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Abstract: Environmental concerns have come to the forefront due to the substantial role of the cement
industry in the extraction and expenditure of natural resources. Additionally, industrial processes
generate a considerable amount of waste, which is frequently disposed of inadequately. The objective
of this study was to evaluate the simultaneous use of ornamental rock processing sludge and calcium
carbonate sludge generated from the kraft process in the production of belitic clinker. These waste
materials would be used in total or partial substitution of natural raw materials, namely, limestone
and clay. Several formulations were produced and sintered at 1100 and 1200 ◦C. The raw materials
were characterized physico-chemically and thermogravimetrically, with subsequent evaluation of the
resulting dosed raw mixes. Mineral analyses determined that the mixtures with limestone and clay
in substitution ratios of 95% and 100%, respectively, and sintered at 1100 ◦C have the potential to
produce belite-rich clinkers. This temperature is considerably lower than those reported in reference
studies. Additionally, full limestone and clay substitution could result in a 23.92% reduction in carbon
dioxide in clinker production. The results confirmed the potential use of ornamental rock processing
sludge and calcium carbonate sludge as viable alternative materials for cement production and,
consequently, could contribute to a reduction in the negative environmental impacts of this industry.

Keywords: industrial solid waste; ornamental rock processing sludge; calcium carbonate sludge;
belitic clinker

1. Introduction

The cement industry consumes a substantial amount of natural resources, generates a
high level of carbon dioxide (CO2) emissions and, yet, has the potential of recycling indus-
trial solid wastes. Clinker production, in particular, requires an abundant amount of raw
materials and consumes fossil fuels that generate elevated levels of greenhouse emissions.
Worldwide cement production peaked at 4.2 billion tons in 2015. The estimated production
in 2020 was 4.1 billion tons with future projections of 4.7 billion tons by 2050 [1–3]. These
production figures are highly relevant, since the cement industry was responsible for 8–9%
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of anthropic CO2 emissions [4]. Brazilian emissions are estimated at approximately 866 kg
of CO2 per ton of clinker and 564 kg of CO2 per ton of cement produced.

According to Mikulčić et al. [5], the substitution of non-renewable natural resources
with alternative materials could reduce both energy consumption and CO2 emissions in
clinker production. However, this process must be conducted carefully due to the chemical
changes in cement and in order to ensure the final quality of the product. Additionally, a
reduction in the availability of calcium oxide (CaO) would result in a binder with a higher
level of belite (2CaO·SiO2) instead of alite (3CaO·SiO2). This change in mineral composition
would decrease CO2 emissions by 10–15%, thermal energy use by 12–20%, and electrical
energy use by 10–15% when compared to ordinary Portland clinker production [6–8].
Sui et al. [9] also noted that compared to Portland cement, belitic cements released less heat
and had higher workability and strength, increased durability, and less shrinkage from
drying over advanced ages.

Studies have indicated that several industrial solid wastes could be successfully used
as total replacement for limestone and clay as sources of calcium or silica [10–13].

Buruberri et al. [10] produced belitic cement at 1390 ◦C solely from paper industry
wastes generated from the kraft process, namely, fly ash, biological sludge, and calcium
carbonate sludge. Mortars produced with this cement had a mechanical strength of approx-
imately 13 MPa after 90 days, which is suitable for use in external and internal coatings.
Additionally, there were no durability issues from efflorescence or other potentially damag-
ing effects.

Ávalos-Rendón et al. [11] sinterized two reactive belitic cements from active silica and
commercially available natural zeolite at a temperature of 1000 ◦C. The results showed bet-
ter mechanical strength than Portland cement at initial ages and above 14 days. Improved
hydraulic reactivity was also observed particularly with active silica belitic cement with a
hydration degree of approximately 33% at 28 days compared to 26% for Portland cement.

Vashistha et al. [12] sinterized belitic clinker based exclusively on calcium carbonate
sludge, nano-silica, and furnace ash. Belite was produced from the combined action of
calcium carbonate sludge and nano-silica at 1000 ◦C without pre-calcination or chemical
stabilizers. In comparison, belite was produced from a mixture of calcium carbonate sludge
and furnace ash between 1100 and 1200 ◦C. Cement with calcium carbonate sludge and
nano-silica were observed to have a compression strength of approximately 13 MPa at
56 days, which is suitable for internal and external coatings. Additionally, there was a
measurable reduction in the hydration heat.

