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Abstract: The structural design process is iterative and involves many design parameters. Thus, this
paper presents a controlled framework for selecting the adequate structural floor system for reinforced
concrete buildings and efficiently utilizing the corresponding construction materials. Optimization
was performed using an evolutionary algorithm to minimize the total construction cost, considering
the costs of concrete, steel reinforcement, formwork, and labor. In the problem formulation, the
characteristic compressive strength of concrete was treated as a design variable because it affects the
mechanical performance of concrete. The design variables included the column spacings, concrete
dimensions, and steel reinforcement of different structural components. The constraints reflected
the Egyptian code of practice provisions. Because the choice of the structural floor system affects the
design details, three systems were considered: solid slabs, flat slabs with drop panels, and flat slabs
without drop panels. Two benchmark examples were presented, and the optimal design results of
the structural floor systems were compared. The solid slab system had the lowest construction cost
among the three structural floor systems. Comparative diagrams were developed to investigate the
distribution of construction costs of each floor system. The results revealed that an adequate choice
of design variables could save up to 17% of the building’s total construction cost.

Keywords: construction materials; excel solver; evolutionary; structural design; solid slabs; flat slabs

1. Introduction

Reinforced concrete (RC) has been extensively used in building construction for its
versatility and ease of construction [1]. The first step in any structural design process
is choosing a proper structural system. This step is followed by specifying a concrete
grade and determining preliminary concrete dimensions of the structural elements. Then,
structural analysis is performed. The required steel reinforcement is then calculated to en-
hance the mechanical performance of structural elements such as ductility, tensile strength,
and creep resistance [2–7]. Finally, the ultimate limit state and serviceability limit state
requirements provided by design codes are checked [8–11]. If any design provision is not
satisfied, the concrete dimensions should be adjusted, and accordingly, re-analysis of the
structure is performed [12]. From the steps mentioned above, it can be concluded that the
design problem involves many dependent and independent variables; therefore, the design
process is iterative and time-consuming [13]. For these reasons, researchers have been
exploring different optimization techniques to reduce the computational time and minimize
the overall construction cost [12–15]. The optimization techniques investigated include
the firefly algorithm [15], simulated annealing [13,16,17], and genetic algorithm [18–20].
Several studies used different algorithms built in the solver tool provided by Microsoft
Excel [12,21,22].
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The majority of previous studies focused on the optimization of individual RC structural
elements, such as slabs [13,23,24], beams [12,18,22], columns [15,16,25], footings [21,26,27],
and retaining walls [19,28,29]. The design procedures in these studies were subjected to
specific code restrictions, such as the American concrete institute (ACI 318-19, ACI 318-14,
ACI 318-05), Indian standards (IS: 456), Eurocode 2 (EN 1992-1-1:2004/A1:2014), and Brazil-
ian standards (ABNT NBR 6118:2014, ABNT NBR 6118:2007). The design variables were
limited to the structural element’s concrete dimensions and steel reinforcement. Several
studies performed design optimization of RC three-dimensional large-scale structures with
a single structural floor system [30–33]. Sahab et al. [30] performed cost optimization of
buildings with flat slabs without drop panels, and they determined the optimal concrete
dimensions and steel reinforcement of floors and columns. They also examined the effects
of the column spacings on the optimal construction costs and found significant cost savings
when the most economic column spacing was considered. Ženíšek et al. [31] studied the
effects of ten concrete grades on the optimal construction costs of load-bearing structures.
They investigated the effects of column spacings on the optimal results by considering two
span variants (4 m and 8 m). Dehnavipour et al. [32] performed cost optimization of multi-
story frames and determined the optimal concrete dimensions and steel reinforcement
of beams and columns. Boscardin et al. [33] developed an optimization model to obtain
the minimum construction cost of multi-story frames considering the steel reinforcement
of columns and the concrete dimensions of beams and columns as design variables. The
model was designed to investigate the effects of this automation on the optimal results.
In another attempt, Robati et al. [34] conventionally designed a multi-story building by
considering two structural floor systems and two types of concrete: flat slab with normal
weight concrete, flat slab with ultra-lightweight concrete, waffle slab with normal weight
concrete, and waffle slab with ultra-lightweight concrete. The authors found that the most
economical design alternative was the waffle slab with normal weight concrete, which
saved up to 7% on material consumption.

Despite the intensive efforts of the researchers to minimize the costs of RC buildings,
little attention was paid to considering different structural floor systems. Thus, the main
aim of the current study was to determine the most economical structural floor system.
To this end, three different structural floor systems were considered: solid slabs (SS), flat
slabs with drop panels (FSDP), and flat slabs without drop panels (FS). Figure 1 provides a
scheme of the building for each structural floor system. The structural components of each
system were designed in accordance with the Egyptian code of practice for the design and
construction of concrete structures (ECP 203-18) [35].

The design variables in most studies were limited to the concrete dimensions and steel
reinforcement, neglecting the concrete characteristic compressive strength fcu and column
spacings. The authors considered fcu as a design variable because it influences the mechan-
ical performance of RC elements (i.e., elastic modulus, flexural strength, shear strength,
punching strength, etc.). Accordingly, the concrete dimensions of structural components are
dependent on fcu. As fcu increases, the unit price of concrete Uc increases and, consequently,
the construction cost increases. Likewise, the column spacings were considered as design
variables because they affect the straining actions (i.e., axial compressive loads, bending
moments, shear loads), deflections, and choice of the concrete dimensions of the structural
components. The design variables also included the optimal concrete dimensions and steel
reinforcement of structural components. The objective function of the optimization problem
was expressed in a mathematical formula, where the minimum construction cost of the
floors and columns was sought. The construction cost of foundations was not included in
the problem formulation because it is greatly dependent on the geotechnical properties
of the soil. The solver tool provided by Microsoft Excel was used to perform the cost
optimization. Comparative diagrams were developed to compare the optimal costs of
construction materials and labor for different structural floor systems.
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2. Structural Design

The structural design started with calculating the applied loads. These loads were
calculated as per the Egyptian code for calculating loads and forces in structural and
building works (ECL) [36]. Then, structural analysis was performed to obtain the straining
actions. Finally, the concrete dimensions and steel reinforcement were determined to fulfill
the design requirements. The design procedures of the slabs, beams, and columns are
summarized in the following subsections.

2.1. RC Slabs

In the current study, the structural analysis of solid slabs and flat slabs was performed
using the empirical methods provided by ECP 203-18 [35]. In the case of solid slabs, a strip
of 1 m width was analyzed in the long and short directions. In the case of flat slabs, a column
strip (a strip in the region of columns) and a field strip (a middle strip between the column
strips) were analyzed in the long and short directions. Figure 2 shows the analyzed strips
of slabs for each structural floor system. The design steps can be summarized as follows.
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Figure 2. Analyzed strips of slabs for each structural floor system: (a) SS; (b) FSDP; (c) FS.

Step 1. Checking the rectangularity of the slabs as per Equation (1).

