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Abstract: The present paper investigates the axial and shear buckling analysis of a carbon nanotube
(CNT)-reinforced multiscale functionally graded material (FGM) plate. Modified third-order defor-
mation theory (MTSDT) with transverse displacement variation is used. CNT materials are assumed
to be uniformly distributed, and ceramic fibers are graded according to a power-law distribution
of the volume fraction of the constituents. The effective material properties are obtained using the
Halpin–Tsai equation and Voigt rule of the mixture approach. A MATLAB code is developed using
nine noded iso-parametric elements containing 13 nodal unknowns at each node. The shear correction
factor is eliminated in the present model, and top and bottom transverse shear stresses are imposed
null to derive higher-order unknowns. Comparisons of the present results with those available in the
literature confirm the accuracy of the existing model. The effects of material components, plate sizes,
loading types, and boundary conditions on the critical buckling load are investigated. For the first
time, the critical buckling loads of CNT-reinforced multiscale FGM rectangular plates with diverse
boundary conditions are given, and they can be used as future references.

Keywords: axial and shear buckling analysis; modified third-order shear deformation theory; finite
element model; carbon nanotube; Halpin–Tsai equation

1. Introduction

In the analysis and design of all civil engineering structures, the buckling response
of the CNT-reinforced FGM plate caught the attention of many researchers in recent
years. Currently, critical buckling loads are obtained using the Corr and Jennings [1]
simultaneous iteration technique. The critical buckling load is the maximum load in the
elastic range of the material above which plates start to deflect laterally. If the material
is stressed beyond the elastic range and into the non-linear (plastic) range, the buckling
strength of a plate is smaller than the elastic buckling strength of a plate. When the load
approaches the critical buckling load, the plate will bend significantly, and the material’s
stress–strain behavior will diverge from linear. In FGM-type composite material, properties
of material constituents are varied according to the required performance. In this paper, the
material constituents were a metal matrix, CNT reinforcement, and fiber. The final material
was made in two phases. Here, we calculated the minimum edge compressive load in
the form of the non-dimensional critical buckling load, which is required to initiate the
instability of the plate structure. FGM is widely employed in many areas such as machine,
construction, defense, electronic, chemical, pharma, energy sources, nuclear, automotive,
and shipbuilding industries. Because of the expanding use of FGMs in a range of structural
applications, detailed theoretical models are required to anticipate their behavior.
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Abrate [2] used a classical plate theory, FSDT, and HSDT to study the dynamic,
static, and buckling behaviors of thick and thin FGM plates. The significance of their
study is that the response of the FGM plate can be analyzed without performing a direct
analysis. Zenkour [3] adopted a generalized shear deformation model to study the stress
and displacement of FGM plates under uniform loading. They observed that the gradient
material properties play a vital role in the response of the FGM plates. Zhang [4] carried
out a geometric non-linear analysis of CNT-reinforced FGM plates with column support.
For modeling the structure, they used FSDT mathematical model with the von Kármán
nonlinearity equation. Based on HSDT theory the Levy-type solution has been presented by
Bodaghi andSaidi [5] for buckling analysis of simply supported FGM plate to observe the
effect of the various parameter such as volume fraction index, aspect ratio, side-thickness
ratio, loading condition, and various boundary condition. Thai and Choi [6] developed a
refined displacement theory without considering the shear correction factor for calculating
the critical buckling load of the FGM plates. Various numerical studies have been presented
for dynamic, buckling, and post-buckling analysis of FGM plate, laminated, and shell
structure [7–13].

Kiani [14] studied the buckling response of a CNT-based FGM plate subjected to me-
chanical load. The distribution of load is obtained using the 2D formulation. Feldman and
Aboudi [15] studied the buckling behavior of uniaxially loaded FGM plates. A combination
of micromechanical and structural approaches is used to predict the effective material
properties of non-homogeneous FGM plates. Zghal et al. [16] carried out the buckling re-
sponse of FGM- and CNT-reinforced FGM plates and cylindrical panels. The final material
properties of these plates and cylindrical panels were achieved by the power law and the
extended rule of a mixture. A simple power-law equation for calculating the effective mate-
rial properties was used by Ramu and Mohanty [17] for buckling analysis of FGM plates
using the FEM method and noting that the critical buckling load in non-axial compression
was greater than that in biaxial compression. Arani et al. [18] used an analytical and a finite
element approach to determine the critical buckling load of the CNT-reinforced composite
plate, and the overall elastic properties of the material were calculated by the Mori–Tanaka
approach. By adopting the simple rule of a mixture, the effective elastic properties of the
FGM sandwich were calculated by Yaghoobi and Yaghoobi [19] to calculate the critical buck-
ling load under mechanical, thermal, and thermo–mechanical loading. A micromechanics
model based on Halpin–Tsai and the extended mixture rule has been used by Hanifehlou
and Mohammadimehr [20] to predict the effective elastic properties of graphene platelets
and CNT-reinforced FGM plates. Lei et al. [21] and Wang et al. [22] considered an extended
rule of mixture approach for predicting the effective material properties of CNT-reinforced
FGM for buckling analysis. By assuming the power law composition of the volume fraction
of the constituent material, the effective material properties were calculated to investigate
the buckling analysis of the FGM plate structure [23]. Aragh et al. [24] employed the
Eshelby–Mori–Tanaka method to calculate the effective elastic properties of the material
for vibration response of a continuous-grade CNT-reinforced cylindrical panel.

Bouguenina et al. [25] presented a solution to investigate the thermal buckling analysis
of FGM plates. The presented solution was based on an analytical approach for constant
thickness and a finite element approach for variable thickness. Mirzaei and Kiani [26]
studied the thermal buckling analysis of CNT-reinforced FGM plates, where CNT and the
matrix material were assumed to be temperature-dependent. Singh et al. [27] studied the
buckling and vibration analysis of isotropic and sandwich FGM plates resting on an elastic
foundation. They adopted a new sigmoid law to predict the effective elastic properties of
the FGM plate. The buckling response and post-buckling response of pristine composite
plates reinforced with graphene sheets were investigated by Zeverdejani et al. [28]. The
stability equations were solved using the eigenvalue problem, and the critical buckling
loads were calculated for various boundary conditions. Fekrar et al. [29] studied the
buckling analysis of a ceramic-based FGM plate using only four-variable refined theory
and demonstrated the accuracy and effectiveness of mathematical theory in analyzing
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the buckling behavior. A refined plate theory based on the secant function was used by
Abdulrazzaq et al. [30] to study the thermal buckling stability of clamped nano-size FGM
plates. From their study, it can be observed that the buckling behavior of clamped FGM
nanoplates was very sensitive to various parameters such as aspect and side-to-thickness
ratios, material graduation, thermal condition, etc. The study of the influence of small-scale
parameters on the vibration and buckling behavior of CNT-reinforced FGM plates was
done by Shahraki et al. [31]. The CNT-based FGM nanoplate was considered to rest on a
Kerr elastic foundation. Costa and Loja [32] represented the static analysis of a dual-phase
moderately thick FGM plate. The CNT reinforcements were assumed to be added to the
matrix material in the first phase.

