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Abstract: The realization of products from materials with high properties generally involves very
high energy consumption. Thus, in the research, it was considered to optimize the machining process
by cutting of an aluminum bronze alloy, so as to obtain a reduction in energy consumption in
correlation with the roughness of the machined surfaces. The research focused on the processing
of a semi-finished product with a diameter of Ø = 20 mm made of aluminum bronze (C62300).
In addition, in the research, the aim was to establish some correlations between the amount of
power consumed and the quality of the surfaces processed by cutting. In this sense, the forces
were measured in the 3 directions specific to the cutting process (Fc; Ff; Fp) for 3 tools construction
variants and power consumed. The results showed that, if a certain constructive variant of the cutting
tool is used in the processing, a reduction of the power consumed to cutting can be obtained by
approximately 30% and a reduction of the roughness of the processed surface by approximately
90–100%. Furthermore, following the statistical processing of the results, it was shown that it would
be advisable to use, especially in roughing processes, the cutting tool variant that offers the greatest
reduction in roughness and cutting power.
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1. Introduction

The constant increase in energy consumption and its costs has led to a strong increase
in the costs of manufacturing products [1]. Thus, over time, various research have presented
studies on the energy consumption of machine tools in the processing of various materials
by cutting to obtain certain products [2,3]. In this sense, research was carried out which
allowed to establish correlations between the amount of energy consumed and the quality
and precision of the surfaces processed by cutting. Thus, it has been demonstrated that the
lowest possible energy consumption can be obtained in the conditions in which optimal
parameters are established for the cutting process, but also an optimal functional geometry
of the cutting tool, depending on the quality of the removable plate. In addition, an
optimal choice of cutting process parameters and tools can generate energy savings of up
to 6–40% [4,5].

For the cutting processing of various materials, a series of studies have been carried
out on the possibilities of reducing energy consumption, but there are still a number of
materials for which no technical solutions have been found to ensure the best processing
conditions. Aluminum alloys fall into the category of materials that are difficult to cut by
cutting and which require very high energy consumptions [6]. These alloys are widely
used in the machine building industry, namely for the manufacture of: parts for aircraft,
components for ships; tools for plastic deformation of sheets, etc. This type of material is
characterized by the fact that it has very good mechanical properties and a high resistance
to corrosion. The majority of aluminum-bronze alloys have a chemical composition in
which aluminum is 5% to 11% by weight, the rest of the composition being represented
by copper, but also by other alloying elements such as iron, nickel, manganese and silicon.
It also has fairly good machining qualities when using cutting edge tools. Due to the
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danger of heating the part during cutting, it is recommended to use a coolant. Under these
conditions, the machining of the external surfaces of the parts can be carried out at quite
high speeds, and for the internal one’s lower speeds are recommended (drilling, reaming),
because there is a danger that the bronze chips will adhere to the tool faces [7–9].

Given the category of parts for which this material is used, in many cases, it is necessary
that the parts be processed by cutting so as to obtain a roughness as low as possible and an
accuracy as good as possible [10,11]. Furthermore, as in all processing processes, and in
the case of cutting by processing this type of material, it is necessary to obtain the lowest
possible energy consumption. The roughness of the surface of the machined parts depends
on a multitude of factors, but the most important are: the functional geometry of the tool,
the parameters of the cutting process, the type of cooling-lubrication fluid used, etc [12].

A major problem with aluminum bronze machining is the adhesion of the machined
material to the active surfaces of the tool used in machining. This adhesion has negative
effects on both the roughness and the accuracy of the machined surface [13,14]. In this
regard, in some research, tools from various high-speed steel (HSS) tool and YW1 cemented
carbide materials have been tested and a reduction in adhesions has been observed when
using the tool made from YW1, but not a complete elimination of them. Thus, the use of
tools made of various materials is not a solution to eliminate adhesions in the conditions in
which and other parameters of the cutting process are not optimized [15].

In order to improve the machining conditions of aluminum bronze, in some research, it
has been proposed to use a jet of high-pressure coolant that is inserted between splinter and
tool. This leads to an improvement in the material’s processing capacity and a considerable
reduction in the temperature of the technological system. However, this technological
solution involves a series of expensive technological equipment and obtaining a fairly high
roughness for the processed surfaces [16,17].

Tungsten carbide tools can be used in good condition for machining parts made of
C95800 aluminum bronze, and high-speed machining has shown that surfaces with low
roughness and relatively good accuracy can be obtained. In addition, wear rates in carbide
tools are quite low under optimal cutting regimes [18,19].

Furthermore, for the turning processing of materials, with a lowest possible energy
consumption, it is necessary to adopt an efficient technique for assessing the characteristics
of energy consumption in processing in order to select the technological process of process-
ing with high energy efficiency, taking into account and processing accuracy. There are
currently three representative methods for predicting energy consumption during turning:
the method based on specific energy (SEM), the method based on the cutting force (CFM),
and the method based on exponential function (EFM). SEM considers that the material
removal power is the product of the specific cutting energy and the material removal
rate (MRR). Improper application of these methods can lead to low prediction accuracy,
which cannot support accurate energy assessment and reduction of consumed energy in
processing [20,21].

