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Abstract: The shear transfer mechanism of steel fiber reinforced concrete (SFRC) beams without
stirrups is still not well understood. This is demonstrated herein by examining the accuracy of typical
empirical formulas for 488 SFRC beam test records compiled from the literature. To steer clear of these
cognitive limitations, this study turned to artificial intelligence (AI) models. A gray relational analysis
(GRA) was first conducted to evaluate the importance of different parameters for the problem at hand.
The outcomes indicate that the shear capacity depends heavily on the material properties of concrete,
the amount of longitudinal reinforcement, the attributes of steel fibers, and the geometrical and
loading characteristics of SFRC beams. After this, AI models, including back-propagation artificial
neural network, random forest and multi-gene genetic programming, were developed to capture the
shear strength of SFRC beams without stirrups. The findings unequivocally show that the AI models
predict the shear strength more accurately than do the empirical formulas. A parametric analysis was
performed using the established AI model to investigate the effects of the main influential factors
(determined by GRA) on the shear capacity. Overall, this paper provides an accurate, instantaneous
and meaningful approach for evaluating the shear capacity of SFRC beams containing no stirrups.

Keywords: steel fiber reinforced concrete beam; shear capacity; back-propagation artificial neural
work; random forest; multi-gene genetic programming; parameter sensitivity

1. Introduction

Concrete is currently the most widely used construction material [1,2]. However, it
has some fundamental weaknesses: low tensile capacity and increased brittleness with
strength. Engineers considered adding ductile steel fibers to plain concrete to overcome
this drawback, and a new composite—steel fiber reinforced concrete (SFRC)—was thus
formed [3,4]. This treatment is simple to implement and has a beneficial effect on improving
concrete’s crack-resisting capacity [5]. Additionally, the durability of concrete can be
substantially improved, because cracking is well controlled. From a long-term point of
view, SFRC can also be deemed environmentally friendly since it indirectly reduces concrete
consumption as a result of the increased service life of SFRC components [6].

As early as 1874, Bernard proposed a method of reinforcing concrete with steel splin-
ters, which is recognized as the earliest exploration of using steel fibers in concrete. Since
then, SFRC has received immense attention. Many studies have been conducted to inves-
tigate the mechanical properties [7–10], durability [3,11–15], fatigue performance [16,17]
and microstructure characteristics of SFRC [18–20]. Based on these research results, it has
been determined that SFRC is structurally superior to its ordinary concrete counterpart,
especially under tension, shear or torsion forces [4]. Fibers can effectively prevent crack
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opening and carry further tension stress via bridging effects [8,9]. SFRC also experiences
much less creep and shrinkage than plain concrete, owing to the improved fine microstruc-
ture in combination with reduced micro-cracks when adding fibers [21]. All of these factors
explain the effectiveness and potential of SFRC.

However, it should be noted that the practical use of SFRC has lagged behind its
scientific research [22]. Presently, its use is mainly limited to low-rise industrial structures,
small housing buildings and some special locations (e.g., joints) in structures [23]. The
reasons behind this are multifold [24]. One is that there is a lack of reliable models that can
accurately elucidate the load-resisting mechanisms of members made with SFRC, especially
for SFRC beams without stirrups [25]. As a matter of fact, in practice, it is desirable to
use steel fibers in beams in order to reduce the labor-intensive work involved in making
steel stirrups. This is particularly true for large girders. However, even with the addition
of steel fibers, SFRC beams without stirrups tend to be more brittle in shear than SFRC
beams with stirrups, and the quantity of fibers that should be included in a beam so that
the fibers act as shear reinforcement instead of using stirrups is still inconclusive. This
issue has attracted the attention of many experts aiming to reveal the mechanism behind
it. Slater et al. [26], for example, compared the experimentally obtained shear strengths
of 222 beams with those predicted using design equations. The predictions were not
satisfactory, since these equations did not fully consider the influential parameters involved.
Voo et al. [27] questioned the assumption that steel fibers only contribute to the shear-
resisting mechanism across a crack, as they observed a clear reduction in the deflection
of SFRC beams. Recently, Lantsoght et al. [22,28] indicated that steel fibers affect all five
shear transfer mechanisms in ordinary concrete beams (in this study, “ordinary” means a
beam without fibers), and these alterations pose a significant challenge to the shear design
of SFRC beams without stirrups.

To exploit the benefits of using steel fibers, optimize component design and ensure
structural safety, it is necessary to develop accurate and practical models for determining
the shear bearing capacity of SFRC beams containing no stirrups.

Over the past two decades, artificial intelligence (AI) models have gained much
attention due to the accuracy, simplicity and reliability of these data-driven approaches.
As a result, they have been gradually accepted by the civil engineering community for
predicting different properties of materials and structures [29]. AI models often outperform
mechanics-based models, as the former can exploit hidden patterns between seemingly
unrelated parameters to draw useful solution(s) [30,31].

Scholars have also proposed a variety of AI-based approaches to investigate the shear
capacity of SFRC beams [32–34]. For example, Keshtegar et al. [32] used a response surface
method–support vector regression hybrid method (RSM–SVR) to address this issue. They
observed that their method had superior accuracy, outperforming the individual RSM or
SVR method. Rahman and his co-workers [33] used a total of 11 models to predict the SFRC
beam’s shear strength and found that the XGBoost algorithm had the highest precision.
Chaabene and Nehdi [34] adopted a genetic programming-based symbolic regression
(GP-SR) method to address the same topic. Unlike the two previous studies, this work
proposed a novel tabular generative adversarial network (TGAN) technique that generates
2000 synthetic data points to address the lack of experimental data.

These pioneering investigations are of great significance for improving the shear
strength evaluation of SFRC beams. However, generally speaking, there are still some
shortcomings, mainly: (i) Not all of the decisive factors were considered or well-reflected
in the previous models. For example, neither the effect of beam sectional width nor the
effective depth was considered in [33]. (ii) The AI-based models do not usually provide an
explicit formula. They resemble a black box, which has attracted some criticism.

Facing the above concerns, the main objective of this study is to develop automated
approaches with higher accuracy by taking more comprehensive parameters into account.
To achieve this goal:
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• First, the influence of using steel fibers on the SFRC’s basic mechanical properties and
the reinforced SFRC beam’s shear bearing capacity are briefly reviewed. In addition,
the database of SFRC beams containing no stirrups established by Lantsoght [28] is
succinctly analyzed.