Even though various studies on the buckling of FGM plates have been conducted
based on a range of plate theories, no studies on the buckling of multiscale FGM plates
based on the MTSDT theory were found. The present MTSDT mathematical theory has
been modified to represent the kinematics field that captures normal and transverse cross-
section deformation modes. The assumed in-plane fields incorporate the cubic degree of
thickness terms and quadratic degree of thickness terms for the transverse component.
The C1 continuity requirement associated with third-order shear deformation theory is
avoided by developing a C0 FE formulation by replacing the out-of-plane derivatives with
independent field variables. The present study can be used for the design and analysis of
various types of hybrid composite curve panels, which are used in various engineering
fields. The design charts can be obtained by the present model, which may be useful for
the designer. Material properties, such as Young’s modulus, are supposed to change with
plate thickness according to a power-law distribution of the volume percentage of the
constituents. To the best of the authors’ knowledge, no experimental results on the present
work are available in the literature; hence, present model results were validated with the
closed-form elasticity solution and numerical analysis results available in the literature. To
study the influence of various parameters, the non-dimensional critical buckling load was
calculated for numerical analysis.

2. Geometrical Configuration and Effective Material Properties

A multiscale FGM plate of length a, width b, and thickness h, as shown in Figure 1
was considered. In the buckling response of the plate, the rectangular Cartesian platform
coordinates × and y were used. The co-ordinate planes × = 0, a and y = 0, b define the
boundaries of the plate. The reference surface is the middle surface of the plate, defined by
z = 0, where z is the thickness co-ordinate measured from the un-deformed middle surface
of the plate.

Figure 1. Geometrical configuration of the plate.

The performance of these FGM plates might be improved by using a multiscale hierar-
chical FGM as shown in Figure 2, which is made possible by combining the continuous fiber
phase, the metal matrix, and CNT reinforcement. In such circumstances, the overall homog-
enization process can be divided into two phases: in the first phase, the dispersion of CNT
in the metallic matrix yields a nanocomposite, and in the second phase, this nanocomposite
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receives ceramic inclusions in a graded manner, resulting in a CNT-reinforced multiscale
composite. Since the CNTs are expected to be evenly distributed and randomly oriented
throughout the matrix, the final mixture is considered an isotropic mixture. It is also ex-
pected that the bonding between CNT and matrix and dispersion of CNT in the matrix are
perfect. Each CNT is assumed to be straight and has the same aspect ratio and mechanical
properties. The matrix material is considered void-free, and the bonding between the
matrix and fiber is excellent.

Figure 2. Hierarchy of the three-phase multiscale FGM plate.

To evaluate the effective elastic properties of the material, a suitable approach should
be adopted. A combination of the Halpin–Tsai equation [33] and homogenization scheme
can be adapted to predict the effective material properties of a three-phase multiscale FGM
plate. The Halpin–Tsai equation is an empirical formula, known to be fit for calculating
effective material properties of the mixture of the matrix and low fraction of the CNT
reinforcement. The elastic properties of an anisotropic mixture of CNT and the matrix can
be expressed as follows:

EMNC =
EM
8

(
5
(

1 + 2αVCN
1− αVCN

)
+ 3

(
1 + 2 l

d βVCN

1− βVCN

))
(1)

α =

(
ECN
EM

)
−
(

d
4t

)
(

ECN
EM

)
+
(

l
2t

) ; β =

(
ECN
EM

)
−
(

d
4t

)
(

ECN
EM

)
+
(

d
2t

) (2)

The volume fraction of carbon nanotube VCN and Poisson’s ratio of the nanocomposite
νMNC are calculated as [34].

VCN =
WCN

WCN +
(

ρCN
ρM

)
−
(

ρCN
ρM

)
WCN

(3)

νMNC = νCN ·VCN + νM·(1−VCN) (4)

The volume fraction of dispersed fiber constituents is expressed as follows:

VF =
( z

h
+ 0.5

)n
(5)

where h and Z are the respective total thickness and thickness coordinate in the transverse
direction, having an origin on the middle surface of the plate. The exponential power
n permits the ceramic fiber to fluctuate in the thickness direction. The effective material
characteristics of the final material fluctuate continuously according to Equation (5). In this
paper, effective elastic material properties are calculated using a homogenization approach
based on the Voigt rule of the mixture. as shown below:

E(z) = (EC − EMNC)VF + EMNC (6)
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Because of the dispersion of carbon nanotubes in the metal matrix, the effective Young’s
modulus of the nanocomposite phase may be used instead of Young’s modulus of the
matrix phase in the preceding equation. In this work, we assume the dispersion of carbon
nanotubes in metal; therefore, we must first compute the effective material properties of
the nanocomposite.

3. Governing Equation

The governing equation for buckling analysis is derived by using the MTSDT
mathematical model. A rectangular plate of size (a× b) is assumed to be perfect in geometry.

3.1. Displacement Equation

The in-plane displacement (u and v) and transverse displacement (w), which is based
on the MTSDT, are represented as follows:

{ui} =
{

u0
i

}
+ [A] f (z) (7)

where ui = {u, v, w}T , u0
i = {u0 , v0, w0}T , f (z) =

{
z, z2, z3}T and

[A] =

 ω1 η1 ρ1
ω2 η2 ρ2
ω3 η3 0


In the above matrix [A], all higher-order terms are determined by eliminating the

transverse shear (τxz = τyz = 0) at the outer surface of the plate; then, the modified in-plane
displacement field is as follows:{

u
v

}
=

{
u0
v0

}
+ f1(z)

{
ω1
ω2

}
− z2

2

{
∂ω3
∂x

∂ω3
∂y

}
− f2(z)

{
∂w0
∂x + h2

4
∂η3
∂x

∂w0
∂y + h2

4
∂η3
∂y

}
(8)

where f1(z) = z− f2(z) and f2(z) = 4z3

3h2 . The final expression for the in-plane displacement
and transverse displacement fields:

{ui} =
{

u0
i

}
+ [A1] f (z) (9)

where

[A1] =


ω1 − α1

2 − 4
3h2

(
ω1 + β1 +

h2ψ1
4

)
ω2 − α2

2 − 4
3h2

(
ω2 + β2 +

h2ψ2
4

)
ω3 η3 0


To replace the C1 continuity with C0 continuity to assure the field variables are con-

tinuous within the element, the out-of-plane derivatives are replaced by the following
relation:

α1 =
∂ω3

∂x
; β1 =

∂w0

∂x
; ψ1 =

∂η3

∂x
; α2 =

∂ω3

∂y
; β2 =

∂w0

∂y
; ψ2 =

∂η3

∂y
(10)

However, due to the above substitution, there is an introduction of additional nodal
unknowns that impose extra constraints, which are enforced variationally through a penalty
approach as follows:

α1 − ∂ω3
∂x = 0; β1 − ∂w0

∂x = 0; ψ1 − ∂η3
∂x = 0;