Enríquez et al. [13] evaluated belitic clinker production from carbonate calcium sludge,
cement furnace ash, and rice husk ash without the use of limestone and clay. Belitic-based
clinker was obtained at 1350 ◦C with high hydration kinetics and large heat release at
initial ages.

In this context, besides the pulp and paper industry, the ornamental stone industry
generates large amounts of waste. In this study, we considered the calcium carbonate sludge
and the sludge from the processing of ornamental rocks. These types of industrial waste
are frequently disposed in unregulated sanitary landfills, waterways, or shorelines and
become a great source of air, water, and soil contamination [14,15]. A circular economy in
these spaces offers a way to minimize the environmental and economic costs of waste with
a strategic focus on reformulating materials and energy flow to achieve greater resource
efficiency through reuse, remanufacturing, and recycling [16].

Ornamental rock production in Brazil amounted to 9 million tons in 2020 [17]. Orna-
mental rock processing sludge (ORPS) starts with the cutting and extraction of rectangular
blocks of solid rock material of varying sizes and volumes between 8 and 15 m3. The
rectangular shape allows easier processing into slabs with thicknesses between 2 and 3 cm
and surfaces polished to a glassy appearance. These steps make use of a substantial amount
of water for cooling, cutting, and polishing. The result is a conversion of approximately
58% of the total volume of the block into sludge, which represents a considerable waste
of natural resources [18–20]. As noted by Karaca et al. [21], the exact amount of waste
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generated depends on the geological, textural, and petrographic characteristics of the rock,
type of cutting machines, plant processing capacity, and block size.

The cellulose and paper industries have a considerable environmental impact. Wood-
based production generates a large amount of waste materials, liquid effluent, and atmo-
spheric pollution due to the emission of carbon dioxide, methane, and nitrous oxide [22,23].
The generated waste contains organic material and toxic substances from the additives
and chemical products used in the manufacturing process, which requires specialized
handling [24]. The amount of each type of waste depends on the amount of unprocessed
raw material and the type of paper to be produced [25]. It was estimated that 0.2–0.3 kg of
calcium carbonate sludge (CCS) was generated for each ton of processed cellulose in Brazil.

Thus, the purpose of this study was to investigate the potential use of industrial
wastes, specifically ORPS and CCS, for clinker production. The results were of particular
innovative importance since, at the moment, there are no reference works that have evalu-
ated the combined use of ORPS and CCS. While not all chemical, physical, mineralogical,
and thermal results on clinker/cement formulations were discussed in-depth, this study
presents relevant information for the understanding of belitic cement production from sub-
stitute materials. Additionally, while large-scale cement production has specific procedures
related to raw material composition, operation, and equipment, laboratory-scale results
could still provide preliminary insight into the ideal mix ratios and other parameters that
affect phase formation and cement performance.

2. Materials and Methods
2.1. Materials

The materials used in this study were limestone, kaolinite clay, ornamental rock
processing sludge (ORPS) from slab polishing, and calcium carbonate sludge (CCS) from
the kraft process of cellulose and paper. The limestone and clay were ground in a ball mill
until particle sizes of less than 75 µm were reached. Two different shipments of each type
of waste were received and then homogenized to obtain a meaningful composition. All
materials were previously dried in an oven at 100 ± 5 ◦C for 24 h. Chemical characterization
was conducted with X-ray fluorescence (XRF), and the results were used to determine the
ratios of the raw mixtures.

2.2. Methods
2.2.1. Dosage and Production of Belitic Clinker

Sample mix ratios were calculated and refined with the lime saturation factor (LSF),
silica modulus (SM), alumina modulus (AM), and Bogue [26] formulas. These are shown
in Equations (1)–(7) based on the elemental chemical composition of the materials and
constraints of the desired mineral content. The mix ratios were formulated in order to
obtain the main phases of the clinker and to maximize industrial waste reuse.