L1

L2
≤
{

2 for SS
1.33 for FSDP and FS

(1)

where L1 and L2 are the column spacings in the long and short directions, respectively.
Step 2. For flat slabs, calculation of the column strip width bcs, the field strip width in

the long direction bfs
1 , and the field strip width in the short direction bfs

2 using
Equations (2)–(4), respectively.

bcs =

{
Sdrop for FSDP
L2
2 for FS

(2)

bfs
1 = L2 − bcs for long direction (3)

bfs
2 = L1 − bcs for short direction (4)
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Step 3. Determining the preliminary slab thickness tsl using Equation (5).

tsl ≥


max

(
L2
40 , 80 mm

)
for SS

max
(

L1
36 , 150 mm

)
for FSDP

max
(

L1
32 , 150 mm

)
for FS

(5)

Step 4. For flat slabs with drop panels, determining the preliminary drop panel
thickness tdrop using Equation (6) and the preliminary drop panel square width Sdrop using
Equation (7).

tdrop ≥ tsl

4
(6)

L1

3
≤ Sdrop ≤ L2

2
(7)

Step 5. Determining the preliminary width bcl of each column utilizing Equation (8).

bcl ≥

 250 mm; cl = 1, 2, . . . , ncl for SS

max
(

h
15 , L1

20 , 300 mm
)

; cl = 1, 2, . . . , ncl for FSDP and FS
(8)

where cl represents the column under consideration and ncl is the number of columns in a
typical story.

Step 6. Calculation of the uniform load wsl applied to the slabs utilizing Equation (9);
this depends on the dead load g and the live load p. The dead load g is calculated using
Equation (10), while the live load p is provided using ECL based on the function of the
building [36].

wsl= 1.4g + 1.6p (9)

g =


γrctsl+w f for SS

γrctsl+γrc
tdrop(Sdrop)

2

L1L2
+w f+wwl for FSDP

γrctsl+w f+wwl for FS

(10)

where γrc is the unit weight of reinforced concrete; w f is the flooring load; wwl is the
partition wall load.

Step 7. Calculation of the applied bending moments Msl
s,1 and Msl

s,2 at each critical
cross-section of the long and short directions, respectively, as per Equations (11) and (12).

Msl
s,1 =



βslwsl(L1)
2

fs
; s = 1, 2, . . . , ns for SS (slab strip; long direction)

Cs
bcs

(
wsl L2

8

)(
L1 − 2bcl

3

)2
; s = 1, 2, . . . , ns for FSDP and FS (column strip; long direction)

Fs

b f s
1

(
wsl L2

8

)(
L1 − 2bcl

3

)2
; s = 1, 2, . . . , ns for FSDP and FS (field strip; long direction)

(11)

Ms1
s,2 =



αslwsl(L2)
2

fs
; s = 1, 2, . . . , ns for SS (slab strip; short direction)

Cs
bcs

(
wsl L1

8

)(
L2 − 2bcl

3

)2
; s = 1, 2, . . . , ns for FSDP and FS (column strip; short direction)

Fs

b f s
2

(
wsl L1

8

)(
L2 − 2bcl

3

)2
; s = 1, 2, . . . , ns for FSDP and FS (field strip; short direction)

(12)

where αsl and βsl are the coefficients obtained from ECP 203 based on the slab rectangularity;
fs is a factor obtained from ECP 203-18 based on the location of the critical cross-section; s
represents the critical cross-section under consideration; ns is the number of critical cross-
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sections; and Cs and Fs are percentages of the total bending moment for the column strip
and field strips, respectively. These percentages are obtained from ECP 203-18, depending
on the location of the critical cross-section.

Step 8. Calculation of the maximum permissible bending moment Msl,max using
Equation (13).

Msl,max =
Rmax fcubsl

(
dsl
)2

γc
(13)

where Rmax is a factor obtained from ECP 203-18 and is based on the value of the yield
strength of the longitudinal steel reinforcement fy, bsl is the width of the slab cross-section,
dsl is the effective depth of the slab, and γc is the safety reduction factor for concrete
obtained from ECP 203-18.

Step 9. Checking that Msl
s,1 and Msl

s,2 at each critical cross-section does not exceed
Msl,max.

Step 10. Calculation of the required steel reinforcement area Asl,r
s for each critical

cross-section in the long and short directions as per Equation (14).

Asl,r
s =

fydsl

γs
−

√(
fydsl

γs

)2
− 3

[
( fy)

2
γc Msl

s

(γs)
2 fcubsl

]
1.5
[

( fy)
2
γc

(γs)
2 fcubsl

] ; s = 1, 2, . . . , ns (14)

where γs is the safety reduction factor for the steel reinforcement obtained from ECP 203-18
and Msl

s is the applied bending moment in the direction under consideration.
Step 11. Calculation of the minimum and maximum permitted areas of steel reinforce-

ment Asl,min and Asl,max, respectively, as per Equations (15) and (16).

Asl,min= max
(

0.6
fy

bsldsl, 0.0015bsltsl
)

(15)

Asl,max =

(
0.67 f cu

γc

)(
1.25 cmax

d
)
bsldsl(

fy
γs

) (16)

where cmax is the maximum permitted distance between the neutral axis and extreme
compression fibers. The ratio cmax

d is obtained from ECP 203-18 and is based on the value
of fy.

Step 12. Selecting the bar diameter φsl
s for each critical cross-section in the long and

short directions, which shall be greater than or equal to 10 mm. This step is followed by
determining the number of bars nsl

s per meter for each critical cross-section in the long and
short directions as per Equation (17).

5 ≤ nsl
s ≤ 10; s = 1, 2, . . . , ns (17)

Step 13. Calculation of the chosen steel reinforcement area Asl,ch
s for each critical

cross-section in the long and short directions.
Step 14. Checking that Asl,ch

s satisfies the limits provided by Equation (18).

max
(

Asl,r
s , Asl,min

)
≤ Asl,ch

s ≤ Asl,max; s = 1, 2, . . . , ns (18)
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Step 15. Determining the shrinkage steel reinforcement area Asl,sh in each direction
that satisfies the temperature and cracking requirements utilizing Equation (19).

Asl,sh =

{
0 if tsl < 160 mm
max

(
0.02Asl,m, 392.7 mm2

)
if tsl ≥ 160 mm

(19)

where Asl,m is the area of the maximum bottom steel reinforcement in each direction.
Step 16. Calculation of the tensile strength of concrete fctr using Equation (20).

fctr = 0.6
√

fcu (20)

Step 17. Calculation of the cracking bending moment Msl,cr as per Equation (21).

Msl,cr =
fctr Isl,g

ysl (21)

where Isl,g is the gross moment of inertia of the slab cross-section, neglecting the cross-
sectional area of steel reinforcement, and ysl is the distance from the neutral axis to the
extreme tension fibers of the slab gross cross-section.

Step 18. Calculation of the unfactored applied bending moments Msl,d
s , Msl,l

s , and Msl,t
s re-

sulting from the dead, live, and total loads, respectively, as per Equations (22)–(24), respectively.

Msl,d
s =


βslg(L2)

2

fs
; s = 1, 2, . . . , ns for SS

Cs
bcs

(
gL2

8

)(
L1− 2bcl

3

)2
; s = 1, 2, . . . , ns for FSDP and FS

(22)

Msl,l
s =


βsl p(L2)

2

fs
; s = 1, 2, . . . , ns for SS

Cs
bcs

(
pL2

8

)(
L1− 2bcl

3

)2
; s = 1, 2, . . . , ns for FSDP and FS

(23)

Msl,t
s = Msl,d

s +Msl,l
s ; s = 1, 2, . . . , ns (24)

Step 19. Calculation of the elastic modulus of concrete Ec as per Equation (25).

