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Abstract: This paper aims to study the suitability of partial replacement of lime by waste originating
from the cleaning of flue gases from the combustion of industrial wastes in the production of
autoclaved aerated concrete (AAC). The compressive strength, bulk density, pore structure, phase
composition, and microstructure of hydration products of the AAC were analyzed. According to
the results, the addition of the waste can effectively enhance the mechanical properties of AAC
due to the differences in morphology of hydration product—1.1 nm tobermorite and related dense
microstructure. The pore size distribution was significantly influenced by waste addition, which was
one of the main reasons for the increase in thermal conductivity. The XRD and SEM results showed
that foreign ions introduced with the wastes affect the synthesis of 1.1 nm tobermorite. Moreover,
it was shown that waste containing a high content of CaO can be used as lime replacement, which
allows reducing CO2 emissions during the AAC production process.

Keywords: autoclaved aerated concrete; calcareous waste; CO2 emission; calcium silicate hydrates;
1.1 nm tobermorite

1. Introduction

Autoclaved aerated concrete (AAC) is attracting considerable interest and large in-
dustrial demand. AAC is currently one of the most popular building materials used in
residential and industrial construction in Poland [1]. The porous microstructure of concrete
and the matrix formed mainly by hydrated calcium silicates (poorly crystalline C–S–H
phase and 1.1 nm tobermorite), which are responsible, inter alia, for the mechanical strength,
result in aerated concrete combining the advantages of construction and insulation mate-
rial [2]. The basic technological operations during AAC production include [2] preparation
of raw materials (cement, lime, quartz sand), mixing of raw materials in a water suspension
with the addition of aluminum powder (an aerating agent), growth of mass (related to
the evolution of hydrogen as a result of the reaction of aluminum powder with Ca(OH)2),
precuring process (obtaining a hardness sufficient for further technological operations,
related to cutting into blocks), cutting hardened concrete mass into blocks, autoclaving
(achieving the final strength of the products), cooling, and storage.

Current trends in the construction and the production of building materials aim
to reduce the consumption of energy and natural resources in all production processes.
Although AAC production technology is characterized by relatively low consumption of
raw materials and energy, research is being carried out to replace traditionally used raw
materials with industrial wastes [3–21].

According to literature data, utilization of industrial wastes in AAC production allows
modifying the properties of AAC [14–16]. Generally, wastes are considered as a partial
replacement for cement or quartz sand. MSWI bottom ash [10], perlite waste [9] rice
husk ash [3], iron tailings [6], graphite tailings [16], and blast furnace slag [21] have been
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considered as siliceous resources. Sodium carbonate activated slag [17], bottom ash [18],
granulated slag, and metakaolin [14] have been used as cement replacement in autoclaved
aerated concrete. However, although many studies [3–21] in recent years have concentrated
on the recycling of different types of byproducts or residues in AAC technology, fewer
reports [11,19] are found about using calcareous wastes to replace lime in the production of
AAC. Hauser et al. [19] studied the influence of fly ash from the cellulose industry used as
calcareous material on the AAC properties. The results showed that lime–sulfate ash had
a positive effect on the mechanical properties of AAC. However, a higher proportion of
fly ash caused a delay in the formation of hydrated calcium silicate phases. The addition
of waste to concrete resulted in a decrease in strength and an increase in shrinkage [19].
Huang et al. [11] completely replaced the lime in AAC production with skarn-type copper
tailings and blast furnace slag. Using skarn-type copper tailings, furnace slag, cement
clinker, and gypsum as the raw material composition, AAC with a compressive strength of
4.0 MPa was produced.

A review of the literature reveals that, in recent years, very limited studies [11,19]
have been conducted on replacing lime in AAC production with waste materials. The
objective of this study was to investigate the feasibility of using dry waste originating
from the cleaning of flue gases from the combustion of industrial wastes in the production
of autoclaved concrete. Dry waste originating from the cleaning of flue gases from the
combustion of industrial wastes (hereinafter referred to as “waste”) in the waste-to-energy
process can be considered as an alternative binder to lime. To the authors’ knowledge,
the substitution of such a waste for lime as a calcareous source has not been investigated.
Among pollutants present in flue gases formed during the waste-to-energy conversion,
there are acidic gases such as hydrogen chloride or sulfur dioxide which are of major
concern [22]. Various techniques may be used in order to separate those compounds [23].
Detailed information on the formation of such products may be found in [24,25].