LSF =
CaO

2.80 SiO2 + 1.20 Al2O3+0.65 Fe2O3
(1)

SM =
SiO2

Al2O3 + Fe2O3
(2)

AM =
Al2O3

Fe2O3
(3)

C3S = (4.071 × %CaO) – (7.600 × %SiO2) – (6.718 × %Al2O3) – (1.430 × %Fe2O3) – (2.852 × %SO3) (4)

C2S = (− 3.071 × %CaO) + (8.600 × %SiO2) + (5.068 × %Al2O3) + (1.079 × %Fe2O3) + (2.152 × %SO3) (5)

C3A = (2.650 × %Al2O3) – (1.692 × %Fe2O3) (6)

C4AF = (3.043 × %Fe2O3) (7)
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After characterization of the source materials, four formulations were designated
for clinker production. These are shown in Table 1 in w.t.%. The REF reference sample
contained no wastes, while formulations F1, F2, and F3 contained only wastes in different
proportions and no limestone or clay. Table 1 also shows the values of the chemical modules
used in the mixing ratios and the phase contents predicted from the Bogue calculation.

Table 1. Experimental clinkers and mix ratios.

Source Materials, Chemical Moduli,
and Theoretical Phase Content

Formulations and Respective Mix Ratios (w.t.%)

REF F1 F2 F3

Limestone 90.0 0.00 5.00 10.0
Clay 10.0 0.00 0.00 0.00

ORPS 0.00 52.5 50.0 47.5
CCS 0.00 47.5 45.0 42.5
LSF 77.44 77.64 77.92 79.50
SM 2.46 3.00 2.97 2.94
AM 2.49 2.66 2.63 2.60
C3S 11.44 15.68 18.55 21.42
C2S 64.80 64.01 61.15 58.30
C3A 14.67 12.91 12.82 12.74

C4AF 9.08 7.33 7.39 7.46

The industrial wastes of this study were considered alternate sources of the main
chemical elements in clinkers: SiO2, Al2O3, CaO, and Fe2O3. As such, they allowed for
elevated reductions in the use of natural raw materials.

Regarding the mix ratios of natural materials and wastes, decreases in limestone
saturation factor (LSF) were known to increase belite content and with this factor, the
flours were dosed and produced with LSF ranging from 70% to 80% and CaO/SiO2 ratios
ranging from 2.46 to 3.00. The SM and AM module were also within the range of traditional
cements, which ensured an ideal distribution between calcium silicates and aluminate
phases [27].

According to Stark et al. [28], a reduction in the lime saturation limit leads to a higher
belite content and a lower alite content. Bouzidi et al. [29] stated that a completely belitic
clinker could be produced with a CaO/SiO2 ratio of 2. However, Clarizka et al. [30] reported
intense belite peaks with a CaO/SiO2 ratio of 3, which decreased as the ratio decreased.

Table 1 also showed that for formulations F1, F2, and F3, as the substitution level of
both wastes decreased and limestone use increased, silica and alumina moduli tended to
decrease. This was a result of limestone containing lower silica and alumina moduli in its
chemical composition when compared with ORPS but not with CCS. Additionally, C3S
levels increased while C2S and C3A levels decreased in the Bogue calculation estimates due
to the increase in impurities associated with limestone. However, formulation F3 with more
limestone had an increase in C4AF. This was a consequence of the lower Al2O3/Fe2O3
content of limestone when compared to clay and ORPS. These results confirmed the cited
phenomenon of lower belite content as limestone content increased.

Taylor [31] reported that for Portland cement clinker, an increased silica modulus
decreased the proportion of liquid phases at any oven temperature and increased the
complexity of the clinkering process. Additionally, decreasing the alumina modulus
increased the levels of iron compounds, which acted as fluxes and favored clinkering at
lower temperatures.

To produce the clinkers, the dried materials were homogenized in a cylindrical grinder
at 60 rpm for 1 h and transferred to a clean receptacle. The grinder was thoroughly cleaned
between operations. A total of two reference formulations and six waste-only formulations
were prepared at 20% moisture to be subjected to different sintering temperatures.