Ec= 4400
√

fcu (25)

Step 20. Determining the distance zsl from the neutral axis and the extreme compres-
sion fibers of the slab cracked cross-section at the midspan using Equation (26).

zsl =


−nAsl,b

2 +

√(
nAsl,b

2

)2
+2nbsl Asl,b

2 dsl

bsl for SS

−nAsl,b
1 +

√(
nAsl,b

1

)2
+2nbsl Asl,b

1 dsl

bsl for FSDP and FS

(26)

where n is the modular ratio of concrete to steel, and Asl,b
1 and Asl,b

2 are the chosen areas of
the maximum bottom reinforcement in the long and short directions, respectively.

Step 21. Calculation of the moment of inertia Isl,cr of the slab cracked cross-section at
the midspan as per Equation (27). Figure 3 illustrates the cracking modes of slabs against
applied bending moments.

Isl,cr =


bsl(zsl)

3

3 +nAsl,b
2

(
dsl − zsl

)2
for SS

bsl(zsl)
3

3 +nAsl,b
1

(
dsl − zsl

)2
for FSDP and FS

(27)
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Step 22. Calculation of the effective moment of inertia Isl,e of the slab cross-section at
the midspan as per Equation (28).

Isl,e =


Isl,g if Msl,tmid ≤ Msl,cr

Isl,g
(

Msl,cr

Msl,tmid

)3
+Isl,cr

[
1 −

(
Msl,cr

Msl,tmid

)3
]

if Msl,tmid ≥ Msl,cr
(28)

where Msl,tmid is the unfactored applied bending moment resulting from the total load at
the midspan.

Step 23. Calculation of the short-term deflections ∆sl,d, ∆sl,l , and ∆sl,st at the midspan
resulting from the dead, live, and total loads, respectively, as per Equations (29)–(31).

∆sl,d =


5(L2)

2

48Ec Isl,e

[
Msl,dmid − 0.1

(
Msl,dleft+Msl,dright

)]
for SS

5(L1)
2

48Ec Isl,e

[
Msl,dmid − 0.1

(
Msl,dleft+Msl,dright

)]
for FSDP and FS

(29)

∆sl,l = ∆sl,d
(

p
g

)
(30)

∆sl,st = ∆sl,d + ∆sl,l (31)

where Msl,dmid, Msl,dleft, and Msl,dright are the unfactored applied bending moments resulting
from the dead load at the midspan, left support, and right support, respectively.

Step 24. Calculation of the total long-term deflection ∆sl,lt at the midspan utilizing
Equation (32).

∆sl,lt = ∆sl,st+αlt∆sl,d (32)

where αlt is a factor obtained from ECP 203-18 to consider the effects of creep.
Step 25. Checking that ∆sl,lt does not exceed the permitted deflection imposed by ECP

203-18 as per Equation (33).

∆sl,lt ≤
{ L2

250 for SS
L1

250 for FSDP and FS
(33)
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Step 26. Check the punching shear stresses, where this shall be applied for flat slabs
only because the presence of beams eliminates the risk of punching shear failure. The check
starts with determining the effective depth dp which resists the punching shear stresses as
per Equation (34).

dp =

{
dsl+tdrop for FSDP

dsl for FS
(34)

Step 27. For each slab–column connection, calculation of the critical shear perimeter
pcl, the critical shear area Acl,cr, and the tributary area Acl,tr. These calculations are presented
in Table 1, where the critical cross-section for punching shear is at a distance 0.5dp from the
column face.

Table 1. Critical shear parameters at the slab–column connections.

Type of Column Interior Edge Corner

Shape
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Step 28. Calculation of the applied punching shear load Qcl as per Equation (35).

Qcl= wsl
(

Acl,tr − Acl,cr
)

; cl = 1, 2, . . . , ncl (35)

Step 29. Calculation of the applied punching shear stress qcl using Equation (36).

qcl =
Qclβcl

pcldp
; cl = 1, 2, . . . , ncl (36)

where βcl is a factor obtained from ECP 203-18 based on the column location.
Step 30. Calculation of the nominal concrete punching shear strength qcl,max utilizing

Equation (37).

qcl,max= min

[
0.8

(
αcldp

pcl + 0.2

)√
fcu

γc
, 0.316

√
fcu

γc
, 1.7 MPa

]
; cl = 1, 2, . . . , ncl (37)

where αcl is a factor obtained from ECP 203-18 based on the column location.
Step 31. Checking that qcl does not exceed the corresponding qcl,max.

2.2. RC Beams

In the current study, the beams existed only in the solid slab structural floor system,
and these were classified into four groups: interior beams in the long direction, interior
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beams in the short direction, edge beams in the long direction, and edge beams in the short
direction. Using a conservative approach, all cross-sections of beams were designed as
rectangular sections. Figure 4 illustrates the typical arrangement of the steel reinforcement
of a beam. In practice, the concrete dimensions of all beams in a typical story are the same
to attain simpler formwork, and these are reflected in the following design steps.
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Step 1. Determining the preliminary beam height hb utilizing Equation (38).

hb ≥ max
(

3tsl, 400 mm
)

; b = 1, 2, . . . , nb (38)

where b represents the beam under consideration and nb is the number of beams in a
typical story.

Step 2. Determining the preliminary beam width wb using Equation (39).

wb ≥ max(tw, 250 mm); b = 1, 2, . . . , nb (39)

where tw is the partition wall thickness.
Step 3. Checking that the span-to-depth ratio

(
Lb

db

)
of each beam is greater than or

equal to 4, where Lb is the beam span length and db is the effective depth of the beam (the
distance between the steel reinforcement and the extreme compression fibers of the beam).

Step 4. Checking the side buckling for each beam. This can be achieved when the

span is less than or equal to the two values
200(wb)

2

db and 40wb.
Step 5. Calculation of the uniform load applied on each beam Wb as per Equation (40).

Wb = 1.4
(

γrcwbhb +wwl

)
+NbαbwslL2; b = 1, 2, . . . , nb (40)

where Nb is the number of slabs supported by the beam under consideration (i.e., Nb equals
1 for edge beams and 2 for interior beams) and αb is a coefficient obtained from ECP 203-18
based on the direction under consideration.

Step 6. Calculation of the applied bending moment Mb
s at each critical cross-section of

the beam under consideration as per Equation (41).

Mb
s =

Wb
(

Lb
)2

hs
; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (41)

where Lb is the beam span length, hs is a factor obtained from ECP 203-18 and is based on
the location of the critical cross-section, and ns is the number of critical cross-sections of
a beam.
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Step 7. Calculation of the maximum permissible bending moment Mb,max for each
beam utilizing Equation (42).

Mb,max =
Rmax fcuWb

(
db
)2

γc
; b = 1, 2, . . . , nb (42)

Step 8. Checking that Mb
s at each critical cross-section of each beam does not exceed

the corresponding Mb,max.
Step 9. Calculation of the required steel reinforcement area Ab,r

s for each critical
cross-section of each beam using Equation (43).

Ab,r
s =

fydb

γs
−

√(
fydb

γs

)2
− 3

[
( fy)

2
γc Mb

s

(γs)
2 fcuwb

]
1.5
[

( fy)
2
γc

(γs)
2 fcuwb

] ; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (43)

Step 10. Calculation of the minimum and maximum permitted areas of steel rein-
forcement Ab,min

s and Ab,max, respectively, for each critical cross-section of each beam as per
Equations (44) and (45).