α2 − ∂ω3
∂y = 0; β2 − ∂w0

∂y = 0; ψ2 − ∂η3
∂y = 0

(11)
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Hence, in the present formulation, the displacement variables are as follows:

{d}13X1 = {u0, v0, w0, ω1, ω2, ω3, α1, α2, η3, β1, β2, ψ1, ψ2} (12)

3.2. Strain Displacement Relationship

The linear strain corresponding to the displacement fields is expressed as follows:



εxx
εyy
εzz
γxy
γxz
γyz


=



∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂v
∂z +

∂w
∂y


(13)

Further incorporation of the final expression for the displacement field (Equation (9))
into the above equation leads to the following expression:



εxx
εyy
εzz
γxy
γxz
γyz


=



∂u0
∂x

∂v0
∂x
ω3

∂u0
∂y +

∂v0
∂x

ω1 +
∂w0
∂x

ω2 +
∂w0
∂y


+z



∂ω1
∂x

∂ω2
∂y

2η3
∂ω1
∂y +

∂ω2
∂x

∂ω3
∂x − α1

∂ω3
∂y − α2


+z2



− 1
2

∂α1
∂x

− 1
2

∂α2
∂y

0
1
2

(
∂α1
∂y +

∂α2
∂x

)
∂η3
∂x − ψ1 −

4
h2 (ω1 + β1)

∂η3
∂y − ψ2 −

4
h2 (ω2 + β2)


+z3



− 4
3h2

(
∂ω1
∂x +

∂β1
∂x

)
− 1

3
∂ψ1
∂x

− 4
3h2

(
∂ω2
∂y +

∂β2
∂y

)
− 1

3
∂ψ2
∂y

0

− 4
3h2

(
∂ω1
∂y +

∂ω2
∂x +

∂β1
∂y +

∂β2
∂x

)
− 1

3

(
∂ψ1
∂y +

∂ψ2
∂x

)
0
0


(14)

The above strain equation can be generalized into the following expression:

{ε}6X1 = {T(z)}6X20{ε}20X1 (15)

where {ε}6X1 =
{

εxx εyy εzz γxy γxz γyz
}

and

{T(z)}6X20 =



1 0 0 0 0 0 z 0 0 0 0 0 z2 0 0 0 0 z3 0 0
0 1 0 0 0 0 0 z 0 0 0 0 0 z2 0 0 0 0 z3 0
0 0 1 0 0 0 0 0 z 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 z 0 0 0 0 z2 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 z 0 0 0 0 z2 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 z 0 0 0 0 z2 0 0 z3


The relationship between the strain vector {ε} and displacement vector {d} can express

by the following relationship:

{ε}13X1 = {B}20X13{d}13x1 (16)

3.3. Element Description and Shape Function

A nine-noded iso-parametric element (shown in Figure 3) was employed for the
present finite element model with 13 unknown variables at each node. The nodal unknowns
at any point within the domain were expressed in terms of the shape function. At each
element, the displacement field and the element geometry are defined as follows:

{d} =
9
∑

i=1
Ni(ξ, η){d}i

{x} =
9
∑

i=1
Ni(ξ, η){x}i

{y} =
9
∑

i=1
Ni(ξ, η){y}i

(17)
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Figure 3. 9-Noded isoparametric element.

The shape function Ni is the function of the natural coordinate system used in the
finite element modeling, and it is expressed as follows:

N1 = 1
4
(
ξ2 − ξ

)(
η2 − η

)
, N2 = 1

2
(
1− ξ2)(η2 − η

)
,

N3 = 1
4
(
ξ2 + ξ

)(
η2 − η

)
, N4 = 1

2
(
ξ2 − ξ

)(
1− η2),

N5 =
(
1− ξ2)(1− η2), N6 = 1

2
(
ξ2 + ξ

)(
1− η2),

N7 = 1
4
(
ξ2 − ξ

)(
η2 + η

)
, N8 = 1

2
(
1− ξ2)(η2 + η

)
,

N9 = 1
4
(
ξ2 + ξ

)(
η2 + η

) (18)

3.4. Constitutive Relationship

In this study, we considered that the multiscale composite material is an isotropic
material at each point of its domain, and the constitutive relationship between stress and
strain is as follows:

{σ} = [Q]{ε} (19)

where the constitutive matrix is expressed as [35];

[Q] =



Q11 Q12 Q13 0 0 0
Q21 Q22 Q23 0 0 0
Q31 Q32 Q33 0 0 0

0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66


Here,

Q11 = Q22 = Q33 = E(z)(1−ν2)
(1−3ν2−2ν3)

,

Q12 = Q13 = Q23 = E(z)ν(1+ν)
(1−3ν2−2ν3)

,

Q44 = Q55 = Q66 = E(z)
2(1+ν)

(20)

3.5. Buckling Analysis

The strain energy of the plate may be written as

U =
1
2

y
{ε}

T
{σ}dxdydz (21)

By putting the value of Equation (19) in the above Equation (21), we obtain

U =
1
2

x
{ε}

T
[Q]{ε}dxdy =

1
2

x
{ε}

T
[D]{ε}dxdy (22)

where [D] =
∫
[T(z)]T [Q][T(z)]dz.
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The global stiffness matrix of the multiscale composite plate is obtained by equating
the total energy of the system to zero.

[K] =
x

[B]T [D][B]dxdy (23)

To derive the membrane stiffness matrix [Km], the membrane strain associated with
the deflection can be calculated as [36] follows:

{εm} =


1
2

(
∂w
∂x

)2
+ 1

2

(
∂u
∂x

)2
+ 1

2

(
∂v
∂x

)2

1
2

(
∂w
∂y

)2
+ 1

2

(
∂u
∂y

)2
+ 1

2

(
∂v
∂y

)2(
∂w
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 (24)

Or it can be written as
{εm} =

1
2
[Am]{θ} (25)

where [Am] =


(

∂w
∂x

)
0

(
∂u
∂x

)
0

(
∂v
∂x

)
0

0
(

∂w
∂y

)
0

(
∂u
∂y

)
0

(
∂v
∂y

)(
∂w
∂y

) (
∂w
∂x

) (
∂u
∂y

) (
∂w
∂x

) (
∂v
∂y

) (
∂v
∂x

)
, and {θ} =



∂w
∂x
∂w
∂y
∂u
∂x
∂u
∂y
∂v
∂x
∂v
∂y


.

The matrix {θ} and strain vector {εm} can be related as

{θ} = [Tm]6X26{εm}26X1 (26)

where

[Tm ]6X26 =



0 0 0 0 1 0 0 0 0 0 z 0 0 0 0 0 z2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 z 0 0 0 0 0 z2 0 0 0 0 0 0 0 0
1 0 0 0 0 0 f3(z) 0 0 0 0 0 f4(z) 0 0 0 0 0 f5(z) 0 0 0 f6(z) 0 0 0
0 1 0 0 0 0 0 f3(z) 0 0 0 0 0 f4(z) 0 0 0 0 0 f5(z) 0 0 0 f6(z) 0 0
0 0 1 0 0 0 0 0 f3(z) 0 0 0 0 0 f4(z) 0 0 0 0 0 f5(z) 0 0 0 f6(z) 0
0 0 0 1 0 0 0 0 0 f3(z) 0 0 0 0 0 f4(z) 0 0 0 0 0 f5(z) 0 0 0 f6(z)



Here, f3(z) =
(

z− 4z3

3h2

)
, f4(z) =

(
− z2

2

)
, f5(z) =

(
− 4z3

3h2

)
, and f6(z) =

(
− z3

3

)
.

