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Abstract: This article introduces magneto-thermoelastic exchanges in an unbounded medium with a
spherical cavity. A refined multi-time-derivative dual-phase-lag thermoelasticity model is applied
for this reason. The surface of the spherical hole is considered traction-free and under both constant
heating and external magnetic field. A generalized magneto-thermoelastic coupled solution is
developed utilizing Laplace’s transform. The field variables are shown graphically and examined
to demonstrate the impacts of the magnetic field, phase-lags, and other parameters on the field
quantities. The present theory is examined to assess its validity including comparison with the
existing literature.

Keywords: CTE, L–S, and G–N models; spherical hole; multi-phase-lag

1. Introduction

The thermoelastic responses of different structures with spherical cavities have re-
ceived much attention because of their usefulness in many industrial applications. In
the following, we restrict our attention to the application of continuums with spherical
cavities. All the problems discussed are concerned with thermoelastic exchanges within
the framework of several generalized thermoelasticity theories.

Generalized thermoelasticity models, with one or more relaxation times, have been
proposed to modify the heat conduction equation. One of the original forms of the heat
conduction equation, associated with gases theory, was introduced by Maxwell [1]. Another
form was proposed within the framework of heat conduction in rigid structures by Catta-
neo [2]. A third form was introduced by Dhaliwal and Sherief [3] by extension to the case
of an anisotropic medium. To overcome the contradiction of an endless velocity of thermal
waves intrinsic to classical coupled thermoelasticity (CTE) theory [4], attempts have been
made by various investigators, for a range of reasons, to modify coupled thermoelasticity
to entail a wave-type heat conduction equation.

Lord and Shulman (L–S) [5] developed generalized thermoelasticity theory presenting
one relaxation time in Fourier’s law of heat conduction equation and therefore converting it
into a hyperbolic type. Banerjee and Roychoudhuri [6] discussed the generalized theory of
thermo-elasticity suggested by L–S [5] to examine thermo-visco-elastic wave propagation
in an unlimited viscoelastic body of Kelvin–Voight type with a spherical hole. Sinha
and Elsibai [7] discussed thermoelastic exchanges in an unlimited solid with a spherical
inclusion considering L–S and G–L theories. Rakshit Kundu and Mukhopadhyay [8]
described field variables in a viscoelastic body with a spherical hole. Youssef [9] described a
problem of thermoelastic exchanges in a limitless body including a spherical hole subjected
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to a moving heat source according to L–S theory. Elhagary [10] described the problem
of a thermoelastic unbounded solid including a spherical hole in the framework of L–S
diffusion theory. Karmakar et al. [11] determined the temperatures, stress, displacement,
and strain in an unbounded solid including a spherical hole in the framework of processes
addressed by two-temperature theory (2TT).

Later, Green–Naghdi (G–N) [12–14] created three versions for generalized thermoe-
lasticity that were identified as I, II, and III types. Mukhopadhyay [15,16] presented ther-
moelastic exchanges in an unbounded solid including a spherical hole in the framework of
G–N theory. Mukhopadhyay and Kumar [17] considered thermoelastic exchanges in an
infinite solid with a spherical hole in the framework of several theories. Allam et al. [18]
investigated electro-magneto-thermoelastic exchanges in an infinite solid with a spherical
hole in the framework of G–N theory. Banik and Kanoria [19] determined the thermoelas-
tic quantities in an infinite solid with a spherical inclusion in the framework of the 2TT.
Abbas [20] investigated a general solution to the field equations of 2TT in an unbounded
medium with a spherical hole in the framework of the G–N model. Bera et al. [21] inves-
tigated the waves arising from the boundary of a spherical cavity in an infinite medium.
Biswas [22] examined the thermoelastic exchange in a limitless body including a spherical
cavity in the context of the G–N model. Chandrasekharaiah and Narasimha Murthy [23]
considered thermoelastic exchanges in an infinite body including a spherical inclusion.