The solid waste investigated in the present study is a product of the treatment of
flue gases with calcium hydroxide slurry. The product is a fine powder containing unre-
acted calcium hydroxide (Ca(OH)2) in the form of portlandite, calcium chloride hydrate
(CaClOH), halite (NaCl), and calcium carbonate (CaCO3) in the form of calcite. Waste is
formed as a result of the reaction between flue gases containing acidic compounds (mainly
hydrogen chloride) and lime slurry in an industrial waste incinerating plant. The process
results in a solid dry residue in the form of a fine, dusty white powder. It is collected in bag
filters made of PTFE, which are periodically cleaned, and dust is collected and then further
processed/stored. To ensure the proper degree of absorption of harmful gases, excess of
sorbent is needed, which is left unreacted and is, thus, a potential raw material for further
utilization. What should be underlined is that such waste contains decarbonized calcium
oxide, which is of great importance from the point of view of sustainable development.

Introduction of the investigated waste into AAC technology may be beneficial from
both economic and environmental points of view. The reduction in greenhouse gases
has become a priority issue in various industries, including the building materials indus-
try [26,27]. Similarly to cement production, industrial lime production results in carbon
dioxide emissions [28]. Emissions of CO2 in the lime industry mainly come from the calci-
nation of limestone into calcium oxide. Waste as a calcareous material is a source of calcium
oxide, thus decreasing the carbon footprint of the process. In addition, replacing part of
lime with calcareous waste allows decreasing the amount of waste disposal in landfills.
This is especially important since the investigated waste contains a very large fraction of
soluble compounds and is, thus, very difficult to store.

The activity of waste used in present study was improved by calcination, and calcined
waste was also used in the investigation. The bulk density, compressive strength, ther-
mal conductivity, pore size distribution, phase composition, and microstructure of AAC
containing waste were investigated.
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2. Materials and Methods
2.1. Raw Materials

The raw materials for AAC sample preparation were cement, lime, quartz sand, and
aluminum powder. The quartz sand was ground in a laboratory ball mill to a specific
Blaine surface area of 2000 cm2/g [29]. The ordinary Portland cement (OPC) CEM I 42.5R
conforming to the EN 197 standard was used as the cementitious material. Pure p.a. calcium
carbonate delivered by POCH (Gliwice, Poland) was calcined at 1000 ◦C for 2 h to obtain
a CaO source. Aluminum powder with a water coverage of 5500 cm2/g according to the
procedure described in PN-77/H-04949 [30] standard was used as a pore-generating agent.

In the present study, solid waste from flue gas cleaning in an industrial waste in-
cinerating plant was used as received, as well as after thermal treatment. The chemical
composition of the raw waste is presented in Table 1. The waste was classified as 19 01
07* “solid wastes from gas treatment” according to EUROSTAT Guidance on EWC-Stat
Waste Categories [31]. Thermal treatment of raw waste was applied in order to increase the
reactivity of the material. Calcium hydroxide present in raw waste albeit reactive is not as
reactive as calcium oxide. The material was heated for 1 h at 550 ◦C. This temperature was
chosen in order to allow calcium hydroxide to decompose [32]. On the other hand, to obtain
a material of good reactivity, the temperature should not be too high, since thermal treat-
ment of calcium oxide at elevated temperatures may cause sintering, recrystallization, and
grain growth, which negatively influence reactivity [33]. The temperature was also chosen
to ensure that chlorine was not released from the sample during thermal treatment. This
was confirmed by the results of the thermal analysis investigations presented in Section 3.1.

Table 1. Chemical composition of the waste (wt.%).

Composition SiO2 Al2O3 Fe2O3 Na2O K2O CaO MgO TiO2 SO3 P2O5 Cl Br F

2.03 0.43 0.55 3.15 0.75 67.45 0.39 0.14 5.09 0.07 18.43 0.14 0.08

2.2. Mix Proportions

For the preparation of reference mix OPC, burnt lime, quartz sand, aluminum powder,
and water were used as raw materials. The raw waste and calcined waste were used to
replace some of the lime. The dosage of waste was calculated on the basis of calcium oxide
mass content in the form of calcium hydroxide. Burnt lime used as a raw material for AAC
preparation was replaced at a level of 10% by weight with the calcium hydroxide/calcium
oxide from raw waste/calcined waste, respectively. Calcium oxide in the form of calcium
hydroxide was taken into account during calculations. The mix proportions are summa-
rized in Table 2. In the experiment, the AAC samples with raw waste and calcined waste
were coded as R-AAC and C-AAC, respectively.

