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Abstract: Ultra-small palladium nanoparticles were synthesized and applied as catalysts for a
hydrogen evolution reaction. The palladium metal precursor was produced via beta-cyclodextrin
as organo-nanocup (ONC) capping agent to produce ultra-small nanoparticles used in this study.
The produced ~3 nm nanoparticle catalyst was then characterized via X-ray diffraction (XRD),
transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), and Fourier
transform infrared spectroscopy (FTIR) to confirm the successful synthesis of ~3 nm palladium
nanoparticles. The nanoparticles’ catalytic ability was explored via the hydrolysis reaction of sodium
borohydride. The palladium nanoparticle catalyst performed best at 303 K at a pH of 7 with 925 µmol
of sodium borohydride having an H2 generation rate of 1.431 mL min−1 mLcat

−1. The activation
energy of the palladium catalyst was calculated to be 58.9 kJ/mol.

Keywords: palladium nanoparticles; organo-nanocups; catalysts; hydrogen evolution; hydride precursors

1. Introduction

Within the past 20 years, nanotechnology has allowed the development of smaller,
more intricate systems and materials that have revolutionized many fields of study, includ-
ing medicine, chemistry, and engineering. This has provided a great deal of positive change
for numerous applications such as sensors, adsorbents, solar cells, and catalysis [1–9]. The
unique properties of nanomaterials are ultimately driving their application in many fields,
and their dimensions allow them to replace conventional materials to provide smaller, more
efficient technologies [8–10]. This allows typically costly materials, such as precious metals,
to be applied in economical ways with more efficient means, ultimately stretching global
reserves further.

The transition metals, commonly known as precious metals or platinum group metals,
have been prized for centuries due to their chemical resistivity caused by a full d-shell
orbital. These metals are not only found in jewelry but also in many electrical and chemical
applications due to their high conductivity and resistance to oxidation. Nanoparticles (NPs)
of these precious metals, such as silver and gold, have shown impressive catalytic activity in
hydrogenation and hydrogen evolution reactions [5,7,9–12]. Platinum and palladium NPs
have also been used in a variety of organic reactions and have been studied in hydrogen
evolution reactions [13–17]. Despite the high cost of these transition metals, nanoparticles
of these elements are much less expensive than bulk and are more effective due to the
innately high surface area to volume ratio of nanomaterials.

Hydrogen energy has been identified as a possible green alternative fuel source [18–20].
Due to the dangers and energy intensity of hydrogen gas storage, research has focused on
producing the gas on an as-needed basis for fuel cells [21–23]. Sodium borohydride has
been identified as a possible candidate for storing hydrogen gas for fuel cells due to its low
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density and impressive hydrogen content of 10.8% wt. However, the hydrolysis reaction of
aqueous NaBH4 is slow and would require a catalyst to be effectively applied [21,24–26].
Gold and silver NPs have shown promise in the catalysis of this reaction in previous
works, and palladium is known to be a strong catalyst for hydrogenation reactions from
NaBH4 [5,7,9,10,14–16,27].

In this study, we utilized beta-cyclodextrin as an organo-nanocup capping agent to
synthesize and form a network of ultra-small palladium nanoparticles (PdNPs). The PdNPs
were characterized by various methods * applied in catalyzing the hydrogen generation
reactions under various temperatures, pH, and reactant concentrations. At 303 K, the
PdNPs catalyzed reaction produced a highest hydrogen amount at pH of 7 with 925 µmol
of sodium borohydride.

2. Experimental
2.1. Materials

Palladium (II) chloride (Sigma-Aldrich, St. Louis, MO, USA, 99.9%), beta-cyclodextrin
(Sigma-Aldrich, 99%), sodium borohydride (J.T. Baker, Phillipsburg, NJ, USA, 98%), deion-
ized water (18 MΩ).

2.2. Synthesis

A 1 mM solution of Palladium (II) chloride was first created. A separate solution of
aqueous beta-cyclodextrin (β-CD) with a concentration of 10 mM was also made. These
solutions were combined in a ratio by volume of 1:6.4 then stirred for approximately
10 min. A 180 mM solution of sodium borohydride (NaBH4) was then made, chilled,
and added to the above mixture in a 1:2 volume ratio. This mixture was then stirred for
120 min to aid in the formation of nanoparticle colloids (0.07 mM). All processes occurred
at room temperature.

2.3. Characterization

The known identity of palladium nanoparticles was determined from the diffraction
peaks seen using powder X-ray diffraction (XRD-Rigaku Miniflex II, Tokyo, Japan). The
Cu Kα X-ray was emitted from copper target tube. The Cu Kβ radiation was filtered by
nickel filters. The palladium nanoparticles were loaded on silicon wafer template and then
scanned from 35◦ to 90◦.