Green and Lindsay [24] pioneered an additional theory, known as the G–L model,
that included two relaxation times. Roy Choudhuri and Chatterjee [25] studied spherically
symmetric thermoelastic waves in an unbounded body containing a spherical hole. Sherief
and Darwish [26] presented a problem of a thermoelastic unbounded solid containing
a spherical hole in the framework of thermoelasticity theory with two relaxation times.
Mukhopadhyay [27] discussed thermally induced vibrations of an unbounded viscoelastic
body including a spherical hole in the framework of G–L theory. Ghosh and Kanoria [28]
determined thermoelastic quantities in a functionally graded (FG) spherically unbonded
body including a spherical hole in the framework of G–L theory. Kanoria and Ghosh [29]
examined thermoelastic exchanges in an FG hollow sphere in the framework of the G–L
model. Das and Lahiri [30] considered a thermoelastic problem for an unbounded FG and
temperature-dependent spherical inclusion in the framework of G–L theory.

Many investigators have used dual/triple-phase-lag (D/TPL) heat transfer theory to
examine thermoelastic exchanges in unbounded mediums including spherical cavities. DPL
theory was originally presented by Tzou [31,32] to describe some problems at a macroscopic
scale. Abouelregal and Abo-Dahab [33] presented thermal quantities in an unbounded
solid with a spherical hole in the framework of DPL theory. Hobiny and Abbas [34] applied
DPL theory in the examination of photo-thermal exchanges in an infinite solid containing a
spherical cavity. Mondal and Sur [35] studied a coupled problem in an infinite solid with
a spherical hole in the framework of a photothermal transport process in relation to 2TT.
Singh and Sarkar [36] examined thermoelastic exchange in a 2TT unbounded isotropic body
containing a spherical cavity in the framework of a memory-dependent derivative (MDD).
Comparisons were made graphically between the 2T TPL theory and 2T L–S theory with
MDD. Many researchers have dealt with one-dimensional (1D) problems in generalized
thermoelasticity in unbounded mediums with spherical cavities [37–44].

In the current article, magneto-thermoelastic exchanges in an infinite solid with a
spherical hole are studied with respect to multi-time-derivative thermoelasticity theo-
ries [45–53]. A refined DPL model is used for this purpose. The technique of Laplace
transforms in the time domain is applied to obtain the governing equations analytically.
The derived equations are solved and then Laplace inversion is carried out to obtain the
field quantities numerically. For verification proposes, the outcomes are compared with
those obtained previously. Additional results are presented graphically and others are
reported for future comparison.
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2. Basic Equations

Let us be concerned with thermoelastic analysis of an isotropic body including a
spherical cavity of radius R based on unified multi-phase-lag theory. It is assumed that the
outer edge of the spherical cavity is traction-free and subjected to harmonically varying
heat (See Figure 1). The spherical cavity coordinate system (r,θ,φ) is used to address the
present problem.
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Figure 1. A spherical cavity in an unbounded medium under harmonically varying heat and external
magnetic field.

The governing equations for a linear isotropic homogeneous thermoelastic body in
the absence of volume forces are given by:

• The equations of motion:

µ ui,jj + (λ + µ)uj,ij − γΘ,i = ρ
∂2ui
∂t2 (1)

• The constitutive equations:

σij = 2µeij + (λek,k − γΘ)δij (2)

where σij and eij are the stresses and strains and δij denotes Kronecker’s delta tensor.

• The heat conduction equation:

kLT

(
∇2Θ

)
= Lq

(
ρCe

∂Θ
∂t

+ γT0
∂uk,k

∂t
−Q

)
(3)

is considered in the context of the refined thermoelasticity form in which LT and Lq denote
the following higher-order time-derivative operators:

LT = 1 +
N

∑
n=1

τn
T

n!
∂n

∂tn , Lq = $ +
N

∑
n=1

τn
q

n!
∂n

∂tn (4)

Equation (3) with the aid of Equation (2) are the more general ones when N has
numerous integers more than zero. Some specific cases may be achieved as
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(i) Dynamical coupled thermoelasticity (CTE) model [4]: τT = τq = 0 and $ = 1,

k∇2Θ = ρCe
∂Θ
∂t

+ γT0
∂uk,k

∂t
−Q (5)