Ab,min
s = min

[
0.0015wbdb, max

(
1.1
fy

wbdb,
0.225

√
fcu

fy
wbdb, 1.3Ab,r

s

)]
; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (44)

Ab,max =

(
0.67 f cu

γc

)(
1.25 cmax

db

)
wbdb(

fy
γs

) ; b = 1, 2, . . . , nb (45)

Step 11. Determining the beam bar diameter φb, where this shall be greater than or
equal to 10 mm. This step is followed by determining the number of bars nb

s for each critical
cross-section of each beam as per Equation (46).

2 ≤ nb
s ≤ 12; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (46)

Step 12. Calculation of the chosen steel reinforcement area Ab,ch
s for each critical

cross-section of each beam.
Step 13. Checking that Ab,ch

s for each critical cross-section of each beam satisfies the
limits provided by Equation (47).

max
(

Ab,r
s , Ab,min

s

)
≤ Ab,ch

s ≤ Ab,max; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (47)

Step 14. Determining the shrinkage steel reinforcement area Ab,sh for each beam that
satisfies the temperature and cracking requirements as per Equation (48).

Ab,sh =

0; b = 1, 2, . . . , nb if
(

hb − tsl
)
≤ 600 mm

0.08Ab,m; b = 1, 2, . . . , nb if
(

hb − tsl
)
> 600 mm

(48)

where Ab,m is the area of the maximum bottom steel reinforcement for each beam.
Step 15. Determining the top steel reinforcement area Ab,h required to hang the lateral

ties for each beam as per Equation (49).

0.1Ab,m ≤ Ab,h ≤ 0.2Ab,m; b = 1, 2, . . . , nb (49)
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Step 16. Calculation of the cracking bending moment Mb,cr as per Equation (50).

Mb,cr =
fctr Ib,g

yb ; b = 1, 2, . . . , nb (50)

where Ib,g is the gross moment of inertia of the beam cross-section, neglecting the cross-
sectional area of steel reinforcement, and yb is the distance from the neutral axis to the
extreme tension fibers of the beam gross cross-section.

Step 17. Calculation of the unfactored applied bending moments Mb,d
s , Mb,l

s , and
Mb,t

s resulting from the dead load, live load, and total load, respectively, at each critical
cross-section of each beam using Equations (51)–(53).

Mb,d
s =

(
γrcbbtb+wwl+NbαbgL2

)(
Lb
)2

hs
; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (51)

Mb,l
s =

(
NbαbpL2

)(
Lb
)2

hs
; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (52)

Mb,t
s = Mb,d

s +Mb,l
s ; s = 1, 2, . . . , ns; b = 1, 2, . . . , nb (53)

Step 18. Determining the distance zb from the neutral axis and the extreme compres-
sion fibers of the cracked cross-section of each beam at the midspan using Equation (54).

zb =
−nAb,m +

√(
nAb,m

)2
+2nwb Ab,mdb

wb ; b = 1, 2, . . . , nb (54)

Step 19. Calculation of the cracked moment of inertia Ib,cr for each beam at the
midspan as per Equation (55).

Ib,cr =
wb
(

zb
)3

3
+nAb,m

(
db − zb

)2
; b = 1, 2, . . . , nb (55)

Step 20. Calculation of the effective moment of inertia Ib,e for each beam at the
midspan as per Equation (56).

Ib,e =


Ib,g; b = 1, 2, . . . , nb if Mb,tmid ≤ Mb,cr

Ib,g
(

Mb,cr

Mb,tmid

)3
+Ib,cr

[
1 −

(
Mb,cr

Mb,tmid

)3
]

; b = 1, 2, . . . , nb if Mb,tmid ≥ Mb,cr
(56)

where Mb,tmid is the unfactored applied bending moment resulting from the total load at
the midspan of each beam.

Step 21. Calculation of the short-term deflections ∆b,d, ∆b,l , and ∆b,st resulting from
the dead load, live load, and total load, respectively, at the midspan of each beam using
Equations (57)–(59), respectively.

∆b,d =
5L2

48Ec Ib,e

[
Mb,dmid − 0.1

(
Mb,dleft+Mb,dright

)]
; b = 1, 2, . . . , nb (57)

∆b,l =
5L2

48Ec Ib,e

[
Mb,lmid − 0.1

(
Mb,lleft+Mb,lright

)]
; b = 1, 2, . . . , nb (58)

∆b,st = ∆b,d + ∆b,l ; b = 1, 2, . . . , nb (59)

where Mb,dmid, Mb,dleft, and Mb,dright are the unfactored applied bending moments resulting
from the dead load at the midspan, left support, and right support, respectively; Mb,lmid,
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Mb,lleft, and Mb,lright are the unfactored applied bending moments resulting from the live
load at the midspan, left support, and right support, respectively.

Step 22. Calculation of the long-term deflection ∆b,lt at the midspan of each beam as
per Equation (60).

∆b,lt = ∆b,st+αlt∆b,d; b = 1, 2, . . . , nb (60)

Step 23. Checking that ∆b,lt does not exceed the permitted deflection imposed by ECP
203-18 as per Equation (61).

∆b,lt ≤ Lb

250
; b = 1, 2, . . . , nb (61)

Step 24. Calculation of the applied shear load Qb at the critical cross-section of each
beam, i.e., at a distance 0.5db from the corresponding column face using Equation (62).

Qb = Wb

(
1 − bcl

2
− db

2

)
; b = 1, 2, . . . , nb (62)

Step 25. Calculation of the applied shear stress qb at the critical cross-section of each
beam as per Equation (63).

qb =
Qb

bbdb ; b = 1, 2, . . . , nb (63)

Step 26. Calculation of the maximum shear strength qb,max using Equation (64).

qmax= min

(
0.7

√
fcu

γc
, 4.4 MPa

)
(64)

Step 27. Checking that qb does not exceed qmax.
Step 28. Calculation of the concrete nominal shear strengths quncr and qcr in the

uncracked and cracked stages, respectively, utilizing Equations (65) and (66).

quncr = 0.16

√
fcu

γc
(65)

qcr = 0.12

√
fcu

γc
(66)

Step 29. Determining the shear stress qb,t of the vertical ties for each beam as per
Equation (67).

qb,t =

{
0; b = 1, 2, . . . , nb if qb ≤ quncr

qb − qcr; b = 1, 2, . . . , nb if qb > quncr
(67)

Step 30. Determining the number of branches nb,t of the vertical ties for each beam
utilizing Equation (68).

nb,t ≥
{

2; b = 1, 2, . . . , nb if wb < 400 mm
4; b = 1, 2, . . . , nb if wb ≥ 400 mm

(68)
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Step 31. Determining the spacing Sb,t between vertical ties for each beam that satisfies
the shear stress requirements provided by Equation (69).

Sb,t =


200 mm; b = 1, 2, . . . , nb if qb ≤ quncr

max
(

Ab,tnb,t( fy/γs)
qb,tbb , 200 mm

)
; b = 1, 2, . . . , nb if qb > qcr

(69)

where Ab,t is the area of the vertical ties for each beam.
Step 32. Checking that Sb,t is greater than or equal to 100 mm.