• A gray relational analysis is then performed to identify the parameter importance.
• AI models, including back-propagation artificial neural network (BPANN), random

forest (RF) and multi-gene genetic programming (MGGP), are developed to simulate
the shear strength of the reinforced SFRC beam without stirrups.

• A parametric study is finally carried out to validate and explain the AI models.

Through the above steps, this study demonstrates how AI models can be introduced
as a contemporary tool to augment the shear capacity evaluation of SFRC beams containing
no stirrups.

2. Literature Review, Experimental Database and Typical Prediction Models
2.1. Literature Review

Dispersing steel fibers in concrete is beneficial for improving the mechanical properties
of concrete. A review of the experimental results reported in the literature [3–10] indicates
that: (a) Adding steel fibers is conducive to increasing concrete’s compressive strength, but
the improvement effect is usually small compared with that for tension-related properties.
Generally, the optimum dosage of steel fibers is a volume fraction of about 1.0%, which
leads to an increase in the compressive strength of 8.1–14.0%. (b) As the amount of steel
fibers increases, the SFRC’s elastic modulus increases moderately, and this can be well
predicted using a series model. (c) Adding steel fibers can significantly increase the tensile
strength and post-peak ductility. In general, 1.0% volume content of steel fibers could
increase the SFRC’s splitting tensile strength by 15–40%. Additionally, with an increase in
the fiber content, the tensile failure pattern progressively evolves from single-cracking to
multi-cracking behavior. (d) The mechanical properties of concrete are likely to deteriorate
when the steel fiber content is greater than 2.0%, which is mainly caused by the increase in
the heterogeneity of the concrete mixture.

Once under shear, steel fibers also play a key role due to the stress transfer between
crack faces. This study focuses mainly on the effect of using steel fibers on the shear capacity
of SFRC beams containing no stirrups. The research results reported by Singh and Jain [23],
Manju et al. [24], Ashour et al. [25], Pansuk et al. [35], Kim et al. [36] and Zhao et al. [37]
have shown that the shear strength of this kind of beam can increase by 14.9–72.9% relative
to ordinary beams when the fiber dosage is 1.5%.

Regarding ordinary beams under shear loading, it has been accepted that there exist
five common shear-resisting mechanisms, namely, concrete crushing, concrete cracking,
aggregate interlock, dowel action and arch action (for members with a small shear span-to-
depth ratio). When it comes to SFRC beams, Lantsoght [22] stated that these mechanisms
change significantly: (a) Compared with ordinary beams, the compression zone in an SFRC
beam is deeper as a result of a change in the horizontal equilibrium in the cross-section:
the compression demand is thus higher, caused by more concrete participates in tension.
(b) Naturally, using steel fibers significantly increases the resulting tensile force of concrete.
(c) Aggregate interlock action for the SFRC material is also enhanced (though not very
clearly understood). (d) Dowel action is the shear contribution of flexural reinforcement.
The maximum resistance that can be developed through dowel action is related to the tensile
strength of the concrete cover, which fails through splitting when the dowel action force
becomes too large. Since both the tensile strength of SFRC and the concrete–reinforcement
interfacial bond are improved, dowel action consequently becomes stronger in SFRC beams.
(e) The addition of steel fibers could improve the arching action in SFRC (requires further
study), as steel fibers help sustain the shear transferred across the critical crack in the
compression strut, and the softening effect of the diagonal concrete strut weakens.



Materials 2022, 15, 2407 4 of 23

2.2. Experimental Database for Shear Testing of SFRC Beams without Stirrups

The database of SFRC beams containing no stirrups used herein was compiled by
Lantsoght [28] from 63 independent works (see the supplementary data of this paper for
details, Supplementary Materials). The whole database comprises 488 tests of SFRC beams
containing longitudinal rebar (mild steel only) and no shear reinforcement (screening
rules to determine usable shear test results are detailed in [28]; they commonly include
casting and curing conditions and loading and measuring methods). Almost all of the tests
reported were carried out on simply supported beams under three- or four-point bending,
with two exceptions: (i) two-span beams in [38] that generated a negative moment at the
middle support and (ii) six short-span beams in [39] that used special setups to prevent the
development of arching action.

As presented in the supplementary data, each dataset includes the following informa-
tion: the geometry and loading conditions of beams (b is the sectional width, h denotes the
sectional depth, d represents the sectional effective depth, and a/d indicates the shear span-
to-effective depth ratio), the properties of concrete (f c is the SFRC’s compressive strength,
and smax is the maximum dimension of coarse aggregate), the area ratio of longitudinal ten-
sile reinforcement (ρs) and the attributes and amounts of steel fibers (including fiber type,
fiber tensile strength f f, fiber diameter df, fiber aspect ratio lf/df and fiber volume fraction
Vf). Each specimen’s ultimate shear strength is denoted as Vu. Note that the parameter ρf
is also included in the table and is used to represent the bond condition between the steel
fiber and concrete. The value of ρf is 1.00 for hooked fibers, 0.75 for crimped fibers and 0.50
for straight fibers, as suggested in [30].

The most influential variables that control the shear strength (stress) vu (defined as
Vu/bd) should be identified first. Previous research [40] on ordinary concrete beams has
suggested that both concrete and longitudinal bars play a key role in resisting applied
shear force. To describe these contributions, the following parameter selection scheme
was adopted: (i) the parameters f c and smax were selected to quantify the contributions
of concrete and aggregate interlock action, and (ii) the parameter ρs was employed to
reflect the shear contribution of the longitudinal bar. The reinforcement index F, defined
as Vfρflf/df [22], was used to characterize the internal confining effect of steel fibers.
Furthermore, several other parameters, including d/b and a/d, were used in subsequent
analyses, mainly to incorporate the effects of beam geometry and loading type. The
above-mentioned parameters have been well documented for each collected specimen.

Table 1 reports the ranges and statistics of the parameters d/b, a/d, f c, smax, ρs and
F, together with the shear strength vu, for all 488 specimens. It is clear that the database
contains both slender and deep beams, and most of the specimens were manufactured with
normal-strength concrete. In addition, for SFRC beams, the volume fraction and geometric
length of steel fibers were mostly distributed in the ranges of 0–1.5% and 25–60 mm,
respectively. The most frequently used shapes of steel fibers were hooked (63% of all
compiled beams), crimped (22%) and straight smooth (3%).