(ii) Lord and Shulman (L–S) model [5]: τT = 0, τq = τ0 and $ = 1,

k∇2Θ =

(
1 + τq

∂

∂t

)(
ρCe

∂Θ
∂t

+ γT0
∂uk,k

∂t
−Q

)
(6)

(iii) Green and Naghdi (G–N) model without energy dissipation [12–14]: τT = 0, τq = 1,
k→ k∗ , N = 1 and $ = 0,

k∗∇2Θ =
∂

∂t

(
ρCe

∂Θ
∂t

+ γT0
∂uk,k

∂t
−Q

)
(7)

(iv) The simple dual-phase-lag (SDPL) model [50–52]: τq ≥ τT > 0, $ = 1 and N = 1,

k
(

1 + τT
∂

∂t

)
∇2Θ =

(
1 + τq

∂

∂t

)(
ρCe

∂Θ
∂t

+ γT0
∂uk,k

∂t
−Q

)
(8)

(v) The refined with dual-phase-lag (RDPL) model [50–52]: N > 1, τq ≥ τT > 0, and
$ = 1,

k

(
1 +

N

∑
n=1

τn
T

n!
∂n

∂tn

)
∇2Θ =

(
1 +

N

∑
n=1

τn
q

n!
∂n

∂tn

)(
ρCe

∂Θ
∂t

+ γT0
∂uk,k

∂t
−Q

)
(9)

The displacements of the present, axially symmetric spherical medium are summa-
rized as

ur = u(r, t), uθ = uφ = 0 (10)

The non-vanishing strains and volumetric strain can be expressed as

err =
∂u
∂r

, eθθ = eφφ =
u
r

(11)

Thus, the volumetric strain e has the form

e = err + eθθ + eφφ =
∂u
∂r

+
2u
r

=
1
r2

∂

∂r

(
r2u
)

(12)

The constitutive equations for the spherical symmetric system can be stated as

σrr = 2µ
∂u
∂r

+ λe− γΘ (13)

σθθ = σφφ = 2µ
u
r
+ λe− γΘ (14)

(
2µ + λ + µ0H2

0

)∂e
∂r
− γ

∂Θ
∂r

= ρ
∂2u
∂t2 (15)

Applying the operator (∂/∂r + 2/r) to both sides of Equation (15), one gets

(
2µ + λ + µ0H2

0

)
∇2e− γ∇2Θ = ρ

∂2e
∂t2 (16)

in which ∇2 denotes the Laplacian operator in spherical coordinates. It meets
the formulation

∇2(∗) = ∂2(∗)
∂r2 +

2
r

∂(∗)
∂r

=
1
r2

∂

∂r

(
r2 ∂(∗)

∂r

)
(17)
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3. Formulation of the Problem

It is proper to establish the non-dimensional variables in the following parts:

{r′, u′} = c0η{r, u},
{

t′, τ′T , τ′q

}
= ηc2

0
{

t, τT , τq
}

,

σ′ii =
σii

λ+2µ , Θ′ = γΘ
λ+2µ , c2

0 = λ+2µ
ρ , η = ρCe

k

(18)

The whole governing equations, with the above dimensionless variables, are dimin-
ished to (throwing down the dash for convenience)

σrr = e− 2
c1

u
r
−Θ (19)

σθθ = σφφ =

(
1− 1

c1

)
e +

1
c1

u
r
−Θ (20)

c2∇2e−∇2Θ =
∂2e
∂t2 (21)(

∇2LT − Lq
∂

∂t

)
Θ− εLq

(
∂e
∂t

)
= 0 (22)

where

c1 =
λ + 2µ

2µ
, c2 = 1 +

µ0H2
0

λ + 2µ
, ε =

γ2T0

ρCe(λ + 2µ)
(23)