2.3. RC Columns

According to ECP 203-18, the columns should be designed to resist the axial loads and
bending moments. In the current study, the columns were classified into four groups based
on their locations: interior columns, edge columns in the x-direction, edge columns in the
y-direction, and corner columns. For simplification, each group had a square cross-section.
Three steel reinforcement arrangements were utilized to satisfy the design provisions
(Figure 5). Each arrangement had a specific number of vertical bars and a shape of lateral
ties based on the column width bcl. The design steps can be summarized as follows.
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Step 1. Calculation of the concrete cross-sectional area Acl of each column.
Step 2. Calculation of the axial design load Pcl for each column using Equation (70).

Pcl =


N
(

rb
nb
∑

b=1
Rb,cl+γrc AclH

)
; cl = 1, 2, . . . , ncl for SS

N
(

wsl Acl,tr+γrc AclH
)

; cl = 1, 2, . . . , ncl for FSDP and FS
(70)

where N is the number of stories, rb is a shear coefficient obtained from ECP 203-18 based
on the column location, Rb,cl is the reaction of a beam at the beam–column connection
under consideration, and H is the typical story height.

Step 3. Determining the steel arrangement of each column. The spacing scl between
two adjacent bars shall not exceed 250 mm.

Step 4. Determining the bar diameter φcl for each column, which shall be greater than
or equal to 12 mm.

Step 5. Calculation of the chosen vertical steel reinforcement area Acl,s of each column.
Step 6. Checking that Acl,s of each column fulfills the reinforcement limits provided

by Equation (71).

0.008Acl ≤ Acl,s ≤ 0.04Acl; cl = 1, 2, . . . , ncl (71)
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Step 7. Determining the number of lateral ties ncl,t per meter for each column as per
Equation (72).

max
(

1000
15φcl , 5

)
≤ ncl,t ≤ 10; cl = 1, 2, . . . , ncl (72)

Step 8. Calculation of the volume of steel lateral ties V cl,t
c per meter for each column.

Step 9. Checking that V cl,t
c for each column is greater than or equal to 0.025Acl.

Step 10. Calculation of the maximum axial load Pcl,max that each column can withstand
as per Equation (73).

Pcl,max = 0.35 f cu(A cl − Acl,s)+0.67 f y Acl,s; cl = 1, 2, . . . , ncl (73)

Step 11. Checking that the axial design load Pcl for each column does not exceed the
corresponding Pcl,max.

Step 12. For flat slabs only, calculation of the design bending moment Mcl transferred
from the slabs to the columns utilizing Equation (74).

Mcl= cclMsl
s ; cl = 1, 2, . . . , ncl (74)

where ccl is a factor obtained from ECP 203-18 based on the column location.
Step 13. For flat slabs only, constructing an interaction diagram for each column to

check its safety. In this diagram, five points (i.e., combinations of axial loads and bending
moments) were used to represent the failure envelope, i.e., the boundaries of the diagram
(Figure 6).
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1. Point 1 represents the pure axial compression failure mode. Here, the axial load P1

equals Pcl,max.
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2. Point 2 represents the compression failure mode with minimum eccentricity. The
bending moment M2 can be calculated using Equation (75). The minimum eccentricity
ecl,min permitted by ECP 203-18 is expressed in Equation (76).

M2= Pcl,max · ecl,min (75)

ecl,min= max
(

0.05tcl, 20 mm
)

(76)

3. Point 3 represents the balanced failure mode (i.e., the concrete failure and steel rein-
forcement yielding occur simultaneously). The axial load P3 and the bending moment
M3 are expressed in Equations (77) and (78), respectively.

P3 = 0.67
fcu

γc
aclbcl +

fy

γs

(
Acl,s′ − Acl,st

)
(77)

M3 = 0.67
fcu

γc
aclbcl

(
Xcl − acl

2

)
+

fy

γs
Acl,s′

(
Xcl − dcl′

)
+

fy

γs
Acl,st

(
dcl − Xcl

)
(78)

where Acl,s′ is the area of steel reinforcement on the compression side, Acl,st is the
area of steel reinforcement on the tension side, acl is the length of the equivalent
rectangular stress block, Xcl is the distance from the plastic centroid to the extreme
compression fibers of the column cross-section, dcl′ is the distance from the center of
compressive bars to the extreme compression fibers of the column cross-section, and
dcl is the distance from the center of tensile bars to the extreme compression fibers of
the column cross-section.

4. Point 4 represents the pure bending failure mode. The bending moment M4 can be
calculated using Equation (79).

M4= f y Acl,st
(

dcl − dcl′
)

(79)

5. Point 5 represents the pure axial tension failure. The axial load P5 can be calculated
using Equation (80).

P5= f y Acl,s (80)

Step 14. For flat slabs only, checking the adequacy of each column. This step can be
achieved by ensuring that the axial load Pcl and the bending moment Mcl for the column
under consideration exist within the interaction diagram boundaries.

3. Construction Cost Parameters

The total cost of a construction project consists of a set of direct costs and indirect costs.
The direct costs include materials and labor costs, while the indirect costs include account-
ing services, administration, and site overhead. The indirect costs are often independent of
the design parameters. Thus, the current study considers the direct costs of the skeleton
structure of the RC building. Here, the costs of concrete, steel reinforcement, formwork,
and labor of floors and columns are considered.

In practice, the concrete cost is calculated by multiplying the concrete volume Vc by
the unit price of concrete Uc, which is based on the concrete grade. The steel reinforcement
cost is calculated by multiplying the steel reinforcement weight Ws by the unit price
of steel reinforcement Us. In Egypt, the cost of formwork and labor is calculated by
multiplying the concrete volume Vc by the unit price of the formwork and labor U f . Here,
U f was assumed to be the same for all structural floor systems. To illustrate one of the
features of the optimization problem, the unit prices Uc, Us, and U f in the past five years
(2017–2021) are depicted in Figure 7. The unit prices Uc and Us presented in Figure 7a were
obtained from the monthly bulletins of average retail prices of major important building
materials provided by the Ministry of Housing, Utilities, and Urban Communities in Egypt.
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The unit price U f presented in Figure 7b represents the average yearly unit prices and
was obtained from several construction sites in Egypt. It can be observed that the unit
prices of materials have been fluctuating inconsistently. For instance, Us increased from
516 USD/ton to 746 USD/ton (45% increase) in 3 months. The unit price Uc remained
constant (39 USD/m3) for 17 months before increasing to 46 USD/m3 in December 2021.
The unit price U f increased linearly. The fluctuation of the unit prices may change the
shape of the optimization problem and, consequently, affect the best design results. Table 2
summarizes the considered unit prices.
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Table 2. Unit prices of the cost components.

Component Strength (MPa) Unit Price (USD/Unit)

Uc Concrete

25

m3

36.8
30 39.2
35 41.6
40 44.1
45 48.4
50 52.7
55 57.0
60 61.4

Us
High tensile steel 420

ton
735.1

Mild steel 240 735.1

U f Formwork and labor - m3 30.8

4. Statement of the Problem
4.1. Design Variables

The design variables of the optimization problem are defined in Table 3 and Figure 8
for each structural floor system, including the concrete grades, column spacings, concrete
dimensions, and steel reinforcement. The concrete grades utilized in the current study
were restricted to those available in the ready-mix plants in Egypt. The column spacings
were between 3 m and 8 m to cover the most common spans in a building. The concrete
dimensions were rounded to define increments based on the formwork dimensions to fulfill
the construction requirements. The bar diameters were chosen from Egypt’s commercial
steel bar list.
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Table 3. Design variables of different structural floor systems.