Table 1. Descriptive statistics of variables in the database.

Parameter d/b a/d f c (MPa) smax (mm) ρs (%) F (%) vu (MPa)

Maximum 4.90 6.00 215.0 22.0 5.72 285.75 13.96
Mean 1.81 2.92 49.0 10.7 2.46 53.95 3.64

Minimum 0.42 0.46 9.8 0.4 0.37 7.50 0.60
Standard deviation 0.77 0.98 25.2 5.1 1.01 35.96 2.14

Standard error 0.03 0.04 1.1 0.2 0.05 1.63 0.10
Median 1.57 3.00 40.3 10.0 2.54 48.75 3.01
Mode 1.26 2.00 33.2 10.0 3.09 60.00 2.61

Kurtosis 3.99 0.37 7.8 −0.1 0.98 7.14 4.72
Skewness 1.94 0.00 2.2 0.0 0.77 2.02 2.06
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2.3. Assessing Existing Prediction Models for Shear Capacity of SFRC Beams without Stirrups

There are a considerable number of models for evaluating the shear capacity of SFRC
beams. Figure 1 presents the comparison of the shear strength of the documented specimens
between the measured results and the predictions using theoretical models. The models
included were the codified equations in the Chinese SFRC code (CECS38-2004) [41], the
German standard (DAfStB-2012) [42] and the CEB-FIP Mode Code for Structural Concrete
(fib-2010) [43]. Additionally, several semi-empirical formulas suggested by Greenough
and Nehdi [44], Imam et al. [45], Kuntia et al. [46], Sharma [47] and Yakoub [48] were also
checked. The details of these models are summarized in Table 2. It is worth noting that most
of the models were initially established based on the experimental results of normal- and
high-strength SFRC beams [28], and their applicability to ultra-high-strength SFRC beams
needs to be further verified. The database includes a total of 15 beams with a concrete
compressive strength greater than 100 MPa. These beams were tentatively predicted by
using the above empirical formulas.

From Figure 1 and Table 2, it can be concluded that the outputs of the above models
vary widely. In general, the prediction accuracy of most of the models is not good enough,
and some are even very poor.

Table 2. Empirical shear strength models for SFRC beams without stirrups.

Reference Equation

CECS38-2004 [41]

vu = 1.75
1+a/d ft(1 + βvVf

lf
df
)

a
d = min[max( a

d , 1.5), 3.0]

βv =


0.70 shear-flat fibers
0.50 shear-cut profied fibers
0.60 cut-off profied fibers
0.90 mill-cut profied fibers

ft =

{
0.3( fc − 8)

2
3 fc ≤ 58 MPa

2.12 ln(1 + 0.1 fc) fc > 58 MPa

DAfStB-2012 [42]

vu = vc + vf

vc = 0.12k[ρs( fc − 8)]
1
3

k = 1 +
√

200
d (d : in mm)

vf = 0.68 f f
ctR,u

h
d

f f
ctR,u = 0.185kf

G f f
cfIk, l2

kf
G = min(1.0 + 0.5Af

ct, 1.7)

Af
ct = b/1000×min(d, 1500)/1000 (b : in mm)

f f
cfIk, l2 = 0.63

√
fc/0.85 + 2.88× 10−3F

√
fc/0.85 + 5.20× 10−4F

Fib-2010 [43]

vu = 0.12k[ρs(1 + 7.5
f f
ctR,u
ft

)( fc − 8)]
1
3

ft =

{
0.3( fc − 8)

2
3 fc ≤ 58 MPa

2.12 ln(1 + 0.1 fc) fc > 58 MPa

Greenough and Nehdi [44] vu = 0.35(1 +
√

400
d )( fc)

0.18[ρs
d
a (1 + 0.01F)]

0.4
+ 0.01531F (d : in mm)

Imam et al. [45] vu = 0.70√
1+ d

25smax

(0.01ρs)
1/3
{

fc
0.44[1 + (0.01F)1/3] + 870

√
0.01ρs

( a
d )

5

}
(d : in mm)

Kuntia et al. [46] vu = (0.167 + 0.25F/100)
√

fc

Sharma [47] vu = 0.533( d
a )

1
4
√

fc
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Table 2. Cont.

Reference Equation

Yakoub [48]

vu =


0.83ξ(0.01ρs)

1/3(
√

fc + 249.28
√

0.01ρs

( a
d )

5 + 0.162RfVf
√

fc
lf
df
) a/d > 2.5

0.83ξ(0.01ρs)
1/3(

√
fc + 249.28

√
0.01ρs

( a
d )

5 + 0.405RfVf
√

fc
lf
df

d
a ) a/d ≤ 2.5

ξ = 1√
1+ d

25smax

(d : in mm)

Rf =


0.83 crimped fibers
1.00 hooked fibers
0.91 rounded fibers

Note: both ρs and F in above equations are expressed as %.

The ratios of the experimental-to-predicted strength are in the range of 0.351 to 1.738,
representing large scatters from one model to another. These varying degrees of incapacity
can be explained by at least two factors: (i) during shear loading, the fibers’ contribution to
shear is related to the effective fiber distributed area along the critical diagonal shear crack,
the total amount of fibers in this area (probability-related), the fiber type and orientation,
the individual fiber pull-out load–slip relationship and many other factors [9], but these
factors are usually difficult to fully consider in existing design formulas, which results in
great epistemic uncertainty; (ii) these models are essentially empirical, mostly calibrated
with limited experimental data, which implies that the formulas are derived from a narrow
range of tests and are difficult to generalize. The above results prompted this study to
explore AI models.
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Figure 1. Comparisons between test results and empirical model predictions. (a) CECS38-2004 [41],
(b) DAfStB-2012 [42], (c) fib-2010 [43], (d) Greenough and Nehdi [44], (e) Imam et al. [45], (f) Kuntia
et al. [46], (g) Sharma [47], (h) Yakoub [48].