By using Equation (26) and the strain displacement relationship, the stress stiffness
matrix [Km] can be written as follows:

[Km] =
x

[B]T [I][B]dxdy (27)

where [I] =
∫
[Tm(z)]

T [S][Tm(z)]dz and the stress matrix [S] in terms of plane stress Nx,
Ny, and Nxy can be expressed as follows:

[S] =



Nx Nxy 0 0 0 0
Nxy Ny 0 0 0 0

0 0 Nx Nxy 0 0
0 0 Nxy Ny 0 0
0 0 0 0 Nx Nxy
0 0 0 0 Nxy Ny


The governing equation for calculating the critical buckling is expressed as follows:

{[K]− λ[Km]}{δ} = 0 (28)
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3.6. Computation of the Critical Buckling Load

In this analysis, the governing equation for buckling analysis [K]{δ} = λ[Km]{δ} was
solved by the simultaneous iteration technique of Corr and Jennings [1] for the computa-
tion of eigenvalues and eigenvectors. In this method, [K] is positive definite and can be
decomposed into Cholesky factors as

[K] = [L][T]T (29){
[L]−1[Km][L]

−T
}
[L]T{δ} = 1

λ
[L]T{δ} (30)

The governing equation for buckling analysis characterizes the standard eigenvalue
problem, and these have been solved to extract the eigenvalues and the eigenvectors. In
this equation, 1/λ is the eigenvalue. Therefore, the eigenvalue corresponding to the lowest
buckling loads is obtained using the simultaneous iteration technique. The methodology is
explained as follows:

1. Set a trial vector [U] and ortho-normalize.
2. Back substitute [L][X] = [U]
3. Multiply [Y] = [M][X] or [Y] = [Km][X]

4. Forward substitute [L]T [V] = [Y]
5. Form [B][U]T = [V]

6. Construct [L] so that tji = 1 and tij =
−2bij

[bii−bij+s(bii−bij)
2
]
, where S is the sign of

(
bii − bij

)
7. Multiply [W] = [V][T]

The numerical results are calculated in the form of non-dimensional critical buckling
as shown below:

N∗ = Ncr
a2

Em h3 (31)

The rectangular plates shown in Figure 4 are subjected to in-plane loading in two
different directions. In the given Figure 4 Nx, Ny, and Nxy are the in-plane axial loading
and shear loading, where Nx = −p1Ncr, Ny = −p2Ncr, and Nxy = 0.

Figure 4. Rectangular plate subjected to bi-axial compressive load and in-plane shear load.

The different loading conditions are

Uniaxial compression: p1 = −1 and p2 = 0
Biaxial compression: p1 = −1 and p2 = −1
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Boundary conditions are

a. SSSS:

8.
v0 = w0 = ω1 = α1 = η3 = β1 = ψ2 = 0 at x = 0, a
u0 = w0 = ω2 = α1 = η3 = β2 = ψ1 = 0 at y = 0, b

b. CCCC:

v0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at x = 0, a
u0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at y = 0, b

c. CFCF:
v0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at x = 0
v0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at y = 0
u0 = v0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 6= 0, at x = a and y = b

d. SSCC:

v0 = w0 = ω1 = α1 = η3 = β1 = ψ2 = 0 at x = 0, a
u0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at y = 0, b

e. SCSC:

u0 = w0 = ω2 = α1 = η3 = β2 = ψ1 = 0, at x = 0 and y = 0
v0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at x = a
u0 = w0 = ω1 = ω2 = ω3 = α1 = α2 = η3 = β1 = β2 = ψ1 = ψ2 = 0, at y = b

4. Numerical Results

To calculate the critical buckling load, the eigenvalue problem was determined. Var-
ious numerical results were used to obtain the mechanical buckling behavior of CNT-
reinforced multiscale FGM rectangular plates using the proposed 9-noded isoparametric
elements. The finite element code was developed in Matlab to perform the numerical
simulation. The numerical values were calculated for 3 × 3 gauss integration points. The
material components adopted in this study are listed in Table 1.

Table 1. Material properties of constituents.

Constituents’ Material Material Properties

Matrix [9]
Aluminum (Al) Em = 70 GPa, νm = 0.3, ρm = 2707

Stainless steel (SUS304) Em = 207.78 GPa, νm = 0.3177, ρm = 8166
Ti-6Al-4V Em = 105.7 GPa, νm = 0.298, ρm = 4429

Fibre [9]
Zirconia (ZrO2) Ec = 151 GPa, νc = 0.3, ρc = 3000

Alumina (Al2O3) Ec = 380 GPa, νc = 0.3, ρc = 3800
Silicon nitride (Si3N4) Ec = 322.27 GPa, νc = 0.24, ρc = 2370

CNT [32]
MWCNT ECNT = 400 GPa, lCNT = 50 µm, dCNT = 20 nm, tCNT = 0.34 nm,

ρCNT = 1350 kg/m3

SWCNT ECNT = 640 GPa, lCNT = 25 µm, dCNT = 1.4 nm, tCNT = 0.34 nm,
ρCNT = 1350 kg/m3

4.1. Comparison and Convergence

To determine the best suitable mesh size for the present numerical analysis, the given
plate was divided into various mesh sizes in the ×- and y-directions. This convergence
study was carried out for different volume fractions of ceramic fiber and with a side-to-
thickness ratio a/h = 10, as shown in Table 2. The non-dimensional critical buckling load
was determined for mesh sizes varying from 2 × 2 to 6 × 6. It was observed that the critical
buckling load converged for the mesh size 5 × 5. Therefore, a 5 × 5 mesh size was adopted
for the complete numerical analysis.

To validate the present MTSDT theory, the non-dimensional critical buckling load was
calculated for a different side-to-thickness ratio of simply supported square plates under
uniaxial and biaxial compressive loadings. The numerical values in Table 3 represent the
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critical buckling load for the Al/Al2O3 plate with 0% weight fraction of CNT reinforcement.
The presented numerical results were compared with a previous numerical study [37] and
are in good agreement with the reference. The mode shape of a simply supported plate for
the first three nodes is presented in Figures 5 and 6 for n = 0 and n = 1, respectively.

Table 2. Convergence study of the Al/Al2O3 plate.

Volume Fraction Index (n)
Mesh Size

0 0.5 1 2 5 10

a/h = 10

2 × 2 19.192 13.276 11.016 9.161 7.191 6.017
3 × 3 18.594 9.698 10.410 8.566 6.676 5.701
4 × 4 18.354 8.131 10.519 8.397 1.917 5.514
5 × 5 17.516 12.498 9.268 7.671 6.562 5.607
6 × 6 17.811 12.487 9.888 7.650 6.022 5.022
[37] 18.570 12.120 9.330 7.260 6.030 5.450

Table 3. Comparison study for the Al/Al2O3 plate.