In addition to these methods of evaluating the energy consumption of turning, empiri-
cal models for predicting energy consumption can be considered [22,23] and, more recently,
neural prediction models with inverse propagation [24,25]. However, even these methods
based on neural networks cannot take into account all the parameters that accompany a
cutting process and, generally, only consider the parameters of the cutting regime (cutting
speed, feed rate, depth of cut) [26]. Optimizing the values of the cutting regime parameters
can lead to a reduction in energy consumption, but, if only these parameters are taken into
account, a more complex analysis of the energy problems that may occur at cutting can
not be performed. For example, the level of wear of the cutting tool must also be taken
into account. Thus, its increased wear can lead to a rapid increase in energy consumption.
Under these conditions, it is necessary to constantly monitor the wear of the cutting tool,
but also the adoption of certain tool construction systems to allow the registration of a
wear as low as possible. The development of various construction tools for cutting tools
has made it possible to achieve certain results in the machining process, but all these tool
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systems need to be improved to achieve new industry-specific performance 4.0 [27]. The
design of cutting tools to ensure a reduction in energy consumption in correlation with
the good quality of the surfaces of the cutting conditions is an important objective of the
research of cutting processing [28,29].

In view of the above, it is necessary to find the best conditions for cutting by processing
in order to obtain the lowest possible energy consumption and the best possible quality of
the processed surfaces. Thus, for the production process itself, it is necessary to implement
certain conditions that allow the optimization of energy consumption, considering the
complexity of the cutting processes. The research was focused on establishing the conditions
of machining by turning aluminum bronze so as to obtain the lowest energy consumption
and the best quality of the processed surfaces.

2. Materials and methods
2.1. Materials Used in Research

In order to be able to establish the best conditions for processing aluminum bronze,
the research considered the processing by turning of cylindrical specimens with diameter
Ø = 20 mm made of aluminum bronze (C62300). The choice of aluminum bronze was
made considering the fact that this material is one used for the realization of complex parts
of special importance in the aeronautical, naval, etc. industry. The material used in the
research (C62300) comes from Aviva Metals, Houston, TX, USA. The chemical composition
and mechanical properties of aluminum bronze are shown in Table 1.

Table 1. The chemical composition and mechanical properties of aluminum bronze (C62300).

Density
Aprox.
kg/dm3

Composition,
%

Tensile
Strength,
N/mm2

Yeld Stress,
N/mm2

Elongation,
%

Brinell
Hardness

7.6

Al = 9.5–10.7

>578 cca. 325 >12.5 168–172
Fe = 2.1–3.8
Mn 1.6–3.4
Cu–balance

2.2. Equipment and Tools Used in the Processings by Cutting

Experimental research was performed on a numerically controlled lathe (CNC). The
use of this type of equipment was imposed by the fact that it allows an adjustment in a
very large range of the parameters of the cutting process. Thus, the CNC lathe used was
one coded VT 15 PLUS with numerical control FANUC, provided by FANUC Automation
Romania S.R.L., Cluj, Romania. A longitudinal turning tool was used in the machining
(Figure 1). A tool body with a 20 mm × 20 mm section provided by Sandvik-Coromant,
Bras, ov, Romania, was used to obtain the cutting tools used in processing. In addition, the
equipment of the cutting tool body was made with a plate SNMG 12 04 12-PMC - Sandvik
Coromant with the parameters presented in Table 2.

Table 2. Tool parameters of SNMG 12 04 12-PMC—Sandvik Coromant.

Plate Type Rake Angle Clearance
Angle

Cutting Edge
Angle

Minor Edge
Angle

SNMG 12 04
12-PMC 6◦ 8◦ 85◦ 5◦
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proposed for the cutting tool. These constructive improvements can ensure an optimal 
functional geometry for the cutting tool according to the actual cutting conditions. In the 
case of the V02 cutting tool, a corrugated spring washer was placed under it removable 
plate, Figure 2a, which allows a continuous change of the tool geometry. When there is a 
tendency for deposits to appear on the edge, the frictional forces increase, causing a de-
formation of the spring washer and a change in the tool geometry. In the case of variant 
V03, a conical base spherical washer was placed under the tool plate, Figure 2b, which 
allows a change in the position of the plate axis by 3°. This enables the cutting tool to 
change its geometry during operation and in particular the clearance angle and the seating 
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ufactured by Parcon Freiwald, Germany 

Figure 1. Tools for longitudinal turning: (a)—in the classic version (V01); (b)—with improved
constructive form with a spring washer (V02), (c)—with improved constructive form with two spring
washers (V03), 1—knife body; 2—screw fixing; 3—removable plate, 4—spring washer, 5—spherical
washer, 6—spherical washer holder.