Parameter Design Variable Symbol Increment/Set Lower Bound Upper Bound SS FSDP FS

Concrete grade Characteristic compressive strength fcu {25, 30, 35, 40, 45, 50, 55, 60}MPa 25 MPa 60 MPa X X X

Column spacings Number of spans (x-direction) nx 1
max(Lx/8000 mm, 3) Lx/3000 mm X X X

Number of spans (y-direction) ny max
(

Ly/8000 mm, 3
)

Ly/3000 mm X X X

Concrete
dimensions

Slab thickness tsl 20 mm
max(L2/40, 80 mm) for SS

max(L1/36, 150 mm) for FSDP
max(L1/32, 150 mm) for FS

300 mm X X X

Beam height hb 50 mm max
(

3tsl, 400 mm
)

900 mm X - -

Beam width wb 50 mm max(bw, 250 mm) 400 mm X - -

Drop panel thickness tdrop 20 mm tsl/4 120 mm - X -

Drop panel width Sdrop 50 mm L1/3 L2/2 - X -

Interior column width bin

50 mm
250 mm for SS

max(h/15, L1/20, 300 mm) for FSDP
max(h/15, L1/20, 300 mm) for FS

800 mm

X X X
Edge column width (x-direction) bex X X X
Edge column width (y-direction) bey X X X

Corner column width bcr X X X

Steel
reinforcement

Beam bar diameter φb {10, 12, 16, 18, 22, 25}mm 10 mm 25 mm X - -

Interior column bar diameter φin

{12, 16, 18, 22, 25, 28}mm 12 mm 28 mm

X X X
Edge column bar diameter (x-direction) φex X X X
Edge column bar diameter (y-direction) φey X X X

Corner column bar diameter φcr X X X

Number of interior column lateral ties nin,t

1

max
(

1000tsl/15φin, 5
)

10

X X X

Number of edge column lateral ties (x-direction) nex,t max
(

1000tsl/15φex, 5
)

X X X

Number of edge column lateral ties (y-direction) ney,t max
(

1000tsl/15φey, 5
)

X X X

Number of corner column lateral ties ncr,t max
(

1000tsl/15φcr, 5
)

X X X
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4.2. Objective Function

The general formulation of the design optimization problem can be expressed as

Minimize f (x)= UcVc+UsWs+U f Vc (81)

subject to
GStr, sl

i (x) ≤ 1; i = 1, 2, . . . , I (82)

GStr, b
j (x) ≤ 1; j = 1, 2, . . . , J; b = 1, 2, . . . , nb (83)

GStr, cl
k (x) ≤ 1; k = 1, 2, . . . , K; cl = 1, 2, . . . , ncl (84)

GSer, sl
l (x) ≤ 1; l = 1, 2, . . . , L (85)

GSer, b
m (x) ≤ 1; m = 1, 2, . . . , M; b = 1, 2, . . . , nb (86)

GSer, cl
o (x) ≤ 1; o = 1, 2, . . . , O; cl = 1, 2, . . . , ncl (87)

xl ≤ x ≤ xu (88)

where x is the vector of design variables; f (x) is the objective function; GStr, sl
i (x), GStr, b

j (x),

and GStr, cl
k (x) are the strength inequality constraint functions of slabs, beams, and columns,

respectively; GSer, sl
l (x), GSer, b

m (x), and GSer, cl
o (x) are the strength inequality constraint

functions of slabs, beams, and columns, respectively; I, J, and K are the number of strength
constraints regarding slabs, beams, and columns, respectively; L, M, and O are the number
of serviceability constraints regarding slabs, beams, and columns, respectively; xl and xu

are the lower and upper bounds of the design variable x; and Z is the number of design
variables. The strength and serviceability criteria were illustrated in Section 2, while the
lower and upper bounds of the design variables were presented in Table 3.

5. Optimization Algorithm

The mathematical model was built using Microsoft Excel 2016 spreadsheets. The
model was fully programmed using Visual Basic for Applications (VBA) embedded within
Microsoft Excel. Repetitive tasks, such as running the solver tool and constructing tables,
were also programmed using VBA. In the current study, each structural floor system had its
spreadsheet comprising all the data. This data included the calculations regarding structural
analysis; design steps of structural elements; and the construction costs of concrete, steel
reinforcement, and formwork and labor.

The evolutionary method was utilized by the solver tool available in Microsoft Excel to
perform the optimization for two reasons. First, it uses a variety of algorithms, along with
local search methods. It relies on controlled sampling combined with deterministic methods
to explore the search space efficiently. Second, it can handle non-smooth and discontinuous
functions [37]. The evolutionary method parameters were the population size, random
seed, mutation rate, convergence value, and maximum time without improvement. Table 4
lists the values of the solver parameters used in the model.
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Table 4. Microsoft Excel solver parameters.

Parameter Value

Constraint precision 1 × 10−6

Maximum time Unrestricted
Iterations Unrestricted
Maximum subproblems Unrestricted
Maximum feasible solutions Unrestricted
Convergence 1 × 10−4

Mutation rate 0.075
Population size 100
Random seed 0
Maximum time without improvement 120 s

6. Benchmark Examples and Discussions

Two benchmark examples with rectangular layouts were optimized (Figure 9). In the
first example, two cases were examined to investigate the effects of optimizing the concrete
grade and column spacings on the optimal results. The second example investigated the
effects of optimizing the columns in the higher stories. The design input data of these
examples are listed in Table 5.
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Table 5. Design input data.

Parameter Value

fy Yield strength of the longitudinal steel reinforcement 420 MPa
fy,st Yield strength of the lateral steel reinforcement 240 MPa
Es Elastic modulus of steel 200 GPa
γrc Unit weight of concrete 25 kN/m3

γst Unit weight of steel 78.5 kN/m3

γb Unit weight of brick partition walls 14 kN/m3

γc Safety reduction factor for concrete 1.5
γs Safety reduction factor for steel 1.15
csl Concrete cover of slabs 25 mm
cb Concrete cover of beams 50 mm
ccl Concrete cover of columns 25 mm
p Live load 2 kPa
w f Flooring load 1.5 kPa
φst Bar diameter of lateral steel reinforcement 8 mm
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6.1. Example 1: A Four-Story Building

A four-story building with a rectangular layout and a 3.3 m typical story height was
considered. The total lengths of the building in the x- and y-directions were 30 m and
25 m, respectively. In case 1, the concrete grade and column spacing in the long and short
directions were constant ( fcu = 35 MPa, nx = 5, and ny = 5). Here, the design variables were
the parameters regarding concrete dimensions and steel reinforcement listed in Table 3.
In case 2, the concrete grade and floor spacing in each direction were included in the design
variables (i.e., the design variables were all the parameters defined in Table 3).

Five runs were performed to obtain the best optimal solution. During the optimization
process, the convergence history of each run was recorded. The convergence history of
the best run for each structural floor system is illustrated in Figure 10. The number of
iterations of each run was based on the time termination criteria, i.e., maximum time
without improvement. The design variables and optimal costs of the best run of each
structural floor system are displayed in Tables 6 and 7. These results are discussed in
four sections.
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Table 6. Summary of the optimal concrete grade, column spacings, concrete dimensions of floors,
and costs of floors (example 1).