UV-Vis (Shimadzu UV-2600 UV-Vis Spectrophotometer, Kyoto, Japan) confirmed the
successful reduction of Pd(II) to Pd(0).

Beta-cyclodextrin contains a major functional group that was identified using Fourier
transform infrared spectroscopy (FTIR, Shimadzu IR-Tracer 100, Kyoto, Japan).

Transmission electron microscopy (TEM, JEM-2100F, JEOL Ltd., Akishima, Tokyo)
helped characterize the nanoparticles produced by determining the dimensions of the
nanoparticles and the electron diffraction patterns. We pipetted 1 µL of our catalyst onto a
TEM grid and then dried it in an oven for 48 h prior to characterization.

2.4. Catalysis

Catalytic ability of our palladium nanoparticles was tested for evolution of hydrogen
from aqueous sodium borohydride. The amount of hydrogen gas formed was quantified
through the use of a gravimetric water displacement system [16,17]. The reactions of
625, 925, and 1225 µmol of aqueous NaBH4 in 100 mL of deionized water were catalyzed
using 200 µL of the palladium nanoparticle colloids (0.07 M). The catalytic activity was
compared in varied temperature (283 K, 288 K, 295 K, 303 K) as well as varied pH (6, 7, 8) by
manipulation of the reaction chamber using an ice bath or heating mantle for temperature
trials and hydrochloric acid or sodium hydroxide for pH trials. The contents of the reaction
chamber were stirred throughout the 120-min trials to maintain equal distribution of the
catalyst and reactant in the solution. Throughout the catalytic activity tests, the reactions
were run with 925 µmol of reactant in 0.1 L of deionized water with a temperature of 295 K
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and a pH of 7 unless otherwise stated. The water displaced by the produced hydrogen gas
was quantified with a Pioneer Balance (Pa124) made by Ohaus (Parsippany, NJ, USA) and
using the SPDC Data Collector software (Ohaus, v2.01).

In the reusability test, 200 µL of palladium nanoparticles colloid was mixed with
100 mL of deionized water. Then 625 µmol of NaBH4 was added to the above mixture. The
reaction was run at pH 7 and a temperature of 295 K. After the reaction no longer produced
more hydrogen, the same amount of NaBH4 was added to test for the ability of palladium
nanoparticles in continuing catalyzing the reactions.

3. Results and Discussion
3.1. Characterization

The UV-Vis Spectrum of PdNPs was displayed in Figure 1 and compared to that
of PdCl2. The PdNPs showed absorbance peak at 315 nm, which was consistent with
the absorbance range of previous studies [28,29]. The conversion of Pd(II) to Pd(0) was
confirmed by the lack of the characteristic 415 nm peak [28–30]. These results confirmed
the presence of PdNPs.
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Figure 1. UV-Vis analysis of the spectra given off by PdNPs compared to that of PdCl2.

TEM micrographs (Figure 2) display the produced palladium nanoparticles (PdNPs).
These images allowed the average diameter of our material to be determined to be
2.7 ± 0.8 nm. The TEM imaging again confirmed the successful synthesis of nanopar-
ticles and showed that there was minimal agglomeration. Beta-cyclodextrin (Figure 3) as
organo-nanocup (ONC) was used in conjunction with the nanoparticles to create a cap-
ping effect. The impressive uniformity of the produced nanoparticles combined with the
facile nature of the synthesis makes beta-cyclodextrin an ideal capping agent to stabilized
palladium nanoparticles.
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Figure 2. (a) Images of the palladium nanoparticles taken using TEM. The average diameter was
determined to be 2.7 ± 0.8 nm. (b) The electron diffraction pattern of palladium nanoparticles.
(c) Lattice fringes of palladium nanoparticles (d = 0.12 nm).
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Figure 3. A graphical depiction of organo-nanocup capping agent of beta-cyclodextrin (a) and its
molecular structure (b). Its shape consists of two hydroxyl rings, primary being the smaller of the
two and secondary being the larger, and an internal cavity measuring 0.78 nm in diameter.

Beta-cyclodextrin’s unique shape as nanocup aids in its efficiency as a capping
agent [10]. The deep hydrophobic internal cavity in the center of the molecule confines
nanoparticles within its narrow walls which prevents agglomeration by restricting their
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ability to grow unchecked [10]. This effect results in isolated and uniform particles, which
are more efficient catalysts due to their increased available surface area. The structure of
beta-cyclodextrin was depicted in Figure 3. The outer diameter, inner diameter and height
of beta-cyclodextrin were 1.53 nm, 0.78 nm and 0.78 nm, respectively [10,31].