Aluminum bronze alloys are quite difficult to process by cutting, especially if it is
necessary to obtain good qualities of the machined surfaces. The problems that arise in
the processing of bronze-aluminum alloys are determined by the mechanical properties
of this material that influence the process of chip formation. Thus, during chipping some
difficulties may arise in the process of chip formation caused mainly by the phenomenon
of deposits on the edge. All this can also lead to an increase in energy consumption due to
the increase in the values of the shear forces as a result of the intensification of the friction
phenomena. All these phenomena also appear in the longitudinal turning, and for the
improvement of the conditions of processing by cutting in the research were used three
variants of cutting tools, Figure 1. Thus, the first variant of tool used, Figure 1a; it was the
one in which it has the classical constructive form. In order to avoid the phenomenon of
deposits on the edge and to improve the conditions of cutting processing, two other cutting
tools V02, Figure 1b, V03, Figure 1c were used in the research. These two tool variants were
made by placing under the removable plate of a constructive elements, in way to avoid the
appearance of deposits on the edge by the adhesion of a part of the material from splinter
on the surface of the tool.

The control of the deposition phenomenon on the edge allows both a considerable
reduction of the frictional forces that appear during the cutting and a considerable improve-
ment of the quality of the processed surfaces. A reduction in friction forces results in a
considerable reduction in the total cutting force and, consequently, in the energy consumed
in cutting. Thus, during the research, a series of constructive improvements were proposed
for the cutting tool. These constructive improvements can ensure an optimal functional
geometry for the cutting tool according to the actual cutting conditions. In the case of
the V02 cutting tool, a corrugated spring washer was placed under it removable plate,
Figure 2a, which allows a continuous change of the tool geometry. When there is a tendency
for deposits to appear on the edge, the frictional forces increase, causing a deformation
of the spring washer and a change in the tool geometry. In the case of variant V03, a
conical base spherical washer was placed under the tool plate, Figure 2b, which allows a
change in the position of the plate axis by 3◦. This enables the cutting tool to change its
geometry during operation and in particular the clearance angle and the seating angle. The
corrugated spring washer used corresponds to DIN 137 B, steel A2 1.4305 and the spherical
washer with conical base corresponds to DIN 6319, steel 1.4305 and are manufactured by
Parcon Freiwald, Germany.
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tool V02; (b)—spherical washer—conical base—for tool V03.

In order to carry out the experimental research, the parameters of the cutting regime
were established taking into account the recommendations from the specialized liter-
ature [19]. In view of the processing conditions, the following parameters of the cut-
ting regime have been established: rotational speed n = 800–1200 rpm, processing depth
ap = 0.4–0.8 mm, longitudinal advance f = 0.15–0.25 mm/rot. Since the main objective of
the paper is to analyze how the construction of the cutting tool can influence the energy
consumed in cutting and the quality of the processed surfaces, the method of factorial
experiments for the programming of experiments was used in the research. Thus, for the
three parameters (n, ap, f ) two levels were considered (maximum and minimum), depend-
ing on which the cutting force (calculated power at cutting) was observed, respectively,
the roughness of the processed surfaces for the three variants of cutting tools. In these
conditions, considering the fact that 3 variable parameters were established, each having
2 levels, 8 types of samples were made, according to those presented in Table 3.

Table 3. Programming experiments through the method of factorial experiments.

Sample
Number

n [rpm] ap [mm] f [mm/rot]

800 1200 0.4 0.8 0.15 0.25

S1 x x x
S2 x x x
S3 x x x
S4 x x x
S5 x x x
S6 x x x
S7 x x x
S8 x x x

2.3. Analysis of the Evolution Fort,elor S, i Puterii la Strunjirea Pieselor

The cutting forces appear as a result of the elastic and plastic deformation of the splinter
and the machined surface, for breaking, detaching, additional deformation (bending and
spiraling) of the splinter as well as overcoming the frictional forces between the splinter
and the clearance face and between the face of the settlement and processed surface. How
the components of the cutting force act on the longitudinal turning are shown in Figure 3.
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Cutting forces are a limiting factor of machinability, they influence the energy consump-
tion during the processing of parts. High cutting forces can cause temporary deformations
of the tool and the piece and can cause vibrations and permanent deformations of the
blank (loss of machining tolerances). The research aimed to establish the way in which
the cutting forces evolve depending on the variation of the functional geometry of the
cutting tool during the turning operation. For the mathematical modeling of the evolution
of the force magnitude according to the geometry of the cutting tool, it was started from
the equation [30]:

Fi = Ki11· ap· f i−c(sin χr) (1)

where: Ki11 is the specific cutting force; χr cutting edge angle; i–c exponent that is deter-
mined experimentally.

To simplify Equation (1) and given the significance of the coefficients and exponents,
the following notation was made:

Ki11· ap· f i−c = k (2)

Thus Equation (1) becomes:
Fi = k · sin χr (3)

The angle of the main cutting direction η can be expressed with a relation of shape [30]:

η = arctg(
f

πDM
· sin χr) (4)

where: DM is the diameter of an M point on the surface of the workpiece
Given Equations (3) and (4), respectively, Equation (5) was obtained, which shows

the dependence of the cutting force on the angle of the main cutting direction η and the
diameter of a point on the workpiece DM.

