strength, spacing of transverse reinforcement, and the slenderness ratio. Once the design
variables were ranked according to their impact on the model output, in the next part of the
paper, three different equation formats were proposed for the prediction of the axial load-
carrying capacity as a function of the most significant design variables. These equations
were optimized using the harmony search algorithm, and the equations were observed
to have good accuracy. The first one of these equations predicts the axial load-carrying
capacity as a function of the gross cross-sectional area, concrete compressive strength, the
ultimate strength of the longitudinal reinforcements, slenderness ratio, spacing between
transverse reinforcements, and the longitudinal reinforcement ratio. On the other hand,
the second equation depends only on the two most significant variables, namely, the gross
cross-sectional area and the compressive strength of concrete. Finally, the third equation
consists of a single product term that consists of the gross cross-sectional area, the concrete
compressive strength, spacing between transverse reinforcements, slenderness ratio, longi-
tudinal reinforcement ratio, and the ultimate strength of the longitudinal reinforcements.
With an R2 score of 0.978, the third equation performed better than the first two equations.
Additionally, this equation outperformed all of the predictive machine learning models
except for the XGBoost model.

The availability of closed-form equations for an accurate prediction of structural
response is beneficial in engineering practice. Due to an R2 score of 0.95 and its simple
format, the second prediction equation developed in this study is convenient for practical
application. On the other hand, for more accurate predictions, the third equation can
be used.

However, it should be noted that the developed equations are based on an experimen-
tal database consisting of 117 samples, and further studies in this area with larger databases
are warranted. Furthermore, it should be noted that the results predicted by the developed
equations are only valid within the range of the database used. Readers should keep in
mind that the proposed equations are data-driven and can violate the mechanics-based
capacity prediction model if misrepresented data are used. In addition to experimental
studies, the databases could be further enhanced with the help of well-calibrated finite-
element models. Besides increasing the size of the database used in model training, future
research in this area can focus on the prediction of the axial load-carrying capacity under
eccentric axial loading.
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Appendix A

Nomenclature XGBoost Extreme gradient boosting
KRR Kernel ridge regression

FRP Fiber-reinforced polymer SVR Support vector regression
GFRP Glass fiber-reinforced polymer CatBoost Categorical gradient boosting
CFRP Carbon fiber-reinforced polymer AdaBoost Adaptive boosting

Ag Gross cross-sectional area GBM Gradient boosting machine
spacingH Spacing between transverse

reinforcements
SHAP Shapley additive explanations

Pexp Experimental axial
load-carrying capacity

fc’ Concrete compressive strength

MAE Mean average error MAPE Mean average percentage error
RMSE Root mean square error R2 Coefficient of determination
HMS Harmony memory size HV Harmony vector

HMCR Harmony memory consideration
rate

PAR Pitch adjustment rate

λ Slenderness ratio ρ Longitudinal reinforcement
ratio

fuL Ultimate strength of the
longitudinal reinforcements

EFRP Modulus of elasticity of the
longitudinal reinforcements

Appendix B

Definitions of the accuracy metrics used in this paper:

R2 = 1−
∑N

i=1

(
Pi −

ˆ
Pi

)2

∑N
i=1(Pi − Pmean)

2 (A1)

RMSE =

√√√√√∑N
i=1

(
Pi −

ˆ
Pi

)2

N
(A2)

MAPE =
100 ∑N

i=1
|Pi−Pi|
|Pi|

N
(A3)

MAE =
∑N

i=1|Pi − Pi|
N

(A4)
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48. Bekdaş, G. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical
Reinforced Concrete Walls. J. Optim. Theory Appl. 2014, 164, 342–358. [CrossRef]
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