4. Closed-Form Solution

The comprehensive solutions are provided by resolving Equations (21) and (22) to
obtain, firstly, temperature Θ and volumetric strain (dilatation) e. Then, the subsequent
radial displacement and thermal stresses may be presented as functions of Θ and e. For
this objective, we will first employ the next initial conditions:

u(r, 0) =
∂u
∂t

∣∣∣∣
t=0

= 0, Θ(r, 0) =
∂Θ
∂t

∣∣∣∣
t=0

= 0, R ≤ r < ∞ (24)

In adding together to the above homogenous initial conditions, we also used the
thermomechanical boundary conditions. The current unbounded body will be studied as
quiescent and the surface of the spherical cavity is assumed to be exposed to constant heat
and traction free. Such conditions can be explained as

• The surface of the spherical hole is subjected to a constant heat

Θ(R, t) = Θ0H(t), t > 0 (25)

• The mechanical boundary condition is respected as the surface of the spherical hole is
traction free

σrr(R, t) = 0, t > 0 (26)

Moreover, we take into consideration the following regularity conditions

u(r, t) = 0, Θ(r, t) = 0, r → ∞ (27)

The Laplace transform is carried out for Equations (19)–(22), and, with the homoge-
neous initial conditions that appeared in Equation (24), one gets:

σrr = e− 2
c1

u
r
−Θ (28)
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σθθ = σφφ =

(
1− 1

c1

)
e +

1
c1

u
r
−Θ (29)(

c2∇2 − s2
)

e−∇2Θ = 0 (30)(
∇2 −v

)
Θ− εve = 0 (31)

where

v =
sLq

LT
, LT = 1 +

N

∑
n=1

τn
T

n!
sn, Lq = $ +

N

∑
n=1

τn
q

n!
sn (32)

The system of equations provided in Equations (30) and (31) can be indicated in the
differential equation (

∇4 − β1∇2 + β0

)
e(r) = 0 (33)

where the coefficients βi are given by

β0 =
s2v

c2
, β1 =

s2 + v(ε + c2)

c2
(34)

and the temperature Θ is reformed as follows

Θ(r) =
c2

v
∇2e(r)−

(
s2

v
+ ε

)
e(r) (35)

Equation (33) is very complicated since it is presented in a polar coordinate system. It
can be expressed as (

∇2 − ζ2
1

)(
∇2 − ζ2

2

)
e(r) = 0 (36)

where ζ2
j are the roots of

ζ4 − β1ζ2 + β0 = 0 (37)

These roots ζ j are given, respectively, by

ζ2
1,2 =

1
2

(
β1 ±

√
β2

1 − 4β0

)
(38)

Equation (36) tends to the next modified Bessel’s equation of zero-order(
1
r

∂

∂r

(
r

∂

∂r

)
− ζ2

1

)(
1
r

∂

∂r

(
r

∂

∂r

)
− ζ2

2

)
e(r) = 0 (39)

which has a solution under the regularity conditions: u, Θ→ 0 as r → ∞ . Therefore, the
general solution of Equations (35) and (39), that is bounded at infinity, is provided by

{
Θ(r), e(r)

}
=

1
r

2

∑
j=1

{
1, ζ j

}
Bje
−ζ jr (40)

where Bj are integration parameters and

ζ j =
c2ξ2

2 − s2

v
− ε (41)

Using the relation between u and e

e(r) = Du(r), D =
d
dr

+
2
r

(42)
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one can pick up the solution for the dimensionless form of radial displacement pretending
that u disappears at infinity as:

u(r) =
2

∑
j=1

(
1− ζ̂ j

)
Bje
−ζ jr (43)

where
ζ̂ j = 1 +

1
ζ jr

+
1

ζ2
j r2

(44)

Up to here, the solution is finished. It is as much as needed to establish the two
parameters Bj with the aid of the boundary conditions given in Equations (25) and (26). So,
one gets

σ1 = σrr =
1
r

2

∑
j=1

[
1− ζ j +

2
c1

(
ζ̂ j − 1

)]
Bje
−ζ jr (45)

σ2 = σθθ = σφφ =
1
r

2

∑
j=1

(
1−

ζ̂ j

c1
− ζ j

)
Bje
−ζ jr (46)