Volume Fraction (n)
a/h 0 0.5 1 2 5 10

Uniaxial

5
Present Study 16.221 10.897 8.322 5.846 5.320 4.329

Data in [37] 16.000 10.570 8.146 6.230 4.970 4.440
% error 1.362 3.001 2.115 6.569 6.579 2.564

Data in [6] 16.021 10.625 8.225 6.343 5.053 4.481
% error 1.232 2.492 1.172 8.505 5.017 3.504

10
Present Study 17.516 12.498 9.268 6.671 6.562 5.607

Data in [37] 18.540 12.080 9.299 7.210 5.990 5.420
% error 5.846 3.345 0.334 8.080 8.717 3.335

Data in [6] 18.579 12.123 9.339 7.263 6.035 5.453
% error 6.066 3.001 0.767 8.876 8.027 2.750

20
Present Study 19.606 12.785 9.960 8.371 7.084 5.838

Data in [37] 19.310 12.530 9.649 7.510 6.320 5.750
% error 1.510 1.995 3.122 10.286 10.785 1.507

Data in [6] 19.353 12.567 9.668 7.537 6.345 5.767
% error 1.291 1.707 2.937 9.962 10.435 1.220

5
Present Study 8.074 5.323 4.095 3.147 2.505 2.242

Data in [37] 8.001 5.288 4.073 3.120 2.487 2.221
% error 0.904 0.658 0.537 0.858 0.719 0.937

Data in [6] 8.011 5.313 4.112 3.172 2.527 2.240
% error 0.786 0.193 0.420 0.782 0.858 0.076

Biaxial

10
Present Study 9.074 6.183 4.488 3.522 3.056 2.818

Data in [37] 9.273 6.045 4.650 3.608 2.998 2.715
% error 2.193 2.232 3.610 2.442 1.898 3.655

Data in [6] 9.289 6.062 4.670 3.632 3.018 2.726
% error 2.373 1.965 4.046 3.109 1.253 3.251

20
Present Study 9.826 6.349 5.020 4.064 3.327 3.062

Data in [37] 9.658 6.270 4.821 3.757 3.162 2.876
% error 1.710 1.244 3.964 7.554 4.959 6.074

Data in [6] 9.676 6.283 4.834 3.769 3.172 2.883
% error 1.522 1.033 3.711 7.269 4.647 5.833
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Figure 5. Mode shape for the square plate under biaxial compressive load.

Figure 6. Mode shape for the square plate under shear load.
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4.2. Effect of Boundary Conditions on Uniaxial and Biaxial Compression

The variation of the non-dimensional critical buckling load for various boundary
conditions is represented in Table 4. The numerical values were calculated for 0%, 2.5%,
and 5% weight fraction of CNT reinforcement under uniaxial and biaxial loading. From
Table 4, the maximum value of the critical buckling load was obtained by clamped (CCCC)
boundary conditions, whereas the CFCF boundary condition yielded the minimum value
of the critical buckling load. The CCCC boundary condition indicated that the plates were
fixed on all four sides, and the CFCF boundary condition indicated that the plates were
fixed and free on adjacent sides. In the case of a 0% weight fraction of CNT, approximately
(80–85)% difference in the critical buckling load was observed between the CCCC and
CFCF boundary conditions, and a (60–63)% difference was observed between the CCCC
and SSSS boundary conditions. However, if we assume a 5% weight fraction of CNT in the
mixture, slightly less difference was observed between these boundary conditions. From
Table 4, it was also observed that for all boundary conditions, the plate had a higher critical
buckling load under uniaxial compression than under biaxial compression.

Table 4. Non-dimensional critical buckling load for different boundary conditions.

W_cnt Boundary
Conditions

Volume Fraction Index (n)
0 0.5 1 2 5 10

Uniaxial

0%

SSSS 7.389 5.886 5.328 4.891 4.449 4.125
CCCC 19.367 15.948 14.141 12.158 10.263 9.718
CFCF 4.415 3.159 2.495 1.881 1.807 1.466
SSCC 10.267 6.862 6.134 5.557 4.718 4.505
SCSC 11.242 7.326 6.149 5.257 4.985 4.616

2.5%

SSSS 7.389 6.626 6.349 5.892 5.723 5.708
CCCC 19.367 17.611 16.680 15.667 14.710 14.427
CFCF 4.415 3.277 2.615 2.457 2.281 2.061
SSCC 10.267 7.725 7.284 6.778 6.662 6.427
SCSC 11.242 8.326 7.518 7.322 7.149 6.783

5%

SSSS 7.389 7.358 7.358 7.339 7.328 7.322
CCCC 19.367 19.297 19.259 19.219 19.181 19.169
CFCF 4.415 4.248 4.066 4.065 4.025 4.009
SSCC 10.267 10.037 9.882 9.767 9.682 9.623
SCSC 11.242 11.126 10.950 10.730 10.551 10.496

Biaxial

0%

SSSS 3.697 2.945 2.665 2.447 2.226 2.068
CCCC 16.520 13.602 12.062 10.370 8.758 8.298
CFCF 2.010 1.083 1.066 1.043 0.662 0.559
SSCC 4.726 4.226 3.855 3.475 2.495 2.103
SCSC 5.674 4.936 3.952 3.308 2.418 2.218

2.5%

SSSS 3.697 3.315 3.176 3.066 2.948 2.861
CCCC 16.520 15.021 14.228 13.364 12.550 12.311
CFCF 2.010 1.795 1.412 1.291 1.127 1.087
SSCC 4.726 4.495 4.158 3.619 3.219 3.019
SCSC 5.674 5.174 4.512 3.853 3.453 3.223

5%

SSSS 3.697 3.682 3.676 3.672 3.667 3.663
CCCC 16.520 16.460 16.428 16.393 16.361 16.351
CFCF 2.010 1.951 1.831 1.811 1.760 1.760
SSCC 4.726 4.636 4.596 4.556 4.456 4.404
SCSC 5.674 5.574 5.494 5.395 5.360 5.355

The first three mode shapes of the plate under biaxial compressive and shear loading
are presented in Figures 5 and 6, respectively. The mode shapes were drawn for simply
supported and clamped-free boundary conditions. As seen from the mode shape of the
plate, the essential boundary conditions were satisfied at the supports.