The XRD pattern (Figure 4) displayed the crystallinity of the palladium nanoparticles.
The peaks at 40◦, 48◦ were corresponded with the (111) and (200) planes for a face centered
cubic (FCC) of palladium nanoparticles [28–30]. The highest peak at 69◦ was attributed to
the silicon wafer in which the nanoparticles are loaded on [32]. That the other planes of the
palladium nanoparticles were not detected could be due to the size of the nanoparticles. It
was indicated in the literature that the nanoparticles with the average size below 5 nm will
influence the XRD pattern [33]. TEM electron diffraction (Figure 2b) confirmed the other
planes of (220), (311), and (331) of palladium nanoparticles [34,35]. Figure 2c shows the
lattice fringe of palladium nanoparticles in which the d spacing is 0.12 nm.
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Figure 4. The characteristic peaks of the PdNPs on carbon tape from X-ray diffraction.

Supported β-CD in PdNPs was confirmed by FTIR (Figure 5). The IR spectrum showed
characterized peaks at 1030 cm−1, 1152 cm−1 and 1632 cm−1 that were corresponding with the
vibrational stretching of glycosidic bond (C-O) of beta-cyclodextrin [36]. There was no strong
peak at 2300 cm−1, which indicated that no NaBH4 remained in the nanoparticle colloids.
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3.2. Concentration Effect on Catalytic Ability

Under varied concentrations of reactants, the PdNPs showed the greatest hydrogen
production rate of 1.194 mL min−1 mLcat

−1 with 1225 µmol of NaBH4 (Figure 6). The next best
conditions for the nanoparticle catalyst was 925µmol for the PdNPs (0.944 mL min−1 mLcat

−1).
The lowest concentration for hydrogen production rate was 635 µmol of NaBH4 producing
H2 gas at a rate of 0.650 mL min−1 mLcat

−1. Based on Figure 6 it is clear that there is a direct
relationship between the concentration of NaBH4 used in the reaction and the amount of
hydrogen produced. This agrees with Le Chatelier’s principle and Equation (1), where an
increase in the reactants results in a shift to the right, increasing the products.

BH4
− + 2H2O→ BO2

− + 4H2 (1)
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Figure 6. Volume of H2 generated versus time at varying sodium borohydride concentrations
(625 µmol, 925 µmol, 1225 µmol). Reactions were run at ambient conditions for approximately
120 min.

3.3. Effect of pH on Catalytic Ability

When the reaction was run using solutions of different pH’s, the highest rate hydrogen
production rate was seen at acidic conditions (pH 6) with a rate of 1.121 mL min−1 mLcat

−1

(Figure 7). This was then followed by pH 7 and pH 8 with evolution rates of 0.944 mL min−1 mLcat
−1

and 0.560 mL min−1 mLcat
−1, respectively. It is known that the formation of borate ions

occurs at lower pH, which increases the reaction rate of the uncatalyzed hydrolysis reaction
(Equation (1)) [23].

3.4. Activation Energy and Effect of Temperature on Catalytic Ability

Under varied temperatures, palladium nanoparticles produced the most hydrogen at
303 K with a rate of 1.431 mL min−1 mLcat

−1 (Figure 8). For the 283 K and 288 K temperature
conditions, rates of 0.255 mL min−1 mLcat

−1 and 0.585 mL min−1 mLcat
−1 were observed,

respectively. Finally, a hydrogen generation rate of 0.944 mL min−1 mLcat
−1 was seen at

295 K (Figure 8). Based on Figure 8 and Equation (2), the activation energy was calculated
from the temperature trials to be 58.9 kJ/mol (Figure 9). Palladium nanoparticles displayed
a similar activation energy when compared to other catalysts in literature (Table 1). The
activation energy of Pd nanoparticles in this study is very attractive compared to most of
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the catalysts reported in the literature. In this study, it was conducted in ambient condition
in the range of 273 K to 303 K.

lnK = lnA − Ea/RT (2)
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Figure 9. Arrhenius Plot created from the temperature data allowed for the calculation of the
activation energy of the NaBH4 reaction catalyzed by the PdNPs.

Table 1. Reported activation energies for NaBH4 hydrolysis by catalyst.