Fi = k· tgη·π·DM
f

(5)

Modeling of cutting forces is essential to predict the progress of machining operations
as well as the final properties of the workpieces. On a large scale, cutting forces can be
used to size the clamping system or to ensure the geometry and roughness of the machined
surface.

Measurement of forces and modification of numerical control (NC) instructions may
be used in some cases, but other methods are preferred due to the cost of monitoring
equipment and difficulties in modifying control data. Consequently, new methods of
controlling cutting forces that can be used for various cutting operations are needed.
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Thus, with the help of Equation (5) it is possible to establish a range of variation of the
values of the functional geometry of the tool so that the cutting force has values as small
as possible and the amount of energy consumed in cutting is as small as possible. During
the research, for the monitoring of the cutting forces, the system presented in Figure 4
was used, which allows the determination of the cutting forces in the 3 directions. A
piezocapacitive force sensor, PCB 261A13 from PCB, was used to measure the forces, which
allows measurement in both dynamic and quasi-static mode. The sensor has a capacity of
70 pF. In the Z direction, it allows the measurement of a maximum force of 44.48 kN and in
the X and Y directions a maximum force of 19.57 kN. Prior to measuring the forces in the
turning process, the sensor was calibrated by measuring static forces in the range of values
of the forces measured in the process. A traction-compression test machine Instron 5587
was used for calibration. The electrical signal transmitted by the force sensor is taken by
means of a low-noise cable to the digital charge amplifier CMD 600, produced by HBM.
The amplified signal is transmitted to the Quantum X MX840B acquisition system also from
HBM. The Catman software package of the acquisition system was used to acquire, process
and measure the forces.
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After establishing the values of the forces, it was possible to calculate the power
required for cutting. Power required for cutting P refers to the power consumed when
removing material in the form of chips to which is added the additional loss of power of
the machine tool. Given [24], the calculation of power can be carried out with the following
equation:

P = Pcut + Pad (6)

where: Pcut is the power required to remove the material; Pad = α·Pcut—the load loss; α-
The additional power loss coefficient that can be considered that have a fixed value for a
CNC machine tool. Thus, the power calculation relationship becomes:

P = Pcut ·(1 + α) (7)

According to [30], the calculation relation of the power consumed for the removal of
the material to be processed is:

P =
Fc·vc

6000
(8)

where: Fc is the cutting force [daN}, vc is the cutting speed [m/min].
In order to observe the energy consumption in the baldness performed, only Pcut was

considered, considering that the value of the coefficient α can be considered constant.
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2.4. Measurement of the Roughness of the Processed Surfaces

The roughness of the surfaces machined depends on many parameters of the machin-
ing process, but, among them, in the processing of bronze and aluminum, the phenomenon
of deposits on the edge is very important, respectively, the friction phenomena. Thus, the
roughness is determined mainly by glossy and hard deposition scales, representing parti-
cles from the deposits on the edge embedded in the generated surface, respectively, craters
or porosities corresponding to the areas from which hard particles embedded in the base
mass of the part were extracted. Furthermore, the geometry of the tool influences the size
of the roughness, and in the research two geometric parameters were taken into account,
namely: the clearance angle and the seating angle. Laying angle α influences the roughness
by the plastic deformations of the machined surface as a result of the contact surface with
respect to the placement/machined surface. By increasing the angle α, the radius rn of the
edge decreases, the contact surface will be smaller and as a result the plastic deformations
will decrease and the roughness Ra will decrease. The clearance angle γ, influences the
roughness of the processed surface by means of plastic deformations, including by the
phenomenon of deposits on the edge. Thus, the area of the tool tip influences the intensity
of the plastic deformations and directly contributes to the formation of the roughness of the
machined surface. From a mathematical point of view, the dependence of the roughness on
the constructive geometry and the functional geometry of the tool can be expressed with
the relations [21]:

Ra =
Cv · Kv

Txv · v f
· tg(flFe − fl) (9)

Ra =
Cv · Kv

Txv · v f
· tg(−ffFe + ff ) (10)

where: Cv; Kv; xv is the coefficients; T—tool durability; Vf—feed rate; γ—rake angle,
α—clearance angle; αFe—effective clearance angle; γFe—effective rake angle.

The constructive modification made to the tools was aimed at ensuring both an optimal
functional geometry, which would avoid the occurrence of the phenomena of deposits
on the edge, and the decrease of surface roughness and frictional forces, with effects on
reducing energy consumption.

An SJ-500P system produced by Mitutoyou was used to measure roughness. This
measuring system is extremely versatile and the software offers high accuracy and perfor-
mance.