3. Parameter Sensitivity Evaluation Using GRA
3.1. Gray Relational Analysis Principle

In the current study, a gray relational analysis (GRA) was conducted to ascertain
the sensitivity/importance of different parameters for the shear capacity evaluation of
SFRC beams containing no stirrups. The shear strength (vu) calculated for the database
was designated as the reference matrix, A0(j), in which j = 1, 2, . . . n. The key tested
parameters, including the sectional effective depth-to-width ratio (d/b), the shear span-to-
effective depth ratio (a/d), the concrete’s compressive strength (f c), the maximum aggregate
size (smax), the area ratio of longitudinal reinforcement (ρs) and the fiber factor (F), were
assigned as the comparative matrix, Ai(j), in which, i = 1, 2, . . . m. The mathematical
formula for constructing the relation between the reference matrix and the comparative
matrix is as follows:

A0 = A0(1), A0(2), . . . A0(n)

A1 = A1(1), A1(2), . . . A1(n)

. . .

Am = Am(1), Am(2), . . . Am(n)

(1)

To decrease numerical fluctuations, a normalization procedure is followed, that is,
using the following operation:

ai(j) =
Ai(j)

1
n ∑n

i=1 Ai(j)
(2)
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Thus, ξi, which represents the gray relational coefficient, is determined by:

ξi[a0(j), ai(j)] =

∣∣∣∣∣mini=1,nminj=1,m∆i(j) + ρmaxi=1,nmaxj=1,m∆i(j)
∆i + ρmaxi=1,nmaxj=1,m∆i(j)

∣∣∣∣∣ (3)

∆i(j) = |a0(j)− ai(j)| (4)

mini=1,nminj=1,m∆i(j) = max
i

(
max

j
|a0(j)− ai(j)|

)
(5)

maxi=1,nmaxj=1,m∆i(j) = min
i

(
min

j
|a0(j)− ai(j)|

)
(6)

where 0 ≤ ρ ≤ 1, and it frequently adopts a value of 0.50 [31].
In a GRA, the gray relational factor (λ) can be employed to measure the correlation

degree between the reference matrix and the comparative matrix:

λ =
1
n

n

∑
i=1

ξi[a0(j), ai(j)] ≤ 1.0 (7)

It is noteworthy that the closer λ is to unity, the closer the correlations, and vice versa.
In general, when λ is larger than 0.7, there is a strong correlation; when λ is smaller than
0.5, the correlation can be treated as negligible [31].

3.2. Assessment of Parameter Sensitivity

Figure 2 depicts the calculation results of the parameter sensitivity assessment. As
indicated by the GRA, the order of importance of the parameters from large to small is:
f c > ρs > d/b > F > smax > a/d.
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Figure 2. Parameter sensitivity indicated by GRA.

The following trends can also be identified:

(a) The values of the gray relational factor (λ) for concrete strength f c and maximum
aggregate size smax are 87.79% and 82.61%, respectively. The value for the fiber-related
parameter F is 84.23%. These results suggest that, compared with steel fibers, concrete
has a greater bearing on the shear strength. This is probably because concrete can
resist external loads throughout the entire loading course [49]. Meanwhile, with the
widening of the critical crack, the role of steel fiber will be weakened [30].

(b) The shear contribution provided by the longitudinal reinforcement cannot be ignored.
This can be stressed by assigning ρs with secondary importance (λ = 86.69%).
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(c) Additionally, the parameters d/b and a/d have notable effects on the shear capacity of
SFRC beams containing no stirrups, where they are registered with λ values of 85.69%
and 81.96%, respectively. This phenomenon is consistent with that observed in [30].

Since the λ values of all evaluated parameters are higher than 80%, they jointly
determine the shear capacity of the SFRC beams without stirrups. Clearly, all of these
parameters should be reasonably considered for a more rational and accurate shear strength
prediction. These parameters are hence adopted as the inputs to the AI models, as presented
in the following.

4. Shear Capacity Prediction Using Artificial Intelligence Models

AI models have been shown to have higher predictive accuracy than empirical models.
In this study, AI models, including artificial neural network (BP-ANN), random forest (RF)
and multi-gene genetic programming (MGGP), were developed to determine the shear
capacity of SFRC beams without stirrups. Compared with other AI models, ANN is the
most recognized at present, which reasonably considers the complex nonlinear relationship
among influencing parameters. The RF model is a representative of ensemble learning
AI models, which can effectively mitigate over-fitting problems. The MGGP model can
provide an explicit design formula, which overcomes the black-box dilemma of AI models.

All of the modeling works were performed on the Matlab platform [50].

4.1. Back-Propagation Artificial Neural Network (BPANN)

BPANN is an AI model that tries to simulate the structural or functional aspects of
biological neural networks [31]. While BPANN cannot exactly replicate the remarkable
abilities of human brains, it is well suited for simulating complex processes with the proper
selection of inputs and careful construction of network structures. As depicted in Figure 3a,
a BPANN model has a hierarchical structure, which consists of the input layer, hidden
layers and the output layer. These layers have different functions, but the basic elements of
each layer, namely, neurons, are similar (see Figure 3b).
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A neuron can receive information from the outside or from the neurons of the previous
layer and transfer it to the next layer’s neurons. There are two main kinds of operations
in neurons. The first is the weighted-sum operation, which calculates the effects of inputs
together with weights on the neuron as follows:

netj =
n

∑
i=1

wijxj + bj (8)

in which wij denotes the weight from the lower-layer neuron i to the upper-layer neuron j;
xi represents neuron i’s output; n indicates the total number of i; and netj is the weighted
sum of the upper-layer neuron j.

The second key operation is the sigmoid function process, which determines the
signal intensity of the current neuron. The most commonly used sigmoid function has the
following formula [31]:

f
(
outj

)
=

1
1 + e−netj

(9)

After completing the above two operations, the artificial neural network can provide
predictive values based on the inputs. However, the outputs may not be ideal at first,
and the model usually needs a correction procedure [31]. For the current BPANN, this
was carried out via a back-propagation process, which is an iterative search procedure
that adjusts the weights from the output layer back to the input layer until no further
improvement is required. Mathematically, the correction of weights is generally in the
direction of a negative error gradient [31], that is:

∆wm = α∆wm−1 − η
∂E
∂w

(10)

in which w is the weight between any two neurons; ∆wn and ∆wn−1 denote the variations
in the weight w at m and m−1 iterations, respectively; and η and α are, respectively, the
learning rate and the momentum coefficient.