Catalyst Ea (kJ/mol) T (K) Reference

AuNPs 54.7 283-303 [10]

Au/MWCNTs 21.1 273–303 [11]

Ag/MWCNTs 44.5 273–303 [12]

Pd/C 28.0 283–323 [16]

Pt-Pd-CNTs 19.0 302–332 [17]

Ru nanoclusters 41.0 298–318 [37]

Ni nanoclusters 54.0 298–318 [38]

Ni-Ru nanoclusters 52.7 288–348 [39]

Co/Fe3O4@C 49.2 288–328 [40]

Co–Cr–B 44.5 293–333 [41]

Cu-Fe-B 57 285–333 [42]

CuNWs 42.5 298–333 [43]

Cu based catalyst 61.2 293–313 [44]

PtMWCNT 46.2 283–303 [45]

PtNPs 39.2 283–303 [46]

AgNPs 50.3 273–303 [47]

PdNPs 58.9 273–303 This Work

Figure 10 depicts the stability of our PdNPs catalyst over the course of five consecutive
hydrogen generation trials. Each trial produced similar volumes of hydrogen with an
average volume of 32.9 mL observed among all trials. These results show a clear benefit to
our catalyst as it can be utilized multiple times without a significant change in productivity.



Materials 2022, 15, 2692 10 of 13

Materials 2022, 15, x FOR PEER REVIEW 10 of 13 
 

 

Ni-Ru nanoclusters 52.7 288–348 [39] 

Co/Fe3O4@C 49.2 288–328 [40] 

Co–Cr–B 44.5 293–333 [41] 

Cu-Fe-B 57 285–333 [42] 

CuNWs 42.5 298–333 [43] 

Cu based catalyst 61.2 293–313 [44] 

PtMWCNT 46.2 283–303 [45] 

PtNPs 39.2 283–303 [46] 

AgNPs 50.3 273–303 [47] 

PdNPs 58.9 273–303 This Work 

Figure 10 depicts the stability of our PdNPs catalyst over the course of five consecu-

tive hydrogen generation trials. Each trial produced similar volumes of hydrogen with an 

average volume of 32.9 mL observed among all trials. These results show a clear benefit 

to our catalyst as it can be utilized multiple times without a significant change in produc-

tivity. 

  

Figure 10. Reusability of the same PdNPs material for the reaction of sodium borohydride in water. 

Each trial ran for 120 min at 295 K and used 925μm of NaBH4. 

Table 1 is based on the Michaelis–Menten model for metal catalyzed hydrolysis of 

aqueous NaBH4 (Equations (3) and (4)) [9,11,12,17]. The proposed mechanism and its 

equations show how both the active catalytic metal site and an adjacent unoccupied site 

can stabilize the borohydride complex with the metal and the hydride ions. This indicates 

that the surface area of a catalyst is incredibly important to this reaction as unoccupied 

metal sites are also shown to aid in catalysis. The Scheme 1 also depicts the multi-electron 

process of this reaction, in which the last step repeats until tetrahydroxyborate is released 

from the metal site. Therefore, it is believed that a successful catalyst facilitates the move-

ment of electrons between adjacent sites. 

M + BH4
− ↔ MH + MBH3

− (3) 

MH + MBH3
− + 4H2O → M + 4H2 + [B(OH)4]− (4) 
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Each trial ran for 120 min at 295 K and used 925 µm of NaBH4.

Table 1 is based on the Michaelis–Menten model for metal catalyzed hydrolysis of
aqueous NaBH4 (Equations (3) and (4)) [9,11,12,17]. The proposed mechanism and its
equations show how both the active catalytic metal site and an adjacent unoccupied site can
stabilize the borohydride complex with the metal and the hydride ions. This indicates that
the surface area of a catalyst is incredibly important to this reaction as unoccupied metal
sites are also shown to aid in catalysis. The Scheme 1 also depicts the multi-electron process
of this reaction, in which the last step repeats until tetrahydroxyborate is released from the
metal site. Therefore, it is believed that a successful catalyst facilitates the movement of
electrons between adjacent sites.

M + BH4
− ↔MH + MBH3

− (3)

MH + MBH3
− + 4H2O→M + 4H2 + [B(OH)4]− (4)
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4. Conclusions

The ultra-small palladium nanoparticles were produced with the assistance of beta-
cyclodextrin as organo-nanocup capping agent. The nanoparticles were then characterized
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via UV-Vis, TEM, FTIR, and XRD before application as a catalyst in the hydrolysis of
sodium borohydride. The resultant ~3 nm Pd nanoparticles performed well as a catalyst
with great usability, with an activation energy calculated to be 58.9 kJ/mol. The palladium
nanoparticles show promise as a catalyst for application in sodium borohydride-based
fuel cells.
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