Table 2. Mix proportions of autoclaved aerated concrete (kg/m3).

Sample
Mix Proportion (kg)

OPC Quartz Sand Lime Aluminum Powder Waste Water

Ref. 78 531 99 0.4 0 347
R-AAC 78 531 89 0.4 27 347
C-AAC 78 531 89 0.4 25 347

The AAC samples were prepared as follows: the weighed OPC, lime, and ground
quartz sand were first mixed for 2 min. Then, the water was added and mixed for another
30 s. Finally, the aluminum powder suspension (prepared from aluminum powder and
about 25 mL of mixing water taken prior to mixing) was added. The water/solid (w/s)
ratio was constant for all the mixes. It was found that the introduction of the waste did not
significantly change the workability of the mixes. The slurry was poured into preheated
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steel molds with dimensions of 100 mm × 100 mm × 100 mm and cured at the temperature
of 60 ◦C for 2 h. After demolding, the samples were autoclaved at a temperature 180 ◦C for
8 h in a laboratory autoclave.

2.3. Testing Procedure

X-ray fluorescence spectrometry (XRF) was performed to obtain the chemical com-
position of waste. XRF analysis was performed using a PANalytical WDXRF Axios mAX
spectrophotometer. The morphology of raw waste was characterized using a JEOL JEM-
1011 transmission electron microscope. Thermal measurements (DTA/TG/MS analysis)
were performed with a Netzsch STA 449 F3 Jupiter apparatus. The rate of heating was
10 ◦C/min. Analyses were performed in an inert atmosphere of helium (50 cm3/min). The
composition of gases evolved during the thermal analysis of the sample was determined
using a quadrupole mass spectrometer QMS 403 D Aëolos®. The Blaine specific surface
area of quartz sand was determined according to EN 196-6 [29]. X-ray diffraction (XRD)
was used to investigate phase composition of AAC samples. The phase compositions
of the samples were examined using a Philips X-ray diffractometer X’pert system with
monochromatic CuKa radiation. Pieces of material from the inside of the cube were taken,
dried in an oven at 60 ◦C, and then ground with a mortar and pestle until the whole sample
passed through a 0.063 mm sieve. The microstructure of samples was observed using a
low-vacuum FEI NanoSEM 200 scanning electron microscope. Freshly broken fractured
surfaces were sputtered with a thin carbon layer in order to avoid the charging of samples
during observations. The bulk density was determined according to EN 772-13 [34]. The
compressive strength test was conducted according to EN 772-1 [35]. An ISOMET 2104
(Applied Precision, Ltd., Bratislava, Slovakia) heat transfer analyzer was used to measure
the thermal conductivity of the samples [36].

3. Results
3.1. Characterization of Waste

Table 1 presents the chemical composition of the raw waste used in the experiments.
As can be seen, the principal chemical compound of the waste was CaO, allowing its use
as a calcareous material in AAC production. XRD analysis was conducted to compare
changes in the phase composition of the waste before and after calcination. Figure 1
shows the XRD patterns of raw waste and after calcination for 1 h at 550 ◦C. It can be
seen that the main crystalline phases were calcium hydroxide (Ca(OH)2) in the form of
portlandite, calcium chloride hydrate (CaClOH), halite (NaCl), and calcium carbonate
(CaCO3) in the form of calcite. As expected, portlandite was converted to lime. The mineral
composition of wastes also allowed their consideration as alternative calcareous resources
to reduce the consumption of lime. Figure 2 presents TEM observations of raw waste. The
microphotograph of the raw waste shows the hexagonal plates of portlandite and irregular
shapes of fine grains.