In view of the above, a necessary system was designed and used in the experimental
research, Figure 5. Thus, the system shows how the parameters of the cutting regime
are regulated, the equipment used to measure forces and roughness, but also computing
equipment and software used to process experimental data.
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3. Results and Discussion

The experimental research aimed at establishing the value of the forces and the rough-
ness of the surfaces, taking into account the establishment of some correlations between
them. In addition, for a confirmation of the results obtained in the experimental research,
10 samples were processed in the same conditions, taking into account the three variants of
cutting tools (V01; V02; V03). The research mainly pursued reducing energy consumption
while ensuring good surface quality. Thus, in the first stage of the research, a monitoring
of the values of the cutting forces was performed according to the three directions, tak-
ing into account the three tool variants. Following the monitoring of the force values, a
measurement of the roughness of the processed surfaces was made so that a correlation
between them could be observed. In order to be able to make a more complete analysis of
the correlation between the forces and the roughness, the experimental data were processed
with the help of the STATISTICA software.

3.1. Analysis of the Values of the Forces That Appear during the Cutting Process

The measurement of the values of the cutting forces was performed in the three
directions shown in Figure 4. Thus, 10 samples of the same type were processed for each
variant of cutting tool and cutting regime, according to those presented in Table 3. The
values of the measured forces were established as an average of the 10 values for each of
the 8 samples. The use of average force values allows an improvement in the adequacy
of the experimental results. Furthermore, the experimental results obtained can highlight
the effect that the constructive solutions of cutting tools have on the size of the cutting
forces. Each sample was also processed to a length of 25 mm. Modification of values of the
cutting forces, especially, is determined by ensuring an optimal geometry of the cutting
tool throughout the cutting process.

The analysis of the values of the cutting forces is a very good method of evaluating the
phenomena that accompany the cutting process. Thus, their values provide information
on the degree of stress of the cutting edge of the tool, but also of the frictional forces that
accompany any manufacturing process by cutting.

The medium values obtained for the three components of the cutting forces for the
3 variants of cutting tools are presented in Table 4 for Fc, Table 5 for Ff and Table 6 for Fp.

Table 4. The medium values of the Fc component for the 3 variants of cutting tools, daN.

No. of the Sample
The Constructive Variant of the Tool

V01 V02 V03

S1 86.21 68.91 59.54
S2 62.74 57.16 44.90
S3 83.17 71.97 61.36
S4 123.44 97.63 89.81
S5 119.18 93.11 87.32
S6 70.19 55.83 47.83
S7 44.79 39.77 30.79
S8 35.48 33.16 27.51

The results of the experimental research have shown that the use of tool construction
variants can lead to a reduction in the value of the cutting forces with effects and on the
reduction of energy consumption. Thus, the largest reductions in the value of the cutting
forces were obtained if the constructive tool version V03 was used. Small reductions in the
values of the cutting forces were also obtained in the case of the V02 variant, and this can be
explained by the fact that the use of only the spring washer does not ensure an optimal tool
geometry during cutting. In case of using the tool in variant V03, an optimal tool geometry
can be achieved due to the fact that the plate can self-regulate its position with 3◦. This
possibility of adjusting the position of the plate results in a substantial reduction in the
frictional forces on the clearance face or the main seating face. Thus, from the obtained
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results it was observed that the substantial reduction of forces was achieved for component
Fc and Ff, respectively, and in the case of component Fp the reduction of its value was very
small.

Table 5. The medium values of Ff component for the 3 variants of cutting tools, daN.

No. of the Sample
The Constructive Variant of the Tool

V01 V02 V03

S1 50.13 41.95 25.29
S2 37.42 35.29 27.56
S3 49.12 41.07 25.35
S4 74.96 58.31 52.11
S5 70.51 57.72 49.32
S6 43.86 36.93 28.18
S7 28.39 22.01 18.17
S8 21.68 18.07 16.29

Table 6. The medium values of Fp component for the 3 variants of cutting tools, daN.

No. of the Sample
The Constructive Variant of the Tool

V01 V02 V03

S1 34.53 68.91 59.54
S2 25.98 57.16 44.90
S3 33.17 71.97 61.36
S4 53.41 97.63 89.81
S5 48.29 93.11 87.32
S6 29.56 55.83 47.83
S7 26.63 39.77 30.79
S8 21.11 37.16 33.51

Using the tool V03 makes the actual tool angles for each edge segment optimal. All
this confirms that the optimal effective tool angles also allow an optimal distribution of
the force intensity. In addition, a more uniform distribution of force along the edge allows
a better repartition of heat with positive effects in the sense of reducing deposits on the
edge [31]. Thus, the use of the V03 variant reduces the tendency of this material to form
deposits on the edge and, at the same time, there is a tendency to increase the forces due
to the increase of the radius of the tool tip thus confirming the results obtained by other
researchers [32]. It should be noted that the presence of deposits on the edge also causes an
increase in the contact area between the workpiece and the tool, with effects on the increase
of the frictional forces, respectively, of the cutting forces.

By reducing the values of the Fc component, a reduction in energy consumption
can be obtained due to the fact that this is one of the most important parameters that
influence the size of the power consumed in cutting. The presence of very high frictional
forces also determines the release of high frequency energies in the cutting area, with
negative effects on the roughness of the parts’ surfaces. Thus, the use of the V03 tool, which
allows a reduction in the size of the forces by about 30%, creates conditions to reduce the
temperature of the elements of the technological system, but also a decrease in the amount
of high frequency energy with positive effects on the roughness of processed surfaces.