Therefore, the current analytical solution is already provided for the modified formu-
lations in Laplace space. To achieve the solution in the basic time-space one can consider a
function ψ(t) as an inversion of the Laplace function ψ(s) in the form

ψ(t) =
ept

t

[
1
2

ψ(p) + Re

(
L

∑
ι=1

(−1)ιψ

(
p +

iιπ
t

)) ]
(47)

where p is an arbitrary constant, Re is the real part, i suggests the imagined number
unit and L denotes a sufficiently big integer. For faster combination, various numerical
analyses have shown that the approximation of p fulfills the connection pt ≈ 4.7 [35]. The
numerical procedure cited is used to invert the terms of temperature Θ, radial displacement
u, volumetric strain e, radial stress σ1, and circumferential stress σ2.

5. Validation

Numerous examples are presented to illustrate the effect of several models on the field
variables. The material properties of the infinite medium with a spherical cavity are

λ = 7.76× 1010 N m−2, µ = 3.86× 1010 N m−2, Ce = 383.1 J kg−1 K−1,
αt = 1.78× 10−5 K−1, ρ = 8954 kg m−3,

k = 386 W m−1 K−1, T0 = 293 K, k∗ = 1.2

Numerical outcomes are attained (except where otherwise indicated) for Θ0 = 10,
τq = 0.02, τT = 0.018, t = 0.03, and radius R = 1.

5.1. First Justification

The outcomes for all variables using various thermoelasticity models of dual-phase-
lag are presented in Tables 1–5 at different positions. The impact of magnetic field µ0
and H0 on all field quantities of the various models are produced at dimensionless time
t = 0.03. Additional results are illustrated in Figures 2–11 through the radial direction of
an unbounded medium with a spherical hole.
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Table 1. Effects of dimensionless time t on volumetric strain e according to different thermoelasticity
theories with several values of r.

r t CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

1.001
0.02 23.809257 3.0601024 24.0856 23.808792 23.808531 23.808844 23.809054
0.03 21.299459 16.83015 21.555949 21.29979 21.30039 21.299517 21.295514
0.05 16.62998 24.126713 16.819316 16.631298 16.631497 16.630909 16.636946

1.0108
0.02 9.048562 −0.1153723 8.8444984 9.0436695 9.0430854 9.0508697 9.0662687
0.03 5.9635525 7.3662102 5.6387135 5.9605812 5.9665798 5.9730733 5.9683018
0.05 9.6360547 7.6797451 9.459863 9.6357821 9.6349646 9.6210413 9.6310639

1.035
0.02 −0.1538211 −0.2026603 −0.4084073 −0.1628925 −0.1754834 −0.1766143 −0.1722681
0.03 −0.2531288 −0.2064843 −0.2693186 −0.2655987 −0.2744405 −0.2676814 −0.2565349
0.05 10.563634 −0.3048223 10.574561 10.558 10.573683 10.573157 10.549094

Table 2. Effects of dimensionless time t on radial displacement u according to different thermoelastic-
ity theories with several values of r.

r t CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

1.02
0.02 0.016967 6.59 × 10−3 0.02626 0.017492 0.018306 0.018521 0.018544
0.03 −0.06242 0.012333 −0.05158 −0.06156 −0.06069 −0.06086 −0.06142
0.05 −0.21674 0.023884 −0.20169 −0.21541 −0.21513 −0.21532 −0.2143

1.2
0.02 2.17 × 10−3 6.68 × 10−11 3.38 × 10−6 2.04 × 10−3 1.82 × 10−3 1.73 × 10−3 1.68 × 10−3

0.03 6.32 × 10−3 5.89 × 10−7 9.67 × 10−4 6.12 × 10−3 5.89 × 10−3 5.91 × 10−3 6.05 × 10−3

0.05 0.02141 1.46 × 10−6 0.018332 0.021199 0.021304 0.021448 0.021156

1.4
0.02 1.09 × 10−4 8.19 × 10−19 7.92 × 10−8 8.52 × 10−5 5.03 × 10−5 3.80 × 10−5 2.83 × 10−5