In the present BPANN, a total of six input-layer neurons (variables) and one output-
layer neuron were adopted. In addition, the number of neurons in the hidden layer was
ascertained by seven by trial calculations, since, at this value, the model achieved an
optimum result. The weights of the input layer (IWs), the biases of the input layer (IBs), the
weights of the hidden layer (HWs) and the bias of the hidden layer (HB) of the BPANN
model are, respectively, shown in Equations (11)–(14):

IWs =



2.8898 0.7396 −0.3727 −1.3649 −0.5915 0.1703
−1.0552 −1.2406 −1.5092 −0.9425 0.2803 1.7436
0.6398 1.1555 −0.3883 −0.1229 −0.7732 −0.7757
−0.0583 0.9440 0.0584 2.0075 −0.0811 1.3593
−0.3167 −1.5704 −0.6506 −2.7921 −0.1089 −0.9115
0.9003 4.1106 −0.1985 0.0439 −0.6175 −0.3295
0.8986 1.2735 3.2607 −0.4838 −1.7045 0.3598


(11)

HBsT =
{
−0.2558 1.1308 0.2721 −0.1405 −0.3795 3.5405 3.9120

}
(12)

HWs =
{

0.1536 0.3699 −0.5793 −0.6016 −0.5323 −0.8254 0.2921
}

(13)

HB = {0.0033} (14)

4.2. Random Forest (RF)

RF is an ensemble learning technique designed to solve regression or classification
problems. This method features a special decision-making process. Typically, in RF-based
regressions, the final estimate is a combination of several good predictions, rather than a
single forecast.
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Figure 4a presents an example of the typical structure of a simple regression decision
tree (RDT). Specifically, the tree is utilized by reading the information of the water-to-
cement ratio of a mixture to predict its compressive strength. Each circle in the graph is
called a tree node, which can be understood as a character of the dataset. Typically, the
topmost node in the tree is called the root node, and the bottommost nodes are defined as
the terminal nodes (or leaf nodes). The arrows connecting two nodes in adjacent layers are
called tree branches, and a branch represents a path choice (i.e., making a decision) for a
given data point based on its feature values. For instance, the root node in Figure 4a checks
the water-to-cement ratio, and if the ratio is less than 0.45, the process will move down to
the left tree branch and move to the right otherwise. For a more complex RDT, operations
will also start at the root node and continue along different branches. Selecting a branch
can be thought of as asking a series of questions. This process of asking and answering will
be repeated until the leaf node is reached. At that node, the final prediction is obtained for
each data point [51].
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Simply put, an RDT generates predictions by memorizing training data. This may
result in an unrealistic prediction that fails to recognize the real pattern of datasets, a
phenomenon known as “over-fitting” [51]. To tackle this, a combination of various decision
trees can be used to make predictions. This will generate a random forest. In general, a
random forest (RF) has fewer problems with over-fitting because it averages the results of a
set of trees to mitigate the possible poor performance of a single tree (see Figure 4b). In ad-
dition to the split criterion and the maximum tree depth for a single RDT, an RF has several
other parameters, such as the number of trees in the forest and whether bootstrapping is
employed to sample trees from the forest [51].

The random forest was implemented in the Matlab toolbox M5PrimeLab [52]. The
following tree configuration was used: the total number of trees in the RF was set to 100;
the bootstrap sampling method was employed; each tree’s maximum depth was 9, and no
pruning or smoothing was used for any tree; the minimum number of observations to be
considered for splitting at a node was set to 5; the minimum number of training observations
that can be represented by a leaf node was 1. Finally, the split threshold was 1 × 10−6.

4.3. Multi-Gene Genetic Programming (GP)

GP can simulate the biological evolution of a living organism. Compared with BPANN
and RF, the main advantage of GP is that it can directly generate an explicit function that
correlates the input variables to the output variables [53]. This capacity is mainly attributed
to the tree-shaped structure of GP [53].

In traditional GP models, a single individual is commonly based on the evaluation
of a tree expression. However, this cannot occur in the current multi-gene genetic pro-
gramming (MGGP) due to the simultaneous existence of multiple trees. An individual
evolving in an MGGP method is derived from several expression trees [50] or, in other
words, from a weighted linear combination of the outputs of several traditional GP trees.
To vividly illustrate MGGP’s internal structure, Figure 5a shows an example of a typical
MGGP-based algorithm. Each sub-tree in this MGGP model can be treated as a “gene”.
Additionally, each sub-tree consists of multiple terminals and functions. The terminals
usually indicate constant coefficients and some input variables, such as x1, x2 and x3, while
the functions mainly include arithmetic operations, such as addition, minus, multiplica-
tion and protected division. As can be seen from this subplot, the original expression is
(x1 + x2)(x1 − 1) + sin(x3) + 3/x2. After exchanging gene segments (x1 − 1) and 3/x3 and
mutating x1 as x3, the final predictive expression becomes (x2 + x3) + 3/x2+(x1 − 1)sin(x3).

Figure 5b conceptually shows the basic flow chart for the MGGP developed. The
initial individuals produced by the MGGP contained randomly generated genes. These
individuals were then assessed by their own fitness values, such as the root mean squared
error (RMSE) applied to training and testing data [53]. By default, the smaller the RMSE,
the more reliable the model. Using the fitness as a basis, individuals can be easily selected
from the population through prescribed selection methods (e.g., roulette, lexictour or
tournament [53]); thus, the best parents with the lowest RMSE had more opportunities
to create offspring. In this process, if the termination criterion had yet to be satisfied,
genetic operators such as crossover and mutation were performed again to generate new
individuals. Their performance was then evaluated with regard to prediction errors, and
a new generation was created by replacing some or all of the individuals in the original
population with the new individuals. This process was repeated until the termination
criterion was met.

The current MGGP model was developed using MATLAB [50] in conjunction with
the GPTIPS toolbox [53]. The optimal parameters used in the MGGP model are listed in
Table 3. As presented, quite a few parameters were involved in the analysis. In this study,
the values of some parameters were referred to [54], including the function set, elitism
and the probability of crossover, mutation and reproduction events. Other parameters,
however, were determined through extensive trial-and-error, which were mainly related
to the size of the population, the generation number, the maximum depth of the tree and
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the maximum allowable number of genes. Using the population size and the generation
number as an example, these parameters were set as the optimal trade-off between solution
complexity and running time.
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Table 3. Parameter settings for the MGGP model.

