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Abstract: This paper presents studies on the possibility of utilization of technogenic waste from the
metallurgical industry by the method of complex processing in order to reduce the anthropogenic
load on the environment of the region with the example of the zinc silicate-magnetite-carbon system.
The selected sample of clinker dump from welting was subjected to chemical and scanning electron
microscopic analyses and thermodynamic modeling. Thermodynamic studies were carried out in the
temperature range 1600–2200 K and pressure p = 0.1 MPa, modeling the process of electric melting of
clinker from welting in an arc furnace using the software application Astra 4 developed at the Bauman
Moscow State Technical University (Moscow, Russian Federation). As a result of the thermodynamic
modeling, the optimal temperature range was established, which was 1800–1900 K. Thermodynamic
studies established that it is possible to drive away zinc from the system under study by 99–100% in
the entire temperature range under study. The maximum degree of silicon extraction (αSi) in the alloy
is up to 69.44% at T = 1900 K, and the degree of iron extraction (αFe) in the alloy is up to 99.996%.
In particular, it was determined and proved that clinker waste from welting can act as a secondary
technogenic raw material when it is processed as a mono mixture to produce iron silicides with a
silicon content of 18 to 28%.

Keywords: technogenic waste of non-ferrous metallurgy; clinker from welting; environmental
pollution; thermodynamic modeling; degree of transition; zinc; iron; silicon; iron silicides

1. Introduction

Industrial waste located in dumps and containing in its chemical composition heavy
non-ferrous metals and various compounds of silicon, calcium, aluminum and iron has
a negative impact on the environment from the point of view of ecology, in particular on
public health, flora and fauna [1–8]. However, based on its chemical composition, it is valu-
able and can serve as a secondary technogenic raw material for various kinds of industries,
for example in the metallurgical, construction, chemical and other industries [9–53]. Thus,
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in Kazakhstan, in the process of extracting non-ferrous metals at a number of plants, since
the 1920s and up to the present, in a number of areas, in particular, in the east Kazakhstan
and Turkestan regions, there is a significant amount of clinker waste from the cultivation
of various raw materials, which is now stored in dumps, occupying fertile lands and pol-
luting the soil, surface and groundwater, the atmosphere, penetrating animal and human
organisms through the migration of heavy metals along the food chain [9–53].

According to various estimates, at present, in the village of Achisai (Turkestan region),
in the dumps, there are 4.5–5.7 million tons of zinc industry waste formed over the years
of the Achisai polymetallic combine, which contains, according to various data, at least
102 thousand tons of zinc (Zn), 16 thousand tons of lead (Pb), 410 thousand tons of silicon
(Si), 1.1 million tons of iron (Fe) and about 780–815 thousand tons of carbon (C). Despite
this, clinker from welting is now considered only as raw material to extract carbon and
obtain an iron-containing magnetic concentrate with the extraction of up to 80% of iron into
it. At the same time, silicon, calcium, aluminum and non-ferrous metals are not extracted
and pass into the flotation tails of the non-magnetic fraction, which are recommended for
use in the production of building materials [8,39–53].

In different years, there have been many attempts to use clinker from welting. In particular,
a study [54] showed the possibility of obtaining building materials and mineral wool from
Achisai clinker, as well as the possibility of using it in road construction [55]. There is a
well-known work on the processing of clinker welting slags from mine lead smelting by
magnetic separation to obtain (25–30%) ferromagnetic concentrate with a content of 75–89%
Fe and 1–1.5% Cu [56]. At the same time, the magnetic concentrate was used in the fusing
of slag, in the charge of agglomeration of lead production, in the enrichment of oxidized
copper ores (instead of cast iron shavings), and a coal concentrate with a content of 58%C
was obtained from the non-magnetic fraction, which is recommended for use in welding
by blowing into the furnace or granulating with recycled dust [57].

At the Elektrozink plant, an experiment was carried out on blowing clinker with
compressed air (blowing off carbon) and feeding a coal–air mixture into the head of the
Welz furnace. However, despite an increase in productivity (by 10%) and a decrease in coke
consumption, the experiment was discontinued due to deterioration in the quality of Welz
oxide due to contamination with ash and carbon [58].

The experience of processing rich clinker in Bulgaria is interesting [59]. Clinker
containing (%): Cu—2.23; Zn—1.31; Pb—1.25; C—19.1; SiO2—20.0; S—4.47, as well as
200 g/t Ag and 12 g/t Au, is subjected to screening. Class +16 mm is shipped to copper
smelters, the rest (−16 mm) is divided into heavy suspension, after which the heavy fraction
is sent to the copper smelter, and the light fraction is used in Welz furnaces. At the same
time, the extraction of copper into products for metallurgical processing is up to 93%.