4.3. Effect of CNT and Volume Fraction Index (n) on the Critical Buckling Load

The numerical results for the critical buckling load at a different weight fraction
of SWCNT and MWCNT are presented in Tables 5 and 6 under uniaxial and biaxial
compressive loading, respectively. All numerical results were obtained for the 1st six
modes, and plates were restrained with a simple supported condition. In this case, the
Al/ZrO2 plate was assumed to be reinforced with SWCNT and MWCNT at 0%, 2.5%, and
5% weight fractions. From these tables, it was observed that SWCNT performed better
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than MWCNT under uniaxial and biaxial compression. At a 5% weight fraction of the
CNT, SWCNT had a 17% higher critical buckling load for n = 0.5 and 37% higher critical
buckling load for n = 10 than MWCNT. This happened because of the magnitude of the
elastic properties of the SWCNT and MWCNT. Since at n = 0 only ZrO2 fibers were present,
no difference was observed. From n = 0.5 to 10, the proportion of ZrO2 started to decrease
and the proportion of the nanocomposite started to increase. Due to this increase in the
nanocomposite proportion, a greater difference was observed at n = 10. By increasing the
volume fraction index from n = 0 to n = 10, the amount of fiber in the mixture decreased,
which led to a decrease in the stiffness of the plate. Therefore, the critical buckling load
decreased as the volume fraction index increased. By increasing the weight fraction of the
CNT up to 5%, the critical buckling load increased by 43% in the SWCNT case and 13% in
the MWCNT case because of the stiffness of the plate increased by increasing the amount
of CNT in the mixture. Figure 7 shows plots for freely supported and clamped boundary
conditions for different SWCNT fractions and fiber volumes. At W_cnt = 5%, the plate
had an approximately equal critical buckling load from n = 0 to n = 10. The plate with a
multiscale phase behaved similar to the plate with only ceramic fiber at W_cnt = 5%. At
W_cnt = 0% and 2.5%, the critical buckling load decreased with an increase in the volume
fraction index (n), but a greater decline was observed at the 0% weight fraction of the CNT.

Table 5. Critical buckling load for the 1st six modes (Al/ZrO2) under uniaxial load.

W_cnt Mode
Volume Fraction Index (n)

0 0.5 1 2 5 10

SWCNT

0%

1 7.816 6.218 5.633 5.186 4.439 4.395
2 12.650 9.979 8.929 8.135 4.733 6.986
3 17.908 14.536 12.994 11.378 7.446 9.308
4 17.927 14.596 13.002 11.468 9.856 9.426
5 20.211 16.358 14.638 12.980 10.005 10.675
6 20.687 16.405 14.682 13.301 11.345 11.367

2.5%

1 7.816 7.005 6.716 6.490 6.246 6.061
2 12.650 11.324 10.826 10.435 10.042 9.765
3 17.908 16.186 15.406 14.599 13.814 13.518
4 17.927 16.228 15.420 14.634 13.883 13.570
5 20.211 18.264 17.390 16.530 15.689 15.330
6 20.687 18.534 17.712 17.052 16.387 15.938

5%

1 7.816 7.784 7.773 7.764 7.756 7.747
2 12.650 12.599 12.580 12.564 12.543 12.534
3 17.908 17.840 17.809 17.778 17.735 17.741
4 17.927 17.860 17.828 17.795 17.769 17.753
5 20.211 20.133 20.098 20.064 20.018 20.017
6 20.687 20.603 20.572 20.545 20.522 20.499

MWCNT

2.5%

1 7.816 6.322 5.777 5.360 4.933 4.612
2 12.650 10.160 9.189 8.451 7.796 7.353
3 17.908 14.752 13.312 11.804 10.378 9.861
4 17.927 14.810 13.320 11.886 10.517 9.970
5 20.211 16.648 15.038 13.448 11.917 11.285
6 20.687 16.650 15.057 13.815 12.695 11.971

5%

1 7.816 6.424 5.918 5.530 5.129 4.827
2 12.650 10.336 9.441 8.757 8.137 7.713
3 17.908 14.965 13.624 12.222 10.890 10.403
4 17.927 15.020 13.632 12.296 11.019 10.504
5 20.211 16.888 15.387 13.908 12.479 11.885
6 20.687 16.936 15.464 14.312 13.254 12.563
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Table 6. Critical buckling load for the 1st six modes (Al/ZrO2) under biaxial load.

W_cnt Mode
Volume Fraction Index (n)

0 0.5 2 1 5 10

SWCNT

0%

1 3.909 3.109 2.817 2.593 2.367 2.197
2 10.252 8.082 7.230 6.588 6.037 5.664
3 10.287 8.111 7.258 6.613 6.057 5.682
4 12.900 10.355 9.286 8.327 7.396 6.945
5 13.570 10.994 9.846 8.731 7.656 7.199
6 13.624 11.038 9.885 8.765 7.685 7.226

2.5%

1 3.909 3.503 3.358 3.245 3.123 3.031
2 10.252 9.176 8.773 8.457 8.141 7.915
3 10.287 9.208 8.803 8.486 8.168 7.941
4 12.900 11.613 11.081 10.598 10.113 9.860
5 13.570 12.254 11.674 11.110 10.557 10.310
6 13.624 12.303 11.720 11.154 10.598 10.350

5%

1 3.909 3.892 3.887 3.882 3.877 3.873
2 10.252 10.211 10.195 10.183 10.169 10.159
3 10.287 10.245 10.230 10.217 10.203 10.193
4 12.900 12.849 12.828 12.809 12.789 12.779
5 13.570 13.518 13.494 13.472 13.450 13.440
6 13.624 13.571 13.548 13.525 13.503 13.493

MWCNT

2.5%

1 3.909 3.161 2.889 2.680 2.467 2.306
2 10.252 8.229 7.441 6.846 6.321 5.961
3 10.287 8.259 7.469 6.871 6.342 5.981
4 12.900 10.522 9.525 8.631 7.757 7.329
5 13.570 11.159 10.087 9.045 8.039 7.607
6 13.624 11.203 10.127 9.081 8.070 7.636

5%

1 3.909 3.212 2.959 2.765 2.565 2.414
2 10.252 8.373 7.646 7.095 6.597 6.253
3 10.287 8.403 7.674 7.120 6.619 6.273
4 12.900 10.685 9.760 8.927 8.111 7.705
5 13.570 11.321 10.323 9.354 8.414 8.008
6 13.624 11.366 10.364 9.391 8.447 8.039

Figure 7. Variation in the critical buckling load for different fractions of CNT and fibers. (a) SSSS,
(b) CCCC, (c) SSSS, (d) CCCC.

4.4. Effect of the Side-to-Thickness Ratio (a/h) and Aspect Ratio (b/a) of the Plates

The effect of the side-to-thickness ratio of the plate is presented in Figures 8 and 9.
Figures are plotted for simply supported and clamped boundary conditions. In this
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case, all values were calculated for different volume fraction index (n) and 0% weight
fraction values of the CNT. From Figures 8 and 9, it can be observed that under ceramic-
rich conditions, i.e., n = 0, the plate had the maximum critical buckling load, and in the
case of nanocomposite-rich conditions, i.e., n = 10, the plate had the minimum critical
buckling load. Figures 8 and 9 present the uniaxial compression and biaxial compression,
respectively. Under uniaxial and biaxial compression, the critical buckling load for simply
supported plates increased by increasing the a/h ratio up to 20; after that, no significant
change in the critical buckling load was observed. This is because in a simply supported
plate, the stiffness of the plate increases to only a/h = 20, and the same variation was
observed by Reddy et al. [37]. In the case of a clamped supported plate, the critical buckling
load increased to a/h = 100 because under clamped support conditions, the stiffness of the
plate increased to a/h = 100.