0.03 6.20 × 10−4 3.73 × 10−12 1.20 × 10−6 5.33 × 10−4 4.03 × 10−4 3.58 × 10−4 3.26 × 10−4

0.05 3.81 × 10−3 4.67 × 10−8 8.92 × 10−6 3.54 × 10−3 3.30 × 10−3 3.34 × 10−3 3.47 × 10−3

Table 3. Effects of dimensionless time t on temperature Θ according to different thermoelasticity
theories with several values of r.

r t CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

1.02
0.02 12.4075 0.765094 2.199177 12.55818 12.92892 13.1502 13.34968
0.03 11.96567 1.840952 14.22474 12.14601 12.5459 12.66462 12.52622
0.05 11.31646 0.063337 22.12826 11.50767 11.8686 12.0525 12.76183

1.2
0.02 2.604722 −2.25 × 10−8 0.014782 2.510894 2.453168 2.515533 2.661198
0.03 3.361241 1.08 × 10−4 4.068197 3.310861 3.477755 3.716377 4.020897
0.05 4.423428 −1.49 × 10−4 4.010311 4.357168 4.381843 4.120538 3.461431

1.4
0.02 0.325147 1.79 × 10−16 1.45 × 10−4 0.268041 0.181612 0.14935 0.122447
0.03 0.733066 5.64 × 10−9 4.00 × 10−4 0.660726 0.580455 0.574048 0.591092
0.05 1.471241 5.49 × 10−5 0.06287 1.423396 1.488998 1.566341 1.558591
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Table 4. Effects of dimensionless time t on radial stress σ1 according to different thermoelasticity
theories with several values of r.

r t CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

1.02
0.02 −8.18367 −0.89255 2.057934 −8.34605 −8.73216 −8.95355 −9.14535
0.03 −1.07491 −2.14559 −3.37834 −1.26233 −1.65585 −1.75897 −1.60453
0.05 −4.01791 −0.38448 −15.1083 −4.2121 −4.56849 −4.77181 −5.5112

1.2
0.02 −2.6318 2.61 × 10−8 −0.01511 −2.53776 −2.47972 −2.54218 −2.68827
0.03 −3.42287 −1.26 × 10−4 −4.15875 −3.37323 −3.54214 −3.78243 −4.08913
0.05 −4.57844 1.71 × 10−4 −4.20834 −4.51548 −4.54388 −4.28088 −3.61623

1.4
0.02 −0.32688 −2.07 × 10−15 −1.48 × 10−4 −0.2695 −0.1826 −0.15016 −0.1231
0.03 −0.74048 −6.54 × 10−9 −4.15 × 10−4 −0.6675 −0.58625 −0.57954 −0.59643
0.05 −1.50361 −6.36 × 10−5 0.064107 −1.45493 −1.52053 −1.59878 −1.59192

Table 5. Effects of dimensionless time t on circumferential stress σ2 according to different thermoelas-
ticity theories with several values of r.

r t CTE G–N L–S
SDPL RDPL

N = 1 N = 3 N = 4 N = 5

1.02
0.02 −10.2735 −0.82254 −0.03941 −10.4295 −10.8072 −11.0283 −11.2239
0.03 −6.56734 −1.98159 −8.83803 −6.75038 −7.14623 −7.2573 −7.1114
0.05 −7.86997 −0.20094 −18.8067 −8.06137 −8.41975 −8.61358 −9.33697

1.2
0.02 −2.61649 2.44 × 10−8 −0.01494 −2.52266 −2.46497 −2.52745 −2.67337
0.03 −3.38687 −1.17 × 10−4 −4.11278 −3.33703 −3.50513 −3.74457 −4.05007
0.05 −4.48332 1.61 × 10−4 −4.09433 −4.41888 −4.44534 −4.18307 −3.52142

1.4
0.02 −0.32594 −1.93 × 10−15 −1.46 × 10−4 −0.26871 −0.18207 −0.14973 −0.12275
0.03 −0.73634 −6.09 × 10−9 −4.07 × 10−4 −0.66374 −0.58307 −0.57655 −0.59354
0.05 −1.48475 −5.92 × 10−5 0.063495 −1.43668 −1.50245 −1.58022 −1.57282

The outcomes described in Tables 1–5 are offered as benchmarks for other researchers.
It is evident from the tabulated results that:

• The G–N model provides the lowest absolute value of all variables. It may vanish at
some positions.