For the processing of clinkers poor in precious metals, more complex technological
schemes are used, with a combination of flotation and magnetic separation. Thus, foreign
researchers were able to achieve the extraction of copper and gold into processed products
up to 91.7% and silver—89.1%. At foreign enterprises, this makes it possible to obtain
concentrates with a content of 1.5% Cu, 515–620 g/t Ag, with a content of Cu in the non-
magnetic fraction of 0.05%, C—80% (Peru, La Oroya plant) or Cu—1.6%, Au—3.2 g/t and
544 g/t Ag (Japan, Aizu plant) [60,61].

For the extraction of non-ferrous metals from the clinkers of the UCCC and CHECZ in
GINTSVETMET, a chloride-distilling method in a fluidized bed furnace has been devel-
oped [62]. The method was tested on a semi-industrial installation with an hourly capacity
of 165 kg, for raw materials. The disadvantages of the method are the long duration
of the process—5.5 h—a large consumption of concentrated CaCl2 solution—30% of the
ore mass—as well as a relatively high residual content of Zn (0.5%) and Cu (0.25%) in
the cinder.

The Kazakh Chemical Technological Institute (KazSSR) has developed a chloride
method for processing UKCC clinkers in a tubular rotary kiln with a combination of
chloride distillation of non-ferrous metals in the furnace [63]. Despite the fact that the
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economic effect of the developed method is USD ≈ 10 for each ton of clinker, the method
cannot be considered rational, since it provides for the processing of the charge, in which
the share of non-metallic components accounts for 55.9%.

In the 1990s, Yuzhpolymetal CJSC began work on the processing of Achisai clinker to
obtain magnetic concentrate and coke, which never received a mass character, limiting itself
to research experiments. However, the technological indicators of this process (including
the extraction of non-ferrous metals) are not described in the special literature. None of
the above methods have been implemented, and the clinker from the welting is not being
disposed of at the moment and continues to pollute the environment of the region.

In the conducted experiments, using thermodynamic modeling based on the Astra
4 program, the possibility of complex utilization of clinker dump to reduce anthropogenic
impact on the biosphere of the region was investigated using the example of the ZnO·SiO2-
FeO·Fe2O3-C system with the production of iron silicides and zinc sublimates from it.

2. Materials and Methods

As the material under study, a sample taken from the clinker dump of zinc oxide
ores was used. The studied technogenic waste in the form of clinker from welting was
subjected to chemical [64], scanning electron microscopic [65] analyses and thermodynamic
modeling of its processing by electric melting in an arc furnace to produce iron silicides
and zinc-containing sublimates.

At the present stage, when solving many scientific and technical problems, the issues of
studying high-temperature processes with physicochemical transformations, for example,
combustion processes, play a significant role. The experimental methods of studying
processes of this kind are usually expensive and often not feasible at all. Under these
conditions, a computational experiment performed using a computer acquires special
importance, which allows analyzing states and processes and drawing conclusions about
the behavior of the objects under study based on model representations [66,67].

The main assumption, in this case, is the assumption of the existence of a local equilib-
rium in the system, which makes it possible to carry out calculations using the mathematical
apparatus of equilibrium thermodynamics [66,67].

The main task of modeling thermodynamic equilibrium is to determine the phase
and chemical composition, as well as the values of the thermodynamic parameters of the
system under study [66,67].

Thermodynamic modeling of chemical and phase transformations in the system under
study was carried out using the computer program Astra 4, which was developed by a
group of scientists of the Bauman Moscow State Technical University and operates using
the principle of maximum entropy [66,67].

The Astra software package is based on the principle of maximum entropy—a factor
associated with the degree of ordering of the energy state of the microparticles that make
up the working fluid. The laws of statistical physics allow us to find the number of discrete
states that a specific (given) microstate implements. A comparison of this value with
entropy allows us to establish that the latter is a measure of the probability of the state of
the system. Therefore, maximum entropy corresponds to the equilibrium conditions of
the considered set of particles of the working medium, i.e., the relationship between the
probability of the state of the system and its entropy (S) allows us to formulate an extreme
condition defining the state of the system by expressions:

S = Smax Mi = const, Un—const, v = const,

where:
Un is the total internal energy;
Mj is the mass of the working fluid;
v is the specific volume of the entire system.
The formulation of the thermodynamic modeling problem requires assigning two conditions

for the equilibrium of the system under study with the environment. These conditions
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can be either numerical values of the thermodynamic characteristics of the equilibrium or
functional relations between the parameters of this state. To describe the system itself as a
material object, it is necessary to know only the content of the chemical elements forming
it. Internal and interphase interactions are described by model thermodynamic relations,
for the closure of which the properties of only individual substances—the equilibrium
component—are used [66,67].