Figure 8. Variation of the buckling load under uniaxial compression. (a) SSSS, (b) CCCC.

Figure 9. Variation of the buckling load under biaxial compression. (a) SSSS, (b) CCCC.

The variation of the critical buckling load with the aspect ratio of the plate can be seen
in Figures 10 and 11. For the given simply supported and clamped boundary conditions,
numerical results were obtained for a constant side-to-thickness ratio of the plate, i.e.,
a/h = 10. In Figures 10 and 11, it is observed that the critical buckling load increases by
increasing the b/a ratio of the plate for both types of loading conditions.
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Figure 10. Variation in the buckling load under uniaxial compression. (a) SSSS, (b) CCCC.

Figure 11. Variation in the buckling load under biaxial compression. (a) SSSS, (b) CCCC.

4.5. Critical Buckling Load for Various Types of Plates

The variation in the critical buckling load for various types of plates by considering the
different volume fraction indexes is presented in Tables 7 and 8. All numerical values were
calculated for the critical buckling load for the 1st six modes for simply supported plates.
A plate made of a different type of metal and ceramic fibers behaves differently under
uniaxial and biaxial compression. Here, we assumed that the 0% weight fraction of the CNT
was used as a reinforcement. In the case of the Al/Al2O3 plate, the critical buckling load
increased by (60–74)% by increasing the volume fraction ratio under uniaxial and biaxial
compression. In the case of the Ti-6Al-4V/ZrO2 plate, the value for the critical buckling load
increased by only (23–28)% by increasing the volume fraction index. Under uniaxial and
biaxial compression, the Al/Al2O3 plate had the highest critical buckling load value among
all types of plates made of different metal matrix and fiber components. The differences
in the critical buckling load values are due to the different elastic modulus values of the
components. In the case of the Al/Al2O3 plate, the difference in the elastic modulus of the
Al matrix and Al2O3 fiber was much larger. Due to this fact, greater variation in the critical
buckling load was observed by increasing the volume fraction index.
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Table 7. Critical buckling load for the 1st six modes for various types of plates under uniaxial load.

Mode
Volume Fraction Index (n)

0 0.5 1 2 5 10

Al/Al2O3

1 13.278 12.804 10.410 8.566 6.676 5.701
2 18.593 15.237 12.280 9.373 6.918 5.889
3 21.668 16.931 13.787 10.492 7.404 6.294
4 23.838 19.236 15.538 11.890 8.563 7.254
5 27.250 19.923 15.771 12.083 9.336 8.262
6 29.562 28.436 22.198 17.197 11.512 9.704

Al/ZrO2

1 7.816 6.218 5.633 5.186 4.439 4.395
2 12.650 9.979 8.929 8.135 4.733 6.986
3 17.908 14.536 12.994 11.378 7.446 9.308
4 17.927 14.596 13.002 11.468 9.856 9.426
5 20.211 16.358 14.638 12.980 10.005 10.675
6 20.687 16.405 14.682 13.301 11.345 11.367

Ti-6Al-
4V/ZrO2

1 4.865 4.360 4.139 3.981 3.812 3.688
2 5.739 5.097 4.833 4.573 4.317 4.207
3 6.427 5.606 5.335 5.041 4.755 4.634
4 6.946 6.540 6.080 5.750 5.426 5.286
5 7.729 6.877 6.553 6.260 5.974 5.801
6 10.933 9.715 9.184 8.597 8.040 7.862

SUS304/Si3N4

1 4.671 4.409 4.202 3.982 3.822 3.021
2 5.413 5.068 4.731 4.403 4.263 5.405
3 5.990 5.608 5.228 4.858 4.704 6.184
4 6.840 6.406 5.978 5.559 5.379 6.853
5 7.433 6.971 6.586 6.219 5.998 7.782
6 10.267 9.565 8.815 8.102 7.875 8.571

Table 8. Critical buckling load for the 1st six modes for various types of plates under biaxial load.

Mode
Volume Fraction Index (n)

0 0.5 1 2 5 10

Al/Al2O3

1 9.303 6.359 5.206 4.285 3.463 2.949
2 18.476 13.130 10.677 8.189 5.842 4.949
3 18.576 13.168 10.691 8.202 5.843 4.960
4 18.639 13.251 10.778 8.263 5.885 4.983
5 19.858 13.707 10.884 8.418 6.244 5.354
6 20.029 13.826 10.982 8.500 6.301 5.399

Al/ZrO2

1 3.909 3.109 2.817 2.593 2.367 2.197
2 10.252 8.082 7.230 6.588 6.037 5.664
3 10.287 8.111 7.258 6.613 6.057 5.682
4 12.900 10.355 9.286 8.327 7.396 6.945
5 13.570 10.994 9.846 8.731 7.656 7.199
6 13.624 11.038 9.885 8.765 7.685 7.226

Ti-6Al-
4V/ZrO2

1 2.445 2.170 2.071 1.992 1.907 1.845
2 4.861 4.352 4.126 3.904 3.686 3.590
3 4.889 4.376 4.149 3.926 3.708 3.612
4 4.904 4.391 4.163 3.938 3.718 3.621
5 5.226 4.663 4.425 4.205 3.986 3.878
6 5.271 4.703 4.463 4.241 4.020 3.912

SUS304/Si3N4

1 2.696 2.337 2.206 2.103 1.993 1.913
2 5.294 4.637 4.344 4.057 3.775 3.652
3 5.308 4.648 4.354 4.067 3.786 3.663
4 5.339 4.678 4.382 4.091 3.806 3.682
5 5.677 4.952 4.642 4.356 4.072 3.937
6 5.725 4.994 4.682 4.393 4.107 3.970

4.6. Effect of Biaxial and Shear Loading of the Plate

The non-dimensional critical buckling load for a simply supported plate under var-
ious in-plane forces is presented in Tables 9 and 10. Numerical results were calculated
for different fiber volume fractions and weight fractions of CNT reinforcement. Table 9
represents the variation in the critical buckling load for the 1st mode under various shear
loading and constant biaxial loading values (Ny/Nx = 1). It is noted that by increasing the
shear loading from 0 to 2, the non-dimensional critical buckling load decreased by 18%
for all fractions of the CNT reinforcement. The reason for this is increased shear loading,
reducing the stiffness of the plate.
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Table 9. Non-dimensional shear buckling load for the simply supported plate.

W_cnt Nxy/Nx
Volume Fraction Index (n)

0 0.5 1 2 5 10

0%

0 3.697 2.945 2.665 2.447 2.226 2.068
0.25 3.678 2.930 2.651 2.434 2.214 2.057
0.5 3.629 2.891 2.615 2.400 2.183 2.028
1 3.462 2.758 2.493 2.285 2.077 1.931
2 3.026 2.410 2.035 1.989 1.805 1.681

2.5%

0 3.697 3.315 3.176 3.066 2.948 2.861
0.25 3.678 3.298 3.160 3.051 2.933 2.847
0.5 3.629 3.255 3.118 3.010 2.893 2.808
1 3.462 3.105 3.105 2.870 2.758 2.678
2 3.026 2.714 2.598 2.505 2.406 2.337

5%

0 3.697 3.682 3.676 3.672 3.667 3.663
0.25 3.678 3.663 3.658 3.658 3.649 3.645
0.5 3.629 3.614 3.609 3.605 3.600 3.596
1 3.462 3.448 3.443 3.439 3.434 3.431
2 3.026 3.013 3.009 3.005 3.001 2.998

Table 10. Non-dimensional biaxial and shear buckling load for the simply supported plate.