• The other CTE and L–S models provide appropriate outcomes for all variables.
• Triplet values N = 3, 4, and 5 are utilized for the RDPL model while the SDPL model is

defined with N = 1.
• Extremely exact outcomes are provided utilizing the RDPL model.
• For the RDPL model the temperature, displacement, and circumferential stress slightly

increase as the value of N increases, while volumetric strain, radial stress, and circum-
ferential stress slightly decrease. All variables may be insensitive to the higher values
of N especially when N ≥ 5.

5.2. Second Justification

Figures 2–6 show the effect of all models on the variables with fixed time t = 0.03.
The remainder of the graphs are exhibited in relation to the refined dual-phase-lag (RDPL)
model with N = 5 to examine the effect of various parameters on all field variables.
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Figure 2. The temperature Θ through radial direction of spherical hole presenting to all models.

The discrepancy of the temperature Θ through radial direction of a spherical hole
corresponding to all models is produced in Figure 2. Similar figures for the remaining
variables are presented in Figures 3–6. Figure 2 reveals that the temperature due to the CTE,
L–S, and SDPL models vibrates across the trajectory of the RDPL model, while temperature
due to the G–N model vibrates below the trajectory of the RDPL model. The tempera-
ture according to the G–N model may vanish earlier than the temperature according to
other models.

Figure 3 reveals that the values of e of SDPL, L–S, and CTE models vibrate identically
to the trajectory of the RDPL theory. While the value of e for the G–N model vibrates across
and below the trajectory of the RDPL model.
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Figure 4 indicates that the radial displacements u of the CTE and SDPL models may be
the same as those of RDPL theory, vanishing through radial direction. The displacements u
of the L–S model may be the upper or lower bounds of those due to the RDPL model. The
G–N model always produces the smallest displacement during the radial direction.
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Figure 4. The radial displacement u through radial direction of spherical hole presenting to
all models.

Figure 5 reveals that the radial stress σ1 of the G–N model may rapidly vanish through
the radial direction when r > 1.1. The radial stress of the L–S model vibrates around the
RDPL model with wide amplitude, then it also vanishes when r > 1.24. The other CTE and
SDPL theories give radial stresses that vibrate around those of the RDPL theory but with
small amplitude.

Finally, Figure 6 shows similar behaviors of circumferential stress as those of the radial
stress. It shows that the circumferential stress σ2 of the G–N model may rapidly vanish
through the radial direction when r > 1.1. The radial stress of the L–S model vibrates around
the RDPL theory with wide amplitude, then it also vanishes when r > 1.24. The other CTE
and SDPL theories give radial stresses that vibrate around those of the RDPL theory but
with small amplitude.

It is concluded from the above figures that the outcomes of the RDPL model are the
most straightforward. So, we restrict our attention to using this theory for yielding the
outcomes of this problem considering the effect of various parameters on the field variables.

5.3. The Influence of Dimensionless Time

The outcomes of dimensionless time t on all variables due to the RDPL model are
presented in Figures 7–11. Figure 7 reveals the effects of t on Θ through radial direction of a
spherical hole. Similar figures for the remaining variables are presented in Figures 8–11. It
is clear in Figure 7 that Θ vibrates through the radial direction for various values of t with
different wavelengths. The temperature Θ no longer increases and has its highest values
when r = 1.04. The temperature vanishes as r increases, irrespective of the values of t.