Parameter Definition Setting

Population size 1000
Number of generations 1000
Max number of genes 10
Max genes’ tree depth 6

Function set plus, minus, times, divide, sqrt, square, cube, sin
Tournament size 20

Elitism 5% of population
Probability of crossover event 0.85
Probability of mutation event 0.10

Probability of reproduction event 0.05

Table 4 shows the MGGP model’s individual genes. These genes were summed automat-
ically and simplified by the toolbox of the GITIPS, which generated the following equation:

y = Bias + Gene 1 + Gene 2 + . . . + Gene 10 (15)

Table 4. Individual genes in the best MGGP model.

Term Value

Bias 53.4

Gene 1 −1.141 [x6 + x2
√

x1]
1/4

Gene 2 −35.32x1/4
1

Gene 3 −(x1 + 2
√

x1)
√

sin(x2
1) + x2

2 +
√

x2 + 0.003772(3x1 + x3 + x1x2)

Gene 4 −0.008006x4
1/4(2x2 + x6 − sin(x1x4) + 2x1x2)

Gene 5 6.794
√

4x1x2 + x2
√

x1

Gene 6 28.78(x3
2 + x2)

1/4

Gene 7 −2.88x1/4
1 x2x1/8

5

Gene 8 0.6659
√

x5(x3 + sin x4)− x3/2
5

Gene 9 −59.93
√

x2

Gene 10 0.6062
√

x6 +
√

x2

Note: x1, x2, x3, x4, x5 and x6 are, respectively, d/b, a/d, f c, smax, ρs and F.

4.4. Prediction Results and Discussion

The database about the shear strength was randomly divided into a training set and a
testing set in a ratio of 3:1. The data in the training set and the testing set were used for AI
model learning and prediction, respectively.

Aiming to evaluate the predictive responses of the BPANN, RF and MGGP models
implemented in the present study, the correlation coefficient (R2), the root mean squared
error (RMSE) and the mean absolute percentage error (MAPE) were used to reflect the
prediction errors. A lower RMSE or MAPE value indicates a better prediction accuracy, and
a higher R2 value corresponds to a closer fit [31]. These metrics can be calculated using the
following equations:

RMSE =

√√√√√ N
∑
i
(pi − xi)

2

N
(16)

MAPE =
1
N

N

∑
i
(

pi − xi
xi

)
2

(17)
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R2 = 1−

N
∑
i
(pi − xi)

2

N
∑
i
(xi − xavg)2

(18)

where p and x are the predicted output matrix and the measured output matrix, respectively;
xavg is the average value of the measured outputs; and N is the total number of data in the
training or testing sets.

Comparisons between the experimental data and the predictions of the AI models
are shown in Figure 6. Evidently, all three AI models performed well in both training
and testing datasets, and their R2 values were all higher than 0.95. The RF model showed
slightly higher accuracy than the other models. It can also be observed from Figure 6b that
the error frequency of the RF model conformed to a normal distribution.
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Figure 6. Comparisons between experimental results and predictions using AI models.
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Figure 7 compares the predictive performance between AI models (Methods 9–11) and
the previously evaluated empirical equations (Methods 1–8). The results clearly indicate
that the AI models had much higher accuracy than the empirical models. It is further
confirmed that the RF model slightly outperformed the other models, because it has smaller
RMSE and MAPE values. This advantage comes from the strength of ensemble learning
approaches [33], which are often superior to standalone AI models (such as BPANN).
Nevertheless, the MGGP model with good accuracy provides closed-form expressions.

Materials 2022, 15, 2407 17 of 24 
 

 

smaller RMSE and MAPE values. This advantage comes from the strength of ensemble 

learning approaches [33], which are often superior to standalone AI models (such as 

BPANN). Nevertheless, the MGGP model with good accuracy provides closed-form ex-

pressions. 

 

(a) RMSE 

 

(b) MAPE 

 

(c) R2 

Figure 7. Comparison of prediction performance of different models. 

  

Method

1.910

Models:                       6 -Kuntia et al. 
  1 -CECS38-2004      7 -Sharma
  2-DAfStB-2012        8 -Yakoub
  3- -2010                  9 -BPANNfib
  4 -Green.&Nehdi 10-RF
  5-Imam et a l.            1 1-MGGP

Method

Models:
  1 -CECS38-2004      
  2 -DAfStB-2012                  
  3 - -2010                            fib
  4 -Green.&Nehdi 
  5 -Imam et a l.            
  6 -Kuntia et a l.
  7 -Sharma
  8-Yakoub
  9-BPANN
  10-RF
  11-MGGP

Models:                       6 -Kuntia e t al. 
  1-CECS38-2004      7 -Sharma
  2-DAfStB-2012        8 -Yakoub
  3- -2010                  9 -BPANNfib
  4-Green.&Nehdi 10-RF
  5-Imam et a l.            1 1-MGGP

Method

Figure 7. Comparison of prediction performance of different models.



Materials 2022, 15, 2407 17 of 23

5. Parametric Study

After the AI models were established, the effects of different key parameters on
the SFRC beam shear strength could be further studied. By verifying whether the AI
models could duplicate the experimentally observed influences of the parameters, the
interpretability of the AI models could be effectively examined. The parametric study was
carried out by varying one parameter’s value while fixing the others.

Table 5 lists the numerical variation trend for each influential factor. Note that the
reference sample shown in this table is an SFRC beam with [d/b, a/d, f c, smax, ρs, F] = [2,
3.0, 50, 10, 2.5%, 50%]. Compared with the statistical indicators summarized in Table 1, it is
not difficult to find that the parameter values adopted by this beam are quite close to the
average values in the database. In addition, the maximum and minimum parameter values
for each beam in Table 5 are also close to the upper and lower limits in the test database.
Thus, we believe that the selected beams in Table 5 still fall within the applicability of
the database.

Table 5. Shear strengths of SFRC beams without stirrups predicted by different models.