W_cnt n Ny/Nx
Nxy/Nx

0 0.25 0.5 1 2

0%

1

0 6.037 5.328 5.235 5.020 4.542
0.25 4.264 4.210 4.073 3.679 2.916
0.5 3.554 3.522 3.441 3.186 2.627
1 2.665 2.651 2.615 2.493 2.035
2 1.776 1.772 1.761 1.720 1.593

2

0 4.891 3.245 4.446 4.101 2.981
0.25 3.914 3.863 3.733 3.366 2.916
0.5 3.262 3.233 3.156 2.918 2.400
1 2.447 2.434 2.400 2.285 1.989
2 1.631 1.627 1.616 1.577 1.458

5

0 4.449 1.704 4.224 3.584 2.981
0.25 3.561 3.514 3.393 3.054 2.413
0.5 2.968 2.941 2.869 2.650 2.177
1 2.226 2.214 2.183 2.077 1.805
2 1.484 1.480 1.470 1.434 1.325

2.5%

1

0 6.349 6.440 5.769 5.215 2.211
0.25 5.081 5.018 4.856 4.392 3.488
0.5 4.235 4.198 4.102 3.803 3.141
1 3.176 3.160 3.118 3.105 2.598
2 2.117 2.112 2.099 1.726 1.901

2

0 5.708 6.440 5.724 2.475 1.032
0.25 4.905 4.844 4.686 4.235 3.360
0.5 4.088 4.053 3.959 3.668 3.027
1 3.066 3.051 3.010 2.870 2.505
2 2.044 2.039 2.026 1.979 1.833

5

0 5.892 6.556 5.725 4.733 3.742
0.25 4.716 4.656 4.503 4.068 3.226
0.5 3.931 3.896 3.805 3.524 2.907
1 2.948 2.933 2.893 2.758 2.406
2 2.044 1.960 1.351 1.902 1.762

5%

1

0 7.358 7.244 6.897 6.068 4.521
0.25 5.881 5.808 5.621 5.085 4.040
0.5 4.902 4.859 4.748 4.402 3.638
1 3.676 3.658 3.609 3.443 3.009
2 2.450 2.445 2.429 2.373 2.201

2

0 7.339 5.198 6.917 5.971 4.508
0.25 5.874 5.801 5.614 5.079 4.035
0.5 4.896 4.853 4.743 4.397 3.633
1 3.672 3.658 3.605 3.439 3.005
2 2.448 2.442 2.426 2.371 2.198

5

0 7.328 4.049 6.917 1.713 4.504
0.25 5.866 5.793 5.607 5.072 4.029
0.5 4.889 4.847 4.736 4.391 3.628
1 3.667 3.649 3.600 3.434 3.001
2 2.444 2.438 2.423 2.367 2.195
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Table 10 represents the variation in the critical buckling load for various in-plane
compressive and shear forces. All values were calculated for a simply supported plate
at different weight fractions of the CNT. From Table 10, it can be seen that by increasing
the ratio of in-plane compressive forces in the y and × directions, the critical buckling
load for all shear loads is reduced. Further, for all uniaxial and biaxial compressive forces,
the critical buckling load decreases as the shear load increases. This is because as the
compressive and shear loads increase, the buckling resistance of the plate decreases.

5. Conclusions

In this paper, an MTSDT mathematical theory was adopted to represent the kinematic
field. The in-plane displacement fields integrate the cubic degree of thickness terms and
quadratic degree of thickness terms for the out-of-plane displacement field. A nine-noded
isoparametric element with 13 unknowns at each node was adopted for the finite element
formulation. Effective elastic properties of the multiscale FGM material were predicted
by using the Halpin–Tsai equation and the Voigt rule of mixture approach. The effect of
various parameters on the critical buckling behavior of a multiscale FGM plate is presented,
and the following conclusions were drawn from this numerical analysis:

• The critical buckling load parameter was at a maximum under clamped boundary
conditions.

• By increasing the volume fraction index (n), the critical buckling is decreased due to
less stiffness being obtained at a higher volume fraction index.

• As the weight fraction of CNT increased, the critical buckling load increased because
CNT imparted more stiffness to the material.

• The side-to-thickness ratio (a/h) and aspect ratio (b/a) of the plates had a significant
impact on the buckling behavior of the plate. Increasing the a/h ratio increased the
critical buckling load, and increasing the b/a ratio decreased the critical buckling load.

• Due to the given elastic properties of the Al and Al2O3, the Al/Al2O3 plate yielded
the maximum value of the critical buckling load among all plates.

• For the same ratio of in-plane compression in the y- and x-direction, the critical
buckling load decreased with increases in in-plane shear loading.

• For all values of in-plane shear loading, the critical buckling load decreased with an
increase in the ratio of in-plane compression in the y- and x-direction.

It was observed in the present study that CNT fibers and reinforcement play a very
important role in the buckling response of a plate structure. The results presented in this
study are new for the buckling behavior of multiscale FGM plates. Therefore, it is believed
that the results obtained are very useful for the analysis and design of this type of plate
structure.
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Nomenclature

EM, ρM, and νM Young’s modulus, density, and Poisson’s ratio of the metal matrix.
ECN , d, t, and l Young’s modulus, diameter, thickness, and length of CNT
WCN , νCN , and ρCN weight fraction, Poisson’s ratio, and density of CNT.
EMNC Young’s modulus of nanocomposite
E(z) and EC Young’s modulus of final material and Young’s modulus of ceramic fiber
uo, vo and wo In-plane and out-of-plane displacement on the midplane.
ω1 and ω2 Rotation of the normal about the midplane on y- and x-axes.
η1, η2, η3, ρ1 and ρ2 Higher-order terms
Ni Shape function of the iso-parametric element at the ith node
{d}i Unknown displacement at the ith node.
{x}i {y}i Cartesian coordinate of the ith node.
[K] Global stiffness matrix.
{B}20X13 Strain–displacement matrix
λ Critical buckling load
CNT Carbon nanotube
FGM Functionally graded material
SWCNT Single-wall carbon nanotube
MWCNT Multi-wall carbon nanotube
HSDT Higher-order shear deformation theory
FEM Finite element methods
FSDT 1st-order shear deformation theory
TSDT 3rd-order shear deformation theory
MTSDT Modified third-order shear deformation theory
SSSS Simply supported condition
CCCC Clamped free boundary condition
CFCF Clamped-free boundary condition
SCSC Simply supported-clamped boundary condition
SSCC Simply supported-free boundary condition
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