The measured values for the cutting forces show that, indeed, they are directly influ-
enced by the angle values of the main cutting direction η according to relation 5. Thus, the
V03 cutting tool variant allows the adjustment of an optimal value for the angle η, which
allows to obtain the lowest value for the cutting forces.

After obtaining the values of the forces, a calculation of the power consumed at cutting
was made, taking into account the relation 8. By establishing the value of the power
consumed at cutting, the effects of the adoption of a certain design for tool on energy
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consumptions can be better observed. The values obtained for the average power required
for cutting considering the 3 tool variants are presented in Table 7.

Table 7. The medium values of the power, P, for the 3 variants of cutting tools, kW.

No. of the Sample
The Constructive Variant of the Tool

V01 V02 V03

S1 1.081 0.865 0.714
S2 0.525 0.478 0.375
S3 0.696 0.602 0.513
S4 1.033 0.817 0.751
S5 1.504 1.169 1.096
S6 0.881 0.701 0.573
S7 0.374 0.332 0.257
S8 0.445 0.416 0.345

The results presented in Table 7, regarding the cutting power, were statistically pro-
cessed using the Statistics software. Thus, a Multiple Regression analysis was performed.
The parameters F and p have been established, respectively, and the results obtained are
presented in Table 8.

Table 8. Parameters F and p, respectively, after analysis Multiple Regression.

Parameters of the Cutting
Regime

V01 V02 V03

F p F p F p

n 1.513 0.253 1.491 0.265 1.151 0.302
ap 6.752 0.041 6.753 0.035 8.597 0.019
f 1.611 0.339 1.621 0.305 1.731 0.585

From the analysis of the results presented in Table 7 it is observed that the largest
reduction, of approximately 30%, of the value of the cutting power was obtained in the
case of the S5 sample, processed with tool V03. It should be noted that the largest reduction
was obtained when the highest cutting power values were also calculated. This is all the
more important because the maximum yield was obtained for the sample processed with
cutting regimes specific to roughing operations. Given that, in addition to the reduction in
cutting power, there is also an improvement in the quality of the machined surfaces, the
advantage of using the V03 tool in machining is demonstrated.

With the help of the parameters established following the Multiple Regression analysis
F and p, a series of conclusions can be summarized regarding the way in which the
parameters of the cutting regime influence the values of the cutting power. Thus, higher
values of F and lower values for p (p < 0.1) indicate that the corresponding variable is very
significant [33,34]. From the values presented in Table 8 it is observed that the cutting depth
has the greater influence on cutting power. It is also noted that, for tool V03, the value of p
is the lowest and the value of F is the highest. In these circumstances, it can be concluded
that the V03 tool can be used with the best results in the case of roughing processes.

3.2. The Influence of the Use of Smart Tools on the Roughness of Surfaces Machined through
Cutting

The results of previous research have shown that the roughness of the surfaces is
influenced by both the feed rate and the cutting speed and the cutting depth. Thus,
considering the calculation relationship of the cutting force that depends on the three
factors mentioned above, it can be concluded that the cutting force together with the
friction forces have a very large influence on the surface roughness [35]. In addition, the
surface roughness of a part made of aluminum bronze materials can depend in particular



Materials 2022, 15, 2735 12 of 20

on the combination of the material of the workpiece and of the tool, the geometry of the
tool and the vibrations that may occur in the cutting process [36].

Cutting forces and surface roughness are two very important aspects that must be
taken into account when processing aluminum bronze materials. Thus, cutting forces
have an important influence on the specific cutting pressure and energy consumption [37].
Machining involves a large number of process variables, but in particular, it is always
necessary to optimize the cutting force and surface roughness in order to turn the process
into an eco-process.

Under these conditions, research has sought to improve conditions by ensuring min-
imum values of shear strength and surface roughness. This was mainly due to the fact
that the ecodesign of a cutting process differs according to each type of material processed,
and the analyzed material has been very little studied in previous research. Thus, the
optimization of the aluminum bronze cutting process was carried out to establish a cor-
relation between the cutting force and the surface roughness under the conditions of a
minimum energy consumption. Very often there is a connection between the cutting forces,
the friction forces, the phenomenon of deposits on the edge and the roughness profile. The
adoption of constructive solutions for the cutting tool can allow the creation of conditions
that avoid the phenomenon of deposits on the edge. Thus, the research aimed to achieve a
tool modified constructively compared to the classic version, which would obtain the best
roughness in terms of minimum energy consumption and aimed to create a smart tool to
control the phenomenon of deposits on the edge.

The results obtained showed that, if the V01 tool was used, the deposition of the
processed material on the tool edge was quite pronounced, Figure 6a; if tool V02 was used
the deposition of processed material on the tool edge was insignificant, Figure 6b; if the
V03 tool was used, no deposits appeared on the tool edge, Figure 6c.