Floor
System Case nx × ny

Lx × Ly
(mm)

fcu
(MPa)

tsl

(mm)
tdrop

(mm)
Sdrop

(mm)
hb

(mm)
wb

(mm)
Floors Cost
(USD/m2)

SS
1 5 × 5 6000 × 5000 35 140 - - 500 250 25.43
2 8 × 8 3750 × 3125 25 80 - - 400 250 20.25

FSDP
1 5 × 5 6000 × 5000 35 200 60 2000 - - 27.66
2 8 × 8 3750 × 3125 25 160 40 1600 - - 21.36

FS
1 5 × 5 6000 × 5000 35 200 - - - - 26.16
2 8 × 8 3750 × 3125 25 160 - - - - 20.46

Table 7. Summary of the optimal concrete dimensions, steel reinforcement, and costs of columns
(example 1).

Floor
System

Case
Interior Columns Edge Columns

(x-Direction)
Edge Columns
(y-Direction) Corner Columns Columns

Cost
(USD/m2)bin

(mm)
Steel
Bars

No. of
Columns

bex

(mm)
Steel
Bars

No. of
Columns

bey

(mm)
Steel
Bars

No. of
Columns

bcr

(mm)
Steel
Bars

No. of
Columns

SS
1 400 8T16 16 300 4T16 8 250 4T18 8 250 4T16 4 2.83
2 300 4T16 49 250 4T16 14 250 4T16 14 250 4T16 4 4.28

FSDP
1 400 8T16 16 350 8T16 8 350 8T16 8 300 4T16 4 3.61
2 300 4T16 49 300 4T16 14 300 4T16 14 300 4T16 4 4.70

FS
1 400 8T16 16 400 8T16 8 350 8T16 8 300 4T16 4 3.72
2 300 4T16 49 300 4T16 14 300 4T16 14 300 4T16 4 4.70

6.1.1. Effects of Optimizing the Concrete Grade and Column Spacings

This section compares the optimal design results of case 1 and case 2 for each floor
system. For all floor systems, the optimal column spacings in case 2 were smaller than the
constant column spacings in case 1. Decreasing the column spacings reduced the straining
actions (i.e., flexure, shear, and compressive axial loads) and deflections of structural ele-
ments. Accordingly, smaller fcu and concrete dimensions and less steel reinforcement were
sufficient to satisfy the design requirements of the structural components in case 2. Hence,
the construction costs of floors decreased when the concrete grade and column spacings
were optimized. As the column spacings decreased in case 2, the number of columns
increased, and the concrete dimensions and steel reinforcement of columns decreased.
Consequently, the columns in case 2 were more expensive than those in case 1 due to the
increased number of columns. The total construction costs in case 2 were 13.2%, 16.7%, and
15.8% less than those of case 1 for SS, FSDP, and FS, respectively.

6.1.2. Comparison between Floor Systems

In both cases, SS was the cheapest and FSDP was the most expensive structural
floor system. The slabs of FSDP and FS utilized more steel reinforcement than those of
SS slabs to satisfy the shrinkage provisions imposed, as tsl was greater than or equal to
160 mm. Accordingly, the floors construction costs of FSDP and FS were higher than those
of solid slabs.

Enhancing the slabs with drop panels reduced the punching stresses at the slab–
column connections. Despite the reduction in punching stresses in FSDP compared to FS,
tsl results for FSDP and FS were the same in each case. In case 1, a high tsl (200 mm) for
FSDP was imposed to satisfy the long-term deflection criteria resulting from the heavy
partition wall loads. In case 2, tsl could not be less than the absolute minimum value
(160 mm). Consequently, the floors construction costs of FSDP were higher than those of FS
due to the presence of drop panels.
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In case 1, SS was 9.7% and 5.5% cheaper than FSDP and FS, respectively, and FS was
4.5% cheaper than FSDP. In case 2, SS was 5.9% cheaper than FSDP and 2.5% cheaper than
FSDP, and FS was 3.5% cheaper than FSDP.

6.1.3. Distribution of Structural Elements Construction Costs

Figure 11 compares the construction costs of floors and columns for each structural
floor system. In both cases, the costs of floors constituted the major part of the total
construction costs. Therefore, more attention shall be paid to the optimization of floors.
A similar conclusion was reported by other researchers [30,31]. In case 2, the cost ratio of
columns to floors increased as a result of the increased number of columns.
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6.1.4. Distribution of Materials and Labor Construction Costs

Figure 12 compares the construction costs of materials and labor for each structural
floor system. In both cases, the steel reinforcement costs constituted about half the total
construction costs as a result of the high unit price of steel reinforcement Us in Egypt.
In contrast, Sahab et al. [30] reported that the steel reinforcement costs constituted the
lowest construction costs. It should be mentioned that Sahab et al. [30] used different unit
prices of materials and labor in accordance with Spon’s Architects’ and Builders’ Price Book
2001 [38] and Harris [39] in London, UK. Thus, the optimal design results may significantly
vary based on the considered unit prices in a specific country.

6.2. Example 2: A Ten-Story Building

A ten-story building with a rectangular layout and a 3 m typical story height was
considered. The total lengths of the building in the x- and y-directions were 35 m and
40 m, respectively. The design variables were all the parameters defined in Table 3. In this
example, the concrete dimensions and steel reinforcement of columns were adjusted at three
levels, namely, stories 1–4, stories 5–8, and stories 9–10, to reduce the columns’ construction
costs. The characteristic strength fcu was considered as a design variable to achieve higher
cost savings of columns, as recommended by Boscardin et al. [33].
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The design variables of the best run of each structural floor system are presented in
Tables 8 and 9. In this example, a higher fcu was utilized to enhance the axial resistance
of columns and reduce the long-term deflections of slabs and beams. Because the high fcu
enhanced the punching shear resistance at slab–column connections, a low tsl (160 mm)
was sufficient to resist the punching shear stresses of FSDP and FS.

Table 8. Summary of the optimal concrete grade, column spacings, concrete dimensions of floors,
and costs of floors (example 2).

Floor
System nx × ny

Lx × Ly
(mm)

fcu
(MPa)

tsl

(mm)
tdrop

(mm)
Sdrop

(mm)
hb

(mm)
wb

(mm)
Floors Cost
(USD/m2)

SS 11 × 8 3182 × 5000 35 80 - - 400 250 20.42

FSDP 7 × 8 5000 × 5000 30 160 40 2450 - - 21.46

FS 7 × 8 5000 × 5000 35 160 - - - - 20.91

Table 9. Summary of the optimal concrete dimensions, steel reinforcement, and cost of columns
(example 2).