Due to its accessible formulation of the problem of various kinds of modeling, the
developed Astra 4 complex promotes the use of the thermodynamic method for the study
of various possibilities of the course of a wide variety of processes under conditions of
various physicochemical states [66,67].

3. Results

In the course of the research, a chemical analysis of technogenic waste—clinker from
welting—was carried out, the results of the study of which are given in Table 1.

Table 1. Chemical composition of clinker blade from welting.

№ Compounds, Elements Percentage Content, %

1 CaO 14.87
2 SiO2 18.12
3 MgO 2.81
4 Al2O3 4.75
5 Fe2O3 26.98
6 Zn 0.94
7 Pb 0.12
8 Cu 0.11
9 S 1.4
10 C 18.6
11 BaO 2.4
12 Other 8.9

Having studied the results of the chemical analysis, they approximately coincide with
previous studies of clinker’s chemical composition with predominance in iron composition [9,39,68].

Additionally, a sample of clinker from welting was analyzed on a scanning electron
microscope of the brand JSM-6490l (Joel, manufactured in Japan) to obtain its elemental
composition. The results of the studies are shown in Figure 1. From these results, it
follows that the present waste in the form of clinker from welting in its composition
contains elements such as zinc, lead, calcium, silicon, oxygen, iron, aluminum (which is
also confirmed by the results of the chemical analysis carried out earlier) [9,39,68].
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From various studies of scientists [9,39,58], it is known that clinkers from the welting
of various kinds of materials contain Fe (iron) in the reduced state in the form of elemental
(Fe) and oxide state (FeO, FeO·Fe2O3), Zn (zinc) silicate form (ZnO·SiO2), and carbon is
present in the form of coke that did not have time to react in the welting of zinc oxide ores.

Based on the results of determining the chemical composition of the waste under study
given in Table 1 and previously obtained data by various scientists [9,68–70], chemical and
phase interaction was simulated in the temperature range 1600–2200 K with a pressure of
p = 0.1 MPa in the heterogeneous system under study ZnO·SiO2-FeO·Fe2O3-C, where the
interaction of magnetite (FeO·Fe2O3) with zinc silicate (ZnO·SiO2) and carbon (C), which
are contained in the clinker from Waelz process (Figures 2–4, and Table 2).
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FeO·Fe2O3-C system.

In studies on the interaction in the ZnO·SiO2-FeO·Fe2O3-C system, the following
chemical equation was adopted as the basic one:

3ZnO·SiO2 + FeO·Fe2O3 + 13C = 3 Zn + 3FeSi + 13CO. (1)

The results of modeling the chemical and phase interaction in the system ZnO·SiO2-
FeO·Fe2O3-C are shown in Figures 2–4 and in Table 2.

The effect of temperature on the distribution of zinc (Zn), iron (Fe), silicon (Si), carbon
(C), oxygen (O2) in the ZnO·SiO2-FeO·Fe2O3-C system is characterized by the formation of
seven elements and compounds: Zn, Fe, C, k*C (where k*- means condensed phase), Si, Si2,
Si3, FeSi, Fe5Si3, k*Fe3C, k*SiC, CO and CO2.
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Table 2. Influence of temperature (T) on the degree of distribution of (α) oxygen (O2) and carbon (C)
in the ZnO·SiO2-FeO·Fe2O3-C system.

T, K 1600 1700 1800 1900 2000 2100 2200

Compounds,
% Degree of distribution (α) of oxygen (O2), %

CO 0.0219 0.0102 0.0137 0.0102 0.0063 0.0041 0.0028
CO2 53.802 53.864 93.813 98.297 97.628 96.743 95.624
C2O 0 0 0 0 0.0000003 0.0000008 0.0000021
SiO 0.003 0.054 0.815 1.693 2.366 3.253 4.373
SiO2 0 0.0000003 0.0000038 0.0000675 0.0000073 0.0000080 0.0000880

k*SiO2 46.174 46.072 5.358 0 0 0 0
Amount, % 100 100 100 100 100 100 100

Degree of distribution (α) of carbon (C), %
k*C 38.249 38.192 0 0 0 0 0
C 0 0 0 0 0 0 1.08136−7