Figure 8 reveals that the volumetric strain e vibrates through the radial direction of
a spherical hole with different amplitudes and different wavelengths. The wavelength
increases as t increases. For t = 0.02 the volumetric strain e firstly vanishes when r > 1.024,
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while for t = 0.05, the volumetric strain e finally vanishes when r > 1.06. In Figure 9,
the radial displacement u rapidly increases through the radial direction of the spherical
hole when t = 0.02, while u slowly increases when t = 0.03. u is slowly decreasing when
t = 0.05 It is obvious that the radial displacement u increases with increase in dimensionless
time t at fixed positions.
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Figure 8. The influence of t on volumetric strain e through radial direction of spherical hole using
RDPL model.

The radial stress σ1 through the radial direction of spherical hole due to the RDPL
model is described in Figure 10 for various values of t. The radial stress σ1 oscillates on a
very small scale, then increases when t = 0.03 and 0.05, while it decreases when t = 0.02.
At any fixed position, the radial stress σ1 increases with increase in the dimensionless time
t. The circumferential stress σ2 is drawn through the radial direction of the spherical cavity
utilizing the RDPL model in Figure 11 for distinctive values of t. It vibrates over a very
small range, then it increases for t = 0.02, but decreases when t = 0.03 and 0.05. At any
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fixed position, the circumferential stress σ2 increases with increase in the dimensionless
time t.
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6. Conclusions

The present refined dual-phase-lag model is innovative and produces accurate results
for variables such as temperature, volumetric strain, displacement, and stresses. The
multi-time derivatives heat equation was explained. The constitutive relations of spherical
coordinates were considered to examine the thermoelastic coupling behavior of an infinite
medium with a spherical cavity due to a uniform heat. To create a unified model, one can
combine other models, including the coupled dynamical thermoelasticity model, the Lord
and Shulman model, the Green and Naghdi model without energy dissipation, as well
as a simple dual-phase-lag model. The system of two high-time-derivative differential
coupled equations was solved, and all field variables were developed for the thermoelastic
coupling response of an infinite medium with a spherical hole. Various confirmation
examples and applications were offered to compare the outcomes due to all models with
the refined ones. A sample set of graphs were presented to demonstrate relationships of
variables through radial direction of a spherical hole. Some tables have been provided as
confirmation examples to provide benchmark outcomes for future comparisons by other
researchers. The described and demonstrated outcomes revealed different behaviors of
all field variables and dimensionless time parameters. The present dual-phase-lag theory
diminished the magnitudes of the examined variables, which may be significant in some
practical applications. The G–N model provided appropriate outcomes over a small range.
However, the refined model produced improved and exact outcomes.
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Nomenclature

αt thermal expansion
(

K−1
)

Cϑ specific heat
(

J kg−1 K−1
)

δij Kronecker’s delta
eθθ , eφφ circumferential strains
err radial strain
e volumetric strain (dilatation)
eij strain tensor components
ϑ velocity of heat source

(
m s−1)

γ ≡ (3λ + 2µ)αt thermal modulus
(

N m−2 K−1
)

H(t) Heaviside’s unit step function
H0 initial magnetic field

k heat conductivity
(

W m−1 K−1
)

k∗ rate of thermal conductivity
(

W m−1 K−1
)

λ, µ Lame’s constants
(

N m−2
)

µ0 electric permeability

ρ density
(

kg m−3
)

R radius of the spherical hole (m)

(r, θ, φ) spherical coordinates system

σij stress tensor components
(

N m−2
)

σθφ, σrθ , σrφ shear stresses
(

N m−2
)

σθθ , σφφ circumferential stresses
(

N m−2
)

σrr radial stress
(

N m−2
)

s Laplace parameter
Θ = T − T0 temperature change (K)
Θ0 thermal constant (K)
T0 environment temperature (K)
τq phase-lag of heat flux (s)
τT phase-lag of temperature gradient (s)
τ0 first relaxation time (s)
ω angular frequency of thermal vibration

(
rad s−1

)
Q0 strength of heat source

(
W m−3

)
δ delta function
⇀
q heat flux vector

(
W m−2

)
ur radial displacement (m)
uθ , uφ circumferential displacements (m)
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