Samples were shaped as round tablets with 10 g of dry mixture and 2 g of deionized
water as seen in Figure 1a. Tablets were pressed in a manual hydraulic press with 30 tons
for 10 min, followed by thermal treatment. Tablets were placed in an alumina crucible
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and subjected to a pre-calcination treatment at 900 ◦C and clinkering at either 1100 ◦C or
1200 ◦C in a high-temperature electrical oven as seen in Figure 1b. Details of the control
conditions of the thermal cycles are shown in Table 2.
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Table 2. Details of the pre-calcination and clinkering thermal cycles.

Cycle A Cycle B Cycle C Cycle D Cycle E

900 ◦C
HR = 5 ◦C/min

900 ◦C
HT = 30 min

1100 ◦C
HR = 10 ◦C/min

1100 ◦C
HT = 60 min Forced

convection
air cooling1200 ◦C

HR = 10 ◦C/min
1200 ◦C

HT = 60 min
HR = heating rate; HT = heating time.

After thermal cycling, all clinker samples were forcibly cooled under air convection in
order to prevent polymorphic transformations of the calcium silicates and accentuated crys-
tallization of liquid phases. Cooling also ensured a prevalence of dicalcium silicate (β-C2S).
Since the samples had elevated hardness, they were first fragmented in a roller crusher and
then ground in an eccentric ball mill grinder with alumina balls in order to obtain particles
smaller than 63 µm. Particles were subjected to mineral and physical characterization, and
it should be noted that no gypsum was added during clinker production.

2.2.2. Material Characterization

Physical characterization was conducted through laser granulometry in a Microtrac ap-
paratus, model S3500, Osaka, Japan. This technique was based on the relationship between
particle sedimentation and light absorption to determine the granulometric distribution. In
the case of particle agglomeration from humidity, sodium hexametaphosphate was used
to break down clusters, and water was used as a solvent. Specific mass was determined
from helium gas pycnometry with a Micromeritics apparatus, model AccuPyc II 1340,
Norcross, EUA, as helium easily penetrated the pores of the samples. Specific surface area
was determined from nitrogen adsorption using the BET method with a Micromeritics ap-
paratus, model TriStar II Plus, Norcross, EUA. Larger specific surface areas were indicative
of dimensions and, by extension, higher reactivity of the particles.

Chemical characterization was performed with energy-dispersive X-ray fluorescence
(XRF) using a PANalytical apparatus, model Epsilon 1, São Paulo, Brazil. Prior to character-
ization, samples with a mass between 1 and 10 g were dried in an oven at 105 ± 5 ◦C. The
results identified chemical composition in terms of major and minor oxide quantities.

Thermal analyses by thermogravimetry (TG) and differential thermogravimetry (DTG)
were performed with a PerkinElmer simultaneous thermal analyzer, model STA 8000. Each
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test made use of approximately 20 mg of material in an alumina crucible heated at a rate
of 10 ◦C/min in a N2 environment in a temperature range from 25 to 1000 ◦C. The results
allowed for the evaluation of mass gain or loss under continuous or uniform heating and
thermal decomposition reaction kinetics.

Morphological and microstructural characterizations of the wastes were conducted
through scanning electronic microscopy (SEM) in a model EVO MA 15 apparatus, Urbana,
EUA. Samples were metalized in carbon and analyzed in a vacuum with a secondary
electron detector operating at 20 kV.

Mineral analysis of the wastes and clinkers produced were conducted through X-ray
diffraction (XRD) in a PANalytical apparatus, model Empyrean, São Paulo, Brazil. The
analyzer contained a copper source and operated with a tension of 40 kV and current of
40 mA. Analysis made use of an angle variation between 5◦ and 70◦, a step of 0.0131, and a
time of 97.92 s for each step. The identification of the crystalline phases was made using
the X’Pert HighScore Plus software.

2.2.3. Evaluation of Carbon Dioxide Emissions during Clinker Production

Thermal analyses were performed to confirm CO2 emission estimates per ton of each
formulation from the sintering process. This was based on the method proposed by Costa
and Ribeiro [32] and consisted of TG and DTG on the raw materials and formulations. The
analysis temperature varied from 550 to 850 ◦C, which was the main interval of mass loss
from decarbonation. Residual masses were taken at 1000 ◦C, and contributions from the
expenditure of thermal and electrical energies were not considered.