The thermal treatment of investigated waste at 550 ◦C did not cause any chlorine
emissions during the process. Results of Dal Pozzo et al. [25] showed that chlorine starts to
evolve from the sample at about 1000 ◦C. The examination performed for waste used in the
present study showed that, within the range of temperatures applied, no chlorine evolved
from the material during its thermal treatment. In Figure 3, results of thermal analysis
of the sample are presented. The mass changes observed on DTG curves were caused by
water release, as confirmed by the MS analysis (m/z = 18) of evolved gases. The massive
loss of water with a maximum at about 490 ◦C was associated with calcium hydroxide
decomposition [32]. No signal for m/z 36 or 37 was noted during the tests. This means that,
under applied conditions, chlorine was stable in the sample.
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3.2. Influence of Calcareous Waste on the Properties of AAC
3.2.1. Bulk Density

The bulk density of AAC is related to its physical properties, especially its mechanical
strength and thermal insulation. The effect of the addition of waste on the bulk density of
AAC is shown in Table 3.

Table 3. The bulk density of AAC samples.

Sample Bulk Density
(kg/m3)

Relative
Bulk Density (%)

ref. AAC 703 100
R-AAC 667 95
C-AAC 677 96

The reference AAC, which was produced without waste, had a bulk density of
703 kg/m3. The bulk densities of the R-AAC and C-AAC samples were slightly lower
than the bulk density of the reference sample. The introduction of waste into the AAC
mixture, in both calcined and raw form, did not cause significant changes in the properties
of the fresh mixture. It was observed that samples with waste achieved a higher final
height of fresh mass compared to the reference samples, which was manifested by the
lower density of concrete containing waste. The process underlying the increase in AAC
mass is influenced by a number of factors, including the quality of the used raw materials,
especially lime and aluminum powder. Moreover, in some cases, the process underlying
the increase in AAC mass can be significantly affected by the introduced wastes [10,17,37].
Figure 4 shows the pore structure of AAC samples. As can be seen, the pores of the R-AAC
and C-AAC samples were significantly coarser than the pores in the reference sample. The
significant difference in pore microstructure observed between samples led to the decrease
in bulk density.
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3.2.2. Compressive Strength

The changes in the mechanical properties of investigated concretes are given in Table 4.

Table 4. Compressive strength of AAC samples.

Sample Compressive Strength
(MPa)

Relative Strength
(%)

ref. AAC 2.6 100
R-AAC 3.9 150
C-AAC 3.4 131

As shown in Table 4, the strength of the AAC samples increased as the bulk density
decreased (Table 3). The replacement of lime by waste resulted in a significant increase in
compressive strength. In the case of concrete with raw waste, the increase in strength was
50%, while, in the case of calcined waste, the increase was 31%. It is worth highlighting that
these increases took place despite the slight decrease in concrete density by approximately
5%. According to [38], porosity has a significant influence on the compressive strength
of AAC, and the reduction in bulk density and the related increase in porosity generally
cause a reduction in strength. However, the increase in strength could not be related to
the pore structure (the size, shape, and the distribution) due to the fact that samples with
waste, characterized by a lower bulk density and bigger pore size, had a higher value
of compressive strength. The enhancement of mechanical properties may be attributed
to the microstructure of the AAC matrix. As for many materials, the microstructure of
the AAC matrix has a great influence on its properties, particularly compressive strength
and thermal conductivity, since the porosity of AAC is between 60% and 80% [38]. The
microstructure of AAC also depends on the type and number of phases present within the
matrix, the rate of hydration, type of reaction products formed, and their distribution in the
AAC matrix [38]. These features strongly depend on the chemical composition of the raw
mix and the course of hydrothermal treatment. Therefore, the compressive strength of AAC
is governed not only by the porosity and distribution of pores in the AAC matrix but also by
the type, amount, and microstructure of hydration products. In this study, the increase in
the compressive strength of the AAC specimens produced with waste could be attributed to
differences in the microstructure of the AAC matrix and alteration of the 1.1 nm tobermorite
morphology. SEM images illustrate three different morphologies of 1.1 nm tobermorite:
the needle-like 1.1 nm tobermorite crystals in the control sample (Figure 5a), plate-like
1.1 nm tobermorite crystals in the R-AAC sample (Figure 5b), and lath-like in the C-AAC
sample (Figure 5c). It is worth noting that, as the lime was partially replaced by waste,
the AAC microstructure became denser (Figure 5b,c). The microstructure of the hydration
product (1.1 nm tobermorite) was found to be one of the major factors affecting strength
development. The dense and compact microstructure of AAC with waste resulted in an
increase in strength despite the increase in the size of the macropores generated by the
evolution of hydrogen (Figure 4). These observations are consistent with some previous



Materials 2022, 15, 2576 8 of 13

studies [37,39,40], where the formation of C–S–H phases with different microstructure and
morphology was observed to have a significant effect on the compressive strength of AAC.
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Moreover, the results obtained indicate that the compressive strength of the AAC
samples was more affected by the morphology of the hydration product and related
dense microstructure than the pore size distribution. It can be concluded that the dense
microstructure of AAC was able to compensate for the loss of strength associated with the
increase in macropore size distribution.