Floor
System

Stories

Interior
Columns

Edge Columns
(x-Direction)

Edge Columns
(y-Direction)

Corner
Columns Columns

Cost
(USD/m2)bin

(mm)
Steel
Bars

No. of
Columns

bex

(mm)
Steel
Bars

No. of
Columns

bey

(mm)
Steel
Bars

No. of
Columns

bcr

(mm)
Steel
Bars

No. of
Columns

SS
1–4 450 8T18

70
350 8T16

14
350 8T16

20
250 4T16

4
6.45

5–8 350 8T16 300 4T16 250 4T16 250 4T16 4.25
9–12 250 4T16 250 4T16 250 4T16 250 4T16 2.58

FSDP
1–4 600 12T18

42
400 8T18

12
400 8T18

12
350 8T18

4
6.51

5–8 500 8T18 350 8T16 350 8T16 300 4T18 4.57
9–10 400 8T16 300 4T16 300 4T16 300 4T16 3.15

FS
1–4 550 8T22

42
400 8T16

12
400 8T16

12
300 4T16

4
5.99

5–8 400 8T18 350 8T16 350 8T16 300 4T16 3.95
9–10 400 8T16 350 8T16 350 8T16 300 4T16 3.61
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The concrete dimensions of SS columns were smaller than those of FSDP and FS. This
can be explained in terms of the lower axial loads and lack of punching shear stresses and
bending moments at the slab–column connections of SS. At lower story levels, the concrete
dimensions of the FSDP columns were larger than those of FS because the chosen fcu for
FSDP was less than that of FS.

For all structural floor systems, the optimal concrete dimensions of columns decreased
at higher story levels in proportion to the reduced axial loads. However, although the
axial loads applied on columns decrease at higher story levels, it can be observed that the
concrete dimensions of FS columns did not decrease at stories 9–10. The lower concrete
dimensions of FS columns could not resist the punching stresses.

Figure 13 compares the optimal construction costs of the floors for a typical story for
each floor system. In terms of the floors construction costs, SS was the cheapest, and FSDP
was the most expensive structural floor system.
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Figure 14 compares the optimal construction costs of columns at different story levels
for each structural floor system. As the number of stories increased, the columns cost
reduction in SS was high compared to the other floor systems. It was verified that reducing
the concrete dimensions of columns at higher story levels could achieve high cost savings,
as reported by Boscardin et al. [33]. The total construction costs per building unit area of SS,
FSDP, and FS were 25.21 USD/m2, 26.52 USD/m2, and 25.57 USD/m2, respectively. Hence,
SS was 4.9% and 1.6% cheaper than FSDP and FS, respectively, and FS was 3.4% cheaper
than FSDP.
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7. Conclusions

In this study, a design optimization model was developed to minimize the construction
costs of materials and labor in RC buildings. The optimization model was built using the
evolutionary algorithm provided by the Microsoft Excel solver tool. Three structural floor
systems were considered: SS, FSDP, and FS. The design constraints were based on the
design provisions of ECP 203-18 to ensure the safety of each floor system. Discrete values
of design variables were utilized per construction industry requirements to account for the
practical considerations.

Two benchmark examples were considered to investigate the effects of the design
variables on the optimal results of each structural floor system. The results revealed that
solid slab buildings produced the most cost savings among the three systems.

The construction costs could be significantly reduced by considering the concrete
compressive strength and the column spacings as design variables. The optimizer tended
to reduce the column spacings to minimize the straining actions of the structural elements
and, consequently, achieve economical concrete dimensions and steel reinforcement.

Low concrete grades are sufficient for low-rise residential buildings with small column
spacings to resist the low stresses applied on floors and columns. As the number of stories
increases, the tendency toward selecting a higher concrete grade increases to reduce the
concrete dimensions of columns. The cost of columns decreased significantly with reducing
the concrete dimensions in the higher story levels. In the case of FS, the cost of columns was
less likely to decrease in higher story levels to resist the punching shear stresses. The cost of
floors constituted the major part of the construction cost concerning the structural elements.

The optimal distribution of construction materials can vary based on the consid-
ered unit prices. In the current study, steel reinforcement constituted about 50% of the
construction cost due to the high unit price of steel reinforcement in Egypt.

The current study revealed the possibilities of determining an economical structural
floor system, concrete grade, concrete dimensions, and steel reinforcement of RC buildings
by considering the integration of structural components. The contribution of the concrete
grade and column spacing in reducing the construction costs was discussed. The presented
optimization method could be applied to RC buildings subjected to seismic and wind loads
in future work by considering the additional load cases provided by the design code. Thus,
the effects of the additional design constraints on the optimal construction costs could be
examined. The input data, design calculations, and unit costs of materials and labor could
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be adjusted to fulfill the restrictions of any design code or consider different structural
floor systems.
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19. Varga, R.; Žlender, B.; Jelušič, P. Multiparametric Analysis of a Gravity Retaining Wall. Appl. Sci. 2021, 11, 6233. [CrossRef]

http://doi.org/10.3390/ma15031181
http://www.ncbi.nlm.nih.gov/pubmed/35161125
http://doi.org/10.3390/ma15041283
http://www.ncbi.nlm.nih.gov/pubmed/35207825
http://doi.org/10.3390/ma15031251
http://www.ncbi.nlm.nih.gov/pubmed/35161192
http://doi.org/10.3390/ma15030738
http://doi.org/10.3390/ma15030874
http://doi.org/10.3390/ma15051703
http://doi.org/10.3390/ma14237349
http://doi.org/10.3390/ma15030799
http://doi.org/10.3390/ma15031144
http://doi.org/10.1016/j.firesaf.2018.12.005
http://doi.org/10.1002/fam.2229
http://doi.org/10.12989/cac.2014.13.4.457
http://doi.org/10.3390/app9153161
http://doi.org/10.1080/02533839.2018.1473804
http://doi.org/10.3390/app11052076
http://doi.org/10.12989/cac.2012.9.5.327
http://doi.org/10.1016/j.engstruct.2015.05.001
http://doi.org/10.1016/j.engstruct.2021.112861
http://doi.org/10.3390/app11136233


Materials 2022, 15, 2625 29 of 29

20. Habte, B.; Yilma, E. Cost Optimization of Reinforced Concrete Frames Using Genetic Algorithms. Int. J. Optim. Control Theor.
Appl. 2020, 11, 59–67. [CrossRef]

21. Rawat, S.; Kant Mittal, R. Optimization of Eccentrically Loaded Reinforced-Concrete Isolated Footings. Pract. Period. Struct. Des.
Constr. 2018. [CrossRef]

22. Correia, R.S.; Bono, G.F.F.; Bono, G. Optimization of Reinforced Concrete Beams Using Solver Tool. Rev. Ibracon Estruturas Mater.
2019, 12, 910–931. [CrossRef]

23. Fernandez-Ceniceros, J.; Fernandez-Martinez, R.; Fraile-Garcia, E.; Martinez-de-Pison, F.J. Automation in Construction Decision
Support Model for One-Way Floor Slab Design: A Sustainable Approach. Autom. Constr. 2013, 35, 460–470. [CrossRef]

24. Ghandi, E.; Shokrollahi, N.; Nasrolahi, M. Optimum Cost Design of Reinforced Concrete Slabs Using Cuckoo Search Optimization
Algorithm. Iran Univ. Sci. Technol. 2017, 7, 539–564.

25. de Medeiros, G.F.; Kripka, M. Optimization of Reinforced Concrete Columns According to Different Environmental Impact
Assessment Parameters. Eng. Struct. 2014, 59, 185–194. [CrossRef]

26. Ukritchon, B.; Keawsawasvong, S. A Practical Method for the Optimal Design of Continuous Footing Using Ant-Colony
Optimization. Acta Geotech. Slov. 2016, 13, 45–55.
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