3. Results and Discussion
3.1. Characterization of Raw Materials

The chemical and physical compositions of the raw materials and wastes used in this
study are shown in Table 3 with respect to the more stable oxides. The granulometric
distribution of the raw materials used in this study are shown in Figure 2.

Table 3. Chemical composition and physical characterization of the raw materials.

Chemical Characterization (%) Limestone Clay ORPS CCS

SiO2 12.59 64.40 36.89 ND
Al2O3 3.57 19.86 8.51 0.36
Fe2O3 1.69 4.62 3.31 0.04
CaO 43.84 ND 24.50 55.49
MgO 1.08 1.24 5.13 0.71
SO3 ND ND 0.01 0.05

Na2O 0.28 0.20 1.62 0.56
K2O 0.63 4.36 3.16 0.01
SrO 0.12 0.03 0.06 0.25

MnO 0.06 0.05 0.05 0.01
P2O5 0.12 0.46 0.09 ND
TiO2 0.24 0.65 0.81 0.01

Loss of Ignition (LOI) 35.78 4.13 15.86 42.51

Specific Surface Area BET (cm2/g) 33,491 26,687 26,819 12,566
Specific Mass (g/cm3) 2.65 2.60 2.66 2.59

Granulometric
Analysis

D10 (µm) 8.96 1.81 2.42 8.41
D50 (µm) 27.82 3.58 6.41 20.47
D90 (µm) 69.84 7.78 19.66 43.96
DM (µm) 32.22 4.06 8.40 22.70
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The results in Table 3 demonstrate that the chemical composition of the wastes was
directly related to their source and treatment during the production process. The selected
solid industrial wastes were confirmed as potential substitutes for the natural raw materials
used in clinker production, namely, ORPS could replace clay to supply silica and alumina,
while CCS could replace limestone to supply calcium oxide.

Limestone contained a 43.84% d.b. prevalent content of calcium oxide (CaO) and
12.59% d.b. of quartz (SiO2). Clay was of kaolinitic type with aluminum silicate charac-
teristics. Characterization determined a 64.40% d.b. prevalent content of quartz (SiO2)
and 19.86% d.b. of alumina (Al2O3). In comparison, ORPS contained quartz, calcite, and
alumina, which differed from the chemical compositions described by Bacarji et al. [33],
Sato et al. [34], and Awad et al. [35]. No pozzolanic activity was noted in ORPS, but despite
being inert with respect to reactivity, its MgO, Na2O, and K2O content were expansive
oxides which have effects that must be considered in the production of cementitious com-
pounds. Similar to limestone, CCS also presented a prevalent 55.49% d.b. content of
calcium oxide and 42.51% of loss of ignition. One of the advantages of using this waste is
that it does not require grinding and requires much less energy to prepare raw clinker.

The elevated levels of calcium oxide both in limestone and CCS were related to the
common presence of calcium carbonate (CaCO3) in both materials. Since the measured
reduction in mass from the loss of ignition was the result of the release of CO2 from calcium
carbonate decomposition, it was possible to estimate the initial amount of calcium carbonate
from a stoichiometric calculation. Based on the mass fraction of CaO from Table 3, a 78.29%
fraction of calcium carbonate in the limestone was determined, and the amount of calcium
carbonate in CCS was estimated with a stoichiometric calculation of 99.09%. This high
purity CCS indicates the need for use in smaller quantities to replace limestone.

Furthermore, the results of Table 3 show that limestone and clay particle diameters
were measured in ranges of 1–125 µm and 1–22 µm, respectively. In comparison, ORPS
and CCS particle diameters ranged between 1 and 62 µm and 2–105 µm, respectively.
Since all particles had diameters of less than 75 µm, they were considered suitable for
homogenization and clinker production. The smaller particles had increased surface areas
that favored clinkering reactions.