The analysis of the surface roughness was performed for the same processing parame-
ters considering the three constructive variants of tools presented in Figure 1. This analysis
was necessary because the constructive changes brought to the tools can substantially influ-
ence both the size of the cutting forces, respectively, friction, and the size of the roughness
of the machined surfaces. Under these conditions, a change in the design of the tool can
lead to the transformation of the cutting process into an eco-process.

In order to be able to establish a correlation between the cutting forces and the surface
roughness, the roughness measurement was performed for the same samples for which
the cutting forces were also measured. The determination of the roughness was made by
repeating the measurements for the 10 samples made with each type of tool. In order for
the roughness measurement to be as accurate as possible, the roughness was measured
on two diametrically opposed surfaces, and this was carried out by indexing the samples
with 360◦. As in any research activity, there is a possibility that certain values may be
aberrant and thus an analysis has been performed to eliminate them, as they may lead
to disproportionate results from statistical processing. The Minitab program was used
for statistical data processing, and aberrant results were eliminated with the help of the
boxplot analysis. In addition, using the same statistical processing program, the normality
of the data distribution was verified using the calculation of the mean, the median value
and the standard deviation. The Kolmogorov-Smirnov test and the Andreson-Darling test
were used to verify the normality of the experimental results. The choice of their use for
the verification of normality was made considering the fact that they are the most sensitive
tests used for the verification of the normal distribution.

The surface roughness was measured for 10 samples processed under the same con-
ditions, and this was required to ensure the adequacy of the results obtained. Each of
the 10 specimens was processed with the 3 constructive variants of tools (V01, V02, V03).
The roughness values measured for the 5 sample processed with the 3 types of tools are
shown in Table 9. The choice of roughness measurement for sample 5 was made given
that the largest reduction in measured shear strength was observed in this case. Thus, it
was observed whether tool V03 allows, in addition to a reduction in energy consumption
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and an improvement in the quality of the processed surfaces. The roughness measurement
process of the parts made of bronze aluminum was performed according to those shown
in Figure 7, and the sample presented during the roughness measurement was number 5,
for which the lowest value for Fc and the lowest roughness of the processed surface were
obtained.
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According to relations (9) and (10), respectively, the roughness of the machined surface
depends very much on the speed of the parameters of the cutting regime and on the
geometry of the cutting tool. Regarding the geometric parameters, it is very important to
always keep optimal values for the setting angle (α) and clearance angle (γ) [38–40]. Thus,
by adopting improved tool construction variants (V02, V03), conditions are created for
maintaining the best possible functional geometry of the tool during machining. So, both
the V02 variant and the V03 variant allow the modification of the values of the setting angle
(α) and the clearance angle (γ) within certain limits, but the tool in the V03 variant has the
best conditions for adjusting the geometry. The values presented in Table 9 demonstrate
that the tool V03 allows the lowest roughness to be obtained. This is explained by the fact
that the arrangement of the plate with a support whose axis can change its position by
3◦ allows to ensure an optimal functional geometry and, at the same time, determines a
reduction of the frictional forces. It should be noted that the reduction in roughness is
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considerable, by about 80–90% when using tool V03 compared to tool V01. It is also noted
that, if the tool V02 was used in the processing, the reduction in roughness is insignificant,
which can be explained by the fact that in the case of this tool can not ensure optimal
geometry but only some damping of vibration. Given the values of the roughness and the
measured forces, it was found that there is a correlation between the roughness and the
cutting force in the sense that, for the case when the V03 tool was used, the best roughness
and the largest reduction in cutting power. From the analysis of the Profile curve diagrams,
Figure 8 it was observed that the maximum value of the roughness was obtained in the
case of the tool V01 of 20 µm, and the lowest value in the case of the use of the tool V03 of
5 µm. This can be explained by the fact that the cutting process in this case is a dynamic
one, mainly determined by formation and breaking at certain time intervals of the deposits
on the edge. In the case of using tools V02 and V03, the roughness values are more stable
along the processed surface, Figure 8b,c, respectively, and this can be explained by the
fact that the dynamic phenomena caused by the appearance of deposits on the edge are
eliminated to a large extent. However, the roughness values are lower in the case of the
V03 variant because in the case of this tool conditions are created to ensure an optimal tool
geometry during cutting.

Table 9. The measured roughness values for the S5 sample, Ra (µm).

No. of the Sample
The Constructive Variant of the Tool

V01 V02 V03

1 3.242 2.823 1.647
2 2.975 2.984 1.677
3 2.853 3.050 1.685
4 3.081 3.235 1.581
5 2.780 3.150 1.877
6 3.267 3.047 1.904
7 2.997 2.963 1.650
8 3.201 2.814 1.401
9 3.260 2.929 1.894
10 3.023 3.086 1.504