3.2.3. Thermal Conductivity

The thermal conductivity, one of the most important physical properties of AAC, is
widely considered by researchers [41–47]. Many factors may affect the thermal conductivity
coefficient of AAC. It is well known that the thermal conductivity of AAC is governed by the
porosity, the pore size distribution, and the thermal conductivity of individual components
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of the material [38]. Table 5 illustrates the impact of waste as a partial replacement of lime
on the thermal conductivity of AAC.

Table 5. Thermal conductivity of AAC samples.

Sample Thermal Conductivity (W/(m·K)) Relative Thermal Conductivity (%)

ref. AAC 0.148 100
R-AAC 0.165 112
C-AAC 0.168 114

The thermal conductivity of the samples with waste (R-AAC, C-AAC) was slightly
higher than the reference value, and the values were found to be not strongly dependent
on the bulk density. The lowest thermal conductivity value was observed in the control
AAC. It was found to be 0.148 W/(m·K). Partial replacement of lime with raw and calcined
waste increased the thermal conductivity by 12% and 14%, respectively, with respect to
the reference sample. This can be explained by differences in the porous microstructure of
AAC. The increase in thermal conductivity of concrete that incorporated waste as a lime
replacement could be attributed to the differences in the pore size distribution of samples
(Figure 4). The pore size distribution is an important factor determining heat transport
through porous materials. The tiny pores observed in the reference AAC (Figure 4a)
indicated a lower thermal coefficient than the larger pores observed in samples containing
waste (Figure 4b,c).

To achieve satisfactory thermal properties of AAC with waste, the pore size distri-
bution should be optimized. The pore size distribution can be controlled during the
technological process of AAC production. There are some methods for shaping the density
and size of the pores in AAC technology, such as by changing the foam stabilizer content
and stirring time [43] or fineness and dosage of aluminum powder [48]. Therefore, the
factors related to foaming should be examined in the future.

3.3. X-ray Diffraction Analysis

The phase composition of the AAC samples was examined using XRD. The diffraction
patterns are presented in Figure 6.
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The main constituents in autoclaved concrete were calcium silicate hydrates (1.1 nm
tobermorite and the poorly crystalline C–S–H phase), which significantly affected the
mechanical properties and durability of the ACC. According to literature data, the foreign
ions introduced with wastes can affect the synthesis of calcium silicate hydrates [49–54].
For these reasons, the influence of investigated replacement materials on phase formation
must be examined. Furthermore, the composition of the waste used is often a factor that
influences the phase composition of aerated concrete [11,16]. For example, Peng et al. [16]
produced autoclaved aerated concrete using graphite tailings as siliceous material. In the
resulting material, hydration products typical for AAC were accompanied by muscovite
originating from the unreacted raw materials [16]. In the present study, along with the
waste, in addition to lime and calcium hydroxide, halite, calcite, and calcium chloride
hydrate were introduced into the mixture of AAC. Some studies reported that the presence
of calcite in starting materials may favor the formation of scawtite [19], which can reduce
the compressive strength of AAC. As can be seen, the XRD patterns of the AAC samples
were very similar. The introduction of calcareous waste as a lime partial replacement did
not change the type of calcium silicate hydrates. XRD analysis (Figure 5) showed mainly the
presence of characteristic binding phases of AAC: crystalline 1.1 nm tobermorite (2
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4. Conclusions 
Our investigation of the use of calcareous waste from flue gas cleaning as a partial 

replacement for lime in the production of ACC resulted in the following conclusions: 
1. Waste can be potentially used as a substitution of lime in AAC technology. This allows 

reducing the emissions of CO2 related to the limestone calcination process. 
2. It was found that waste affects the properties of AAC by altering the morphology of 

1.1 nm tobermorite and pore structure of AAC. 
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reducing the emissions of CO2 related to the limestone calcination process. 
2. It was found that waste affects the properties of AAC by altering the morphology of 

1.1 nm tobermorite and pore structure of AAC. 
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produced autoclaved aerated concrete using graphite tailings as siliceous material. In the 
resulting material, hydration products typical for AAC were accompanied by muscovite 
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ing shows good agreement with the compressive strength and the XRD results for the 
AAC produced. The 1.1 nm tobermorite size in R-AAC was obviously smaller than in the 
reference sample. As a result, the R-AAC sample was characterized by the highest com-
pressive strength, since strength commonly increases with a decrease in grain size. 