Group Influence Parameters vu Predicted by Different Methods

No. [d/b, a/d, f c, smax, ρs, F] 1 2 3 4 5 6 7 8 9 10 11

I

[2, 3.0, 30, 10, 2.5%, 50%] 1.55 1.44 1.22 2.18 2.14 1.60 2.22 1.27 2.29 2.49 2.74
[2, 3.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.39 2.06 2.86 1.53 2.74 3.15 3.37
[2, 3.0, 70, 10, 2.5%, 50%] 2.89 2.10 1.64 2.41 2.60 2.44 3.39 1.74 2.92 3.43 3.64

[2, 3.0, 100, 10, 2.5%, 50%] 3.34 2.45 1.89 2.52 2.85 2.92 4.05 2.01 2.93 3.67 3.68

II

[2, 0.5, 50, 10, 2.5%, 50%] 3.81 1.81 1.45 3.93 100.1 2.06 4.48 35.05 12.80 11.49 14.59
[2, 1.0, 50, 10, 2.5%, 50%] 3.81 1.81 1.45 3.17 18.73 2.06 3.77 7.21 8.40 7.26 9.11
[2, 3.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.39 2.06 2.86 1.53 2.74 3.15 3.37
[2, 6.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 1.94 1.47 2.06 2.41 1.22 2.55 2.62 3.22

III

[2, 3.0, 50, 10, 0.5%, 50%] 2.38 1.41 0.85 1.58 1.04 2.06 2.86 0.77 1.77 1.65 1.67
[2, 3.0, 50, 10, 1.5%, 50%] 2.38 1.66 1.22 2.03 1.81 2.06 2.86 1.22 2.20 2.72 2.61
[2, 3.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.39 2.06 2.86 1.53 2.74 3.15 3.37
[2, 3.0, 50, 10, 5.0%, 50%] 2.38 2.07 1.83 2.81 3.60 2.06 2.86 2.13 3.66 4.29 4.44

IV

[2, 3.0, 50, 2.5, 2.5%, 50%] 2.38 1.81 1.45 2.31 1.42 2.06 2.86 0.91 3.26 3.38 3.72
[2, 3.0, 50, 5.0, 2.5%, 50%] 2.38 1.81 1.45 2.31 1.88 2.06 2.86 1.20 3.00 3.18 3.47
[2, 3.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.39 2.06 2.86 1.53 2.74 2.85 3.37
[2, 3.0, 50, 20, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.88 2.06 2.86 1.84 2.47 2.63 3.30

V

[2, 3.0, 50, 10, 2.5%, 0%] 1.59 1.65 1.38 1.32 1.83 1.18 2.86 1.44 1.69 2.66 1.98
[2, 3.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.39 2.06 2.86 1.53 2.74 3.15 3.37

[2, 3.0, 50, 10, 2.5%, 100%] 3.17 1.98 1.51 3.27 2.54 2.95 2.86 1.62 3.41 3.71 3.86
[2, 3.0, 50, 10, 2.5%, 200%] 4.76 2.30 1.62 5.10 2.72 4.72 2.86 1.79 3.98 3.94 4.27

VI

[0.5, 3.0, 50, 10, 2.5%, 50%] 2.38 2.39 2.04 3.09 3.26 2.06 2.86 2.09 3.51 3.69 4.74
[1.0, 3.0, 50, 10, 2.5%, 50%] 2.38 2.03 1.69 2.63 2.88 2.06 2.86 1.84 3.21 3.29 3.59
[2.0, 3.0, 50, 10, 2.5%, 50%] 2.38 1.81 1.45 2.31 2.39 2.06 2.86 1.53 2.74 2.85 3.37
[5.0, 3.0, 50, 10, 2.5%, 50%] 2.38 1.67 1.25 2.03 1.73 2.06 2.86 1.10 2.08 2.40 2.93

Note: (1) In the calculations, each beam’s sectional width and concrete cover are, respectively, assumed to be
200 mm and 25 mm; (2) Models 1–8 are those proposed by CECS38-2004 [41], DAfStB-2012 [42], fib-2010 [43],
Greenough and Nehdi [44], Imam et al. [45], Kuntia et al. [46], Sharma [47] and Yakoub [48], respectively.
Models 9–11 are the established BPANN, RF and MGGP models.

5.1. Influence of the SFRC’s Compressive Strength

Previous studies [30] have shown that the shear strength of SFRC beams without
stirrups is greatly affected by the concrete’s compressive strength: i.e., the shear strength
vu increases with an increase in the concrete strength f c. It is evident from the predictions
in Table 5, Group I, that all eight empirical formulas (Methods 1–8), together with the
developed AI models (Methods 9–11), correctly predict this trend.

Figure 8a further displays the experimental and predicted relationships between the
nominal shear strength vu/(f c)1/3 and the compressive strength f c. As can be seen from
this plot, once it is normalized with respect to the cubic root of f c (i.e., (f c)1/3), the shear
strength of the tested beams is no longer sensitive to the concrete strength. This implies
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that the prediction model to predict the shear strength of SFRC beams without stirrups
should be based on the cubic root of the compressive strength of SFRC, which is consistent
with the recommendation in [31]. Clearly, the predictions obtained using the AI models
can well reflect this trend.
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Figure 8. Main parameters affecting the shear strength of SFRC beams without stirrups.

5.2. Influence of the Shear Span-to-Effective Depth Ratio

The test data presented in Figure 8b show the influence of the shear span-to-effective
depth ratio a/d on the nominal shear strength of SFRC beams without stirrups. As the



Materials 2022, 15, 2407 19 of 23

value of a/d decreases, the shear strength increases notably, especially when a/d is less
than about 3.0. This result is in agreement with the observations in [31].

In addition, it can be seen from Group II in Table 5 that code-based expressions
(CECS38-2004 [41], DAfStB-2012 [42] and fib-2010 [43]) cannot capture the influence of a/d.
The models proposed by Imam et al. [45] and Yakoub [48] can reproduce the decreasing
trend of the shear capacity against a/d, but these models overestimate the nominal shear
strength of deep SFRC beams with a/d less than 1.0. The shear strengths predicted by the
BPANN, RF and MGGP models agree well with the experimental results and reflect the
influence of a/d in a wide range, as shown in Figure 8b.