CO 0.011 0.005 0.006 0.005 0.003 0.002 0.001
CO2 54.025 54.088 94.202 98.721 98.037 97.144 96.021

k*SiC 0 0 5.791 1.273 1.959 2.852 3.975
SiC 0 0 0 0 0 0 3.4492−7

Si3C 0 0 0 0 0 3.50517−7 1.68534−6

Si2C 0 0 1.66238−7 2.26741−6 1.92375−5 0.00013 0.0007
SiC2 0 0 4.66156−7 4.67117−6 3.70176−5 0.00024 0.0013
Si2C2 0 0 0 0 0 2.9913−7 2.55166−5

C2O 0 0 0 0 2.56567−7 7.6273−7 0.0000025
k*Fe3C 7.714 7.714 0 0 0 0 0

Amount, % 100 100 100 100 100 100 100

4. Discussion

From the results obtained in the chemical and phase modeling carried out under
the conditions of the ZnO·SiO2-FeO·Fe2O3-C system, it is clear that zinc (Zn) completely
passes into the gas phase with a 100% degree of transition in the entire set temperature
regime (Figure 2).

Figure 3 shows that in the ZnO·SiO2-FeO·Fe2O3-C system, iron (Fe) passes into an
alloy with a transition degree of up to 99.996% for a compound formed as Fe5Si3 at 1800 K,
and up to 69.58% for a compound formed as FeSi at 1900 K.

The degree of distribution of silicon (Si) in the ZnO·SiO2-FeO·Fe2O3-C system into
iron-containing compounds of the condensed phase is shown in Figure 4. Figure 4 shows
that the degree of Si transition to the alloy reaches up to 59.88% for the compound formed
as Fe5Si3 at 1800 K, and up to 69.44% for the compound formed as FeSi at 1900 K.

Table 2 shows the results of the degree of distribution of (α) oxygen (O2) and carbon
(C) in the ZnO·SiO2-FeO·Fe2O3-C system from temperature. Table 2 shows that oxygen is
mainly distributed into compounds such as CO, CO2, k*SiO2. So, at T = 1900 K, oxygen is
distributed into the following compounds: CO2 by 98.297%; SiO by 1.693%; CO by 0.01%
and SiO2 by 0.00006%.

The degree of distribution of (α) carbon (C) in the ZnO·SiO2-FeO·Fe2O3-C system
from temperature is mainly represented by such compounds as CO2 (from 54.025% to
98.721%), k*C (from 38.192% to 38.249%) and k*Fe3C by 7.714% (Table 2).

Based on the obtained results of the thermodynamic modeling, which are presented
in Figures 2–4, it follows that under the given temperature conditions in the conditions
of the ZnO·SiO2-FeO·Fe2O3-C system, it is possible to almost completely extract Zn with
its transfer to the gas phase with a transition degree (αZn) equal to 100%. Simultaneously
with this simulation, the conversion of iron (10.6–99.996%) and silicon (10.7–69.44%) into
an alloy with the possibility of forming iron silicide compounds with a predicted Si content
within 18–28% (which, according to GOST 1415-93 (ISO 5445-80), can be identified as
ferrosilicon grades FS18, FS20 and FS25) under optimum conditions (1900–2000 K) of the



Materials 2022, 15, 2542 8 of 11

studied temperature regime. The obtained results of the study of the disposal of clinker
waste in order to reduce the anthropogenic impact on the biosphere of the region with the
possibility of obtaining ferroalloy and zinc sublimates are new and can complement the
ongoing research in this direction [8,24–28,39,71–76].

5. Conclusions

Based on the obtained results of studies of the possibility of complex utilization by
processing technogenic waste in the form of clinker in order to reduce the anthropogenic
impact on the biosphere of the region, the following conclusions can be drawn using
the example of the ZnO·SiO2-FeO·Fe2O3-C system with the production of ferroalloy and
zinc sublimates:

- from the clinker dump, it is possible to obtain a low-grade silicon-containing ferroalloy
with a Si content in the range of 18–28% and Fe in the range of 73–82% and extract
Zn into the gas phase in the range of 99–100% in the form of zinc sublimates in the
optimal temperature range of 1800–1900 K;

- zinc contained in the clinker can be driven into the gas phase by 100% with further
capture as zinc sublimates;

- technogenic waste—the clinker dump from rolling zinc oxide ores, according to its
chemical and elemental compositions, can act as a secondary technogenic raw material
for the metallurgical and chemical industries;

- modeling of clinker utilization by electric melting in an arc furnace will contribute to
its processing and, accordingly, reduce the anthropogenic impact of its dump on the
biosphere of the region with a multiplicative socio-ecological and economic effect.
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