4. Conclusions 
Our investigation of the use of calcareous waste from flue gas cleaning as a partial 
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1.1 nm tobermorite and pore structure of AAC. 
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[61,62], grass-like [10], tabular [58], fibers [63], plates [64], or needles [57]. The microstruc-
ture of the ACC with waste was denser than that of the reference sample. The dense mi-
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positive contribution to the high compressive strength of AAC with waste. Thus, this find-
ing shows good agreement with the compressive strength and the XRD results for the 
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= 7.81◦) was noticeably
higher in AAC samples with waste compared to the reference sample. The calculated
relative intensity of the 1.1 nm tobermorite peak for R-AA and C-AAC compared to the
reference sample was 196% and 216%, respectively. Although the intensity of the peaks
could not be used for direct quantification of phases, it allowed us to assume that the
replacement of lime by calcareous waste promoted the formation of a 1.1 nm tobermorite
phase. This observation corresponds well to the high compressive strength of samples with
waste (as shown in Table 4). The XRD results indicate that foreign ions introduced with the
waste influenced the synthesis of 1.1 nm tobermorite, which had a positive effect on the
mechanical properties of AAC samples.

3.4. Microstructure Characterization

The SEM images of the AAC samples are shown in Figure 5. It can be seen that
well-crystallized 1.1 nm tobermorite formed in all AAC samples. It can be seen that the
replacement of lime with calcareous waste led to changes in the morphology of 1.1 nm
tobermorite crystals. The SEM image illustrates the needle-like 1.1 nm tobermorite crys-
tals in the reference sample (Figure 5a), plate-like 1.1 nm tobermorite crystals in sample
with raw waste (Figure 5b), and lath-like in sample with calcined waste (Figure 5c). The
literature review demonstrates that the addition of some industrial wastes can significantly
change not only the properties of ACC but also the morphology of calcium silicate hy-
drates, especially 1.1 nm tobermorite [9,15,55]. In recent years, many studies investigated
the influence of different types of industrial waste on the synthesis and morphology of
1.1 nm tobermorite [56–59]. Depending on the starting materials used for the synthesis,
1.1 nm tobermorite crystals have crystal habits that range from whiskers or flakes [60]
to laths [61,62], grass-like [10], tabular [58], fibers [63], plates [64], or needles [57]. The
microstructure of the ACC with waste was denser than that of the reference sample. The
dense microstructure of AAC and the differences in the morphology of 1.1 nm tobermorite
made a positive contribution to the high compressive strength of AAC with waste. Thus,
this finding shows good agreement with the compressive strength and the XRD results for
the AAC produced. The 1.1 nm tobermorite size in R-AAC was obviously smaller than
in the reference sample. As a result, the R-AAC sample was characterized by the highest
compressive strength, since strength commonly increases with a decrease in grain size.
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4. Conclusions

Our investigation of the use of calcareous waste from flue gas cleaning as a partial
replacement for lime in the production of ACC resulted in the following conclusions:

1. Waste can be potentially used as a substitution of lime in AAC technology. This allows
reducing the emissions of CO2 related to the limestone calcination process.

2. It was found that waste affects the properties of AAC by altering the morphology of
1.1 nm tobermorite and pore structure of AAC.

3. The compressive strength was found to increase with waste addition. The SEM
analysis showed that the addition of waste resulted in densely packed plate 1.1 nm
tobermorite crystals. The densified microstructure improved the mechanical proper-
ties of AAC. Additionally, it was shown that dense microstructure could compensate
for the loss of strength associated with the increase in pore size distribution. The role
of chlorine-bearing compounds present in the waste should be the subject of further
tests, since it is possible that they influence the strength gain of AAC.

4. The thermal conductivity was found to increase with waste addition. The main reason
for the increase in thermal conductivity was the pore size distribution significantly
influenced by the waste addition.

5. The replacement of lime by waste promoted the formation and changed the morphol-
ogy of 1.1 nm tobermorite.
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