5.3. Effect of the Area Ratio of Longitudinal Reinforcement

For ordinary concrete beams, increasing the longitudinal reinforcement ratio will
increase their shear capacities [55], because: (a) the dowel action can be significantly
improved, (b) the contribution of uncracked concrete in the compression zone also increases
as a result of the equilibrium requirement in the cross-section, and (c) the arching action is
similarly more mobilized. The test data shown in Figure 8c suggest that ρs has a positive
influence on the beams’ shear capacity.

The predicted shear strengths for beams with a longitudinal reinforcement ratio be-
tween 0.5% and 5.0% are shown in Group III in Table 5. As can be seen, the AI models cor-
roborate the effect of beam tensile reinforcement, while some formulas (CECS38-2004 [41],
Kuntia et al. [46] and Sharma [47]) completely ignore its significant role.

5.4. Effect of the Maximum Aggregate Size

The use of larger coarse aggregates in ordinary concrete often improves the aggregate
interlocking capacity and, further, the shear capacity of concrete beams [56]. However,
this mechanism might not be true for SFRC beams. As can be seen from the test data
in Figure 8d, the nominal shear strength presents a decreasing trend as the maximum
aggregate size increases. This phenomenon may be because the use of larger aggregates
usually results in a change in fiber orientation, which greatly affects the tensile capacity
of SFRC.

None of the empirical models can predict the above-mentioned effect of coarse
aggregate size (see Group IV of Table 5). Note that only the formulas proposed by
Imam et al. [45] and Yakoub [48] consider the influence of smax on the shear capacity of
SFRC beams without stirrups. However, their predicted results show an increasing trend
as the aggregate size increases, which is opposite to experimental observations.

In contrast, the BPANN, RF and MGGP models are able to represent the influence of
smax on the shear strength, as presented in Figure 8d.

5.5. Effect of the Fiber Factor

As mentioned previously, the addition of steel fibers is efficient in boosting the struc-
tural performance of ordinary concrete members. The experimental results in Figure 8e
confirm this merit. As the fiber factor F increases, the beam shear strength rises, too. Fur-
thermore, as can be seen in Group V, Table 5, except for the model proposed by Sharma [47],
both the empirical and AI models can faithfully reproduce the influence of steel fibers.

It is also evident from Figure 8e that the shear strength of SFRC beams without stirrups
increases significantly with the increase in the fiber factor F when F is below a threshold of
about 50%. Beyond that, this positive effect gradually diminishes. When F exceeds 100%,
the effect disappears. This suggests that the content of steel fiber in SFRC beams should be
controlled to avoid wasting materials.

5.6. Effect of the Sectional Effective Depth-to-Width Ratio

Figure 8f displays the impact of the effective depth-to-width ratio d/b on the nominal
shear strength of SFRC beams without stirrups. As d/b increases, a reduction in the beam
shear capacity is apparent. There are two main reasons for this. The first is due to the
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size effect. That is, if the beam width b remains unchanged, an increase in d/b means an
increase in the effective depth d. In this case, the concrete member’s strength will scale
down according to Bazant’s size-effect law [57]. The second reason is the change in the
stress condition of concrete. An increase in d/b corresponds to a decrease in b when d
remains constant. Thus, the stress condition of concrete progressively evolves from the
plane strain state to the plane stress state, which reduces the concrete’s capacity to resist
external loads, as explained in [58].

From the simulation results of Group VI listed in Table 5, with the exception of the
empirical models CECS38-2004 [41], Kuntia et al. [46] and Sharma [47], all other models
can realistically represent the influence of the d/b ratio.

6. Conclusions

Existing empirical models for predicting the shear capacity of SFRC beams containing
no stirrups are not very accurate. In this study, three typical AI models were leveraged to
improve the prediction accuracy and to explain the experimentally obtained test results.
The following important findings can be obtained from this study:

(1) The empirical strength models evaluated in this paper cannot predict with desirable
accuracy the shear bearing capacity of SFRC beams without stirrups. There are a
number of reasons for this, including the inadequate account of the role of steel fibers
(such as the effective fiber distributed area along the critical diagonal shear crack, the
total amount of fibers in this area, the fiber type and orientation, and the individual
fiber pull-out load–slip relationship) and the limited database that the models were
derived from.

(2) The GRA results indicate that the shear strength of the beams depends crucially
on the following parameters: the material properties of concrete, the amount of
longitudinal reinforcement, the attributes of steel fibers, and the geometrical and
loading characteristics of SFRC beams in shear. The λ values of these parameters are
all greater than 80%, indicating that all of these parameters should be considered for a
more rational prediction of beam shear strength. Unfortunately, none of the empirical
models evaluated take these parameters into full account.

(3) The three AI models—BPANN, RF and MGGP—are effective in predicting the shear
capacity of SFRC beams without stirrups. Their predictive performance is excellent,
with all R2 values higher than 0.95. By contrast, RF slightly surpasses BPANN and
MGGP (mainly because RF is an ensemble learning method, which combines the
results of multiple weak learners), while MGGP provides an unambiguous design
expression. The AI models fit the experimental data in both the training and testing
sets, showing good generalization capacity within the range of the data collected.

(4) The AI models were used to perform a parametric study to strengthen support for
experimental trends. The results show that these models reveal the potential effects
of all of the important factors affecting the shear capacity, and these effects can
be reasonably explained. Therefore, the developed AI models can be used as fast,
accurate and simulation-free tools for designing SFRC beams without stirrups.

An application issue of AI models is finally discussed here. AI-based models, how-
ever accurate, are not intended to discredit conventional mechanics-based methods. In
fact, some have expressed legitimate concern that the potential benefits of AI models to
structural engineering are being overhyped. It is therefore critical that developers of AI
models communicate openly and honestly with users about limitations and potential pit-
falls. The current authors believe that AI models are just alternative tools that are expected
to support/complement conventional methods. In the long term, the inclusion of basic
data science courses in civil engineering education could increase the number of practi-
tioners that have a working knowledge of AI algorithms. Nevertheless, there are some
promising areas (such as the problem at hand) where AI models can provide meaningful
benefits. It should be borne in mind that effective implementation requires more genuinely
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representative datasets and a reasonable trade-off between the benefits and drawbacks of
using AI models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15072407/s1, Table S1: Appendix File Database information
of experimental SFRC beams without stirrups [28].
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