Mean 3.068 3.008 1.682
StDev 0.172 0.134 0.168

Cvariation 5.635 4.455 3.012
Median 3.052 3.015 1.664
p-value 0.449 0.911 0.36
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The experimental data obtained during the roughness analyzes were processed and a
series of curves related to the filtered profiles were obtained, Figure 9. During the research,
it was decided to draw the filtered profile curves, because they are obtained by eliminating
those wavelengths located outside the band of interest. Thus, filtered profiles obtained
when using the tool V01, Figure 9a, demonstrate that the roughness values have very large
variations in the length of the surface and reach values of ±10 µm. This demonstrates that
the choice of a constructive variant of tool V01, determined both a high roughness and a
large variation of it along the measured surface. If the tool V02, Figure 9b, respectively, the
tool V03 was used, it was possible to obtain filtered profiles that were much more stable
and with a much smaller amplitude than the situation in which the tool V01 was used.
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It should be noted that the results obtained in the case of filtered profile tracing are
consistent with those obtained in the case of curved profile tracing, and this shows that
the elimination of wavelengths outside the band of interest does not lead to a substantial
change in the results obtained. Furthermore, the comparison of the values obtained for
the roughness with those obtained for the cutting forces confirms the direct connection
between the forces that appear during the processing process and the roughness of the
surfaces [41,42].

For the 5 sample, the experimental data obtained were processed and the graphs,
Abbott Firestone curve, presented in Figure 10. The analysis of the Abbot Firestone curve
demonstrates that, in the case of tool V01, Figure 10a, the best stability of the values of
roughness is not obtained, and their distribution does not fall within a normal distribution.
If the tools V02 and V03 were used, respectively, a fairly good distribution of roughness
values was obtained, coming quite close to the normal distribution, especially if the tool
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V03 was used, Figure 10c. All this demonstrates that the use of the V03 tool provides the
best stability for the cutting process with positive effects on surface roughness and cutting
forces. Thus, they allow the transformation of the cutting process into an eco-process.
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Experimental research shows that, in the conditions in which certain parameters of
the cutting process are optimized, it can be transformed from a processing process into an
eco-process. This is possible by the fact that, in addition to a reduction in surface roughness,
a reduction in cutting forces and, consequently, in the amount of energy consumed in
cutting can also be achieved. It should be noted that, although only the constructive form
of the tool has been optimized and yet the results obtained have been promising, further
optimizations can be made regarding other parameters accompanying the machining
processes (parameters of the cutting regime, the presence of lubricating coolants, tool
material, etc.).

It should be noted that the use of the V03 tool allows to obtain the lowest power
consumed in cutting but also a very large difference in roughness. Thus, sample S5 has
been processed with a cutting regime specific to the roughing operation, but the results
obtained for roughness are remarkable. Under these conditions, the processing of bronze-
type parts with the V03 tool can be carried out in a single roughing phase to ensure the
quality of the machined surfaces. Although the use of a low cutting speed can lead to the
appearance of sharp deposits when using the V03 tool, this phenomenon has not occurred.
This can be explained by the fact that the use of the V03 tool can provide an optimal value
for the clearance angle that has the greatest influence on the deposition on the edge. The
lack of deposition on the edge has a positive influence on the surface roughness because
there are no longer certain detachments of the material from the deposition on the edge
and its adhesion on the processed surface. A predicted square error (PSE) criterion was
proposed to correlate the shear force with the surface roughness in other research [43]. This
criterion could also be used in the research presented as it would help us to determine
the surface roughness and shear force using a prediction model. In view of the results
obtained, future research could identify a new criterion for establishing predictions for
surface roughness and shear forces. In addition, some optimization methods can be used,
such as the Taguchi method, which can be used successfully to identify the optimal cutting
parameters and the optimal tool geometry that obtain the lowest roughness [44,45].

Under these conditions, research has shown that there is a possibility that, by opti-
mizing the constructive form of the tool, a processing process can be transformed into an
eco-process.

4. Conclusions

The research aimed at designing a tool for machining materials such as bronze-
aluminum alloys to reduce energy consumption while ensuring a very good quality of the
processed surfaces.

Thus, it has been shown that it is possible to reduce energy consumption and turn
the processing into an eco-process. In addition, the steps taken in the research allowed to
establish the optimal conditions for which the lowest energy consumption and the lowest
roughness of the processed surfaces can be obtained. The ecodesign of the cutting process
of the bronze-aluminum alloy cutting has demonstrated the following:

• the maximum reduction in cutting forces was about 30%, and this reduction also
allows a decrease in cutting power and, implicitly, in the amount of energy consumed;

• the effect of the constructive changes brought to the cutting tool also determines a
reduction of the intensity of the adhesion phenomenon of the material to be processed
on the cutting edge of the tool;

• by reducing the adhesion of the processed material on the cutting edge of the tool, an
improvement of the surface roughness of the part was also obtained, thus achieving a
correlation between energy consumption and surface roughness,

• there is the possibility to choose the design parameters that allow the transformation
of the processing process into an eco-process.

• tool V03 allows to obtain the best performances if it is used in the roughing processes.

The research presented has shown the importance of adopting the principles of eco-
design for the process of cutting aluminum alloys by cutting, but these results can also be
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used in eco-design of processing processes for other types of alloys. Future research will
aim to analyze the possibilities of applying the results obtained for other types of tools and
processing procedures.
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