Industrial waste morphologies are shown in the images in Figure 3. The surface texture
of ORPS was rough with irregular, angular, and plaque-shaped particles due to the slicing,
molding, and polishing procedures. In comparison, the CCS texture consisted of irregular
and bunched particles, probably due to the precipitation and settling production processes.
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The limestone diffractogram in Figure 4a identified mainly crystalline peaks of quartz
and calcite. According to Abrahão [36], silica in limestone was common and could be
represented by microcrystalline quartz. The clay diffractogram in Figure 4b identified
quartz, hematite, and kaolinite phases. The ORPS diffractogram in Figure 4c presented
mainly peaks of quartz and calcite and minor peaks of annite and albite in agreement with
Mesquita, Dall’Agnol, and Almeida [37] and Lima et al. [38]. Minor peaks of silicate miner-
als from the mica and feldspar groups were also found in ORPS. Lastly, the diffractogram
of CCS in Figure 4d identified mostly calcite peaks.

3.2. Mineral Characterization of Clinker Formulations

Figure 5 presents the diffractograms of all formulations in this study at sintering tem-
peratures of 1100 and 1200 ◦C. All diffractograms contained crystalline peaks of gehlenite
(Ca2Al2SiO7), mayenite (Ca12Al14O33), wollastonite-1A (CaSiO3), belite (β-Ca2SiO4), and
tetracalcium aluminoferrite (Ca4Al2Fe2O10).
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Despite rigid control under laboratory conditions, there were difficulties in replicating
the exact same conditions for each batch. Consequently, small differences in mineral
content were possible. The absence of alite in the diffractograms may have resulted from
an instability in the cooling process, reverting to the more stable dicalcium silicate [39] or
by the presence of potassium present in the sludge from the processing of ornamental rocks
that hindered the reaction of belite with CaO [13].

Formulations F1 and F2 sintered at 1100 ◦C presented dicalcium silicate (β-C2S) as the
majority phase. This phase crystallized at high temperatures and, similar to α-polymorph,
was highly reactive to cement according to Kacimi et al. [40] and Mindat [41]. Its presence
could be related to efficient rapid cooling, which was reported by Kacimi et al. [40] and
Bouzudi et al. [29] as a pre-requisite for the production of reactive belitic cements. Belite
could also be stabilized through doping with substances such as boron, phosphorus, sulfur,
sodium, and potassium as recommended by Elfami et al. [42] and Saidani et al. [43].

Under different temperatures, the results of formulations F1 and F2 detected expressive
belite peaks sintered at 1100 ◦C and lesser peaks at 1200 ◦C. The increase in crystallization
of this phase could be related to the size of the silica nanoparticles after the clinkers were
ground. A combination of increased specific surface area and lower particle dimension
induced chemical reactions at lower temperatures with a higher reaction rate due to the
electrostatic attractive forces. Maheswaran et al. [44] also observed higher belite peaks at
lower in clinkering temperature for formulations with calcined lime sludge and silica fume.

Formulations REF and F3 at 1100 ◦C and formulations F1, F2, and F3 at 1200 ◦C
presented gehlenite as the majority phase. Gehlenite is a calcium aluminosilicate with low
hydraulic properties. Its formation was related to elevated silica content [45] such as the
case with ORPS or elevated alumina content as per Zhou et al. [46]. Limited quantities of
gehlenite were considered tolerable [47], and its formation was noted both under labora-
tory and industrial clinker production [48]. However, such formulations should not be
considered as having characteristics of belitic clinkers. Han et al. [49] noted that gehlenite
could act as an inert material to increase the structural density of the clinker. However,
Doval et al. [50] and Winnefeld et al. [51] cautioned that small particles of gehlenite were
more reactive and could form strätlingite over long time periods, even more if impurities
such as K+ or Na+ were present as they increased reactivity [52].

No free lime or periclase was observed in any formulation considering the decrease
of LSF to values close to 75%. Hydrated excess free lime can form calcium hydroxide
(Ca(OH)2) which, due to the fact of its expansion characteristics, may result in negative
effects on mechanical strength and durability of cementitious materials [31].

Mayenite was detected in place of tricalcium aluminate, and its presence could have
been the result of low LSF, low alumina content in the raw materials, and the combination
of lime and silica. It is considered to be an easily hydrated phase with slightly less reactivity
than tricalcium aluminate (C3A). It is important in cements with high initial strength but in
carefully controlled quantities [53,54]. Carvalho et al. [55] noted that mayenite is acceptable
in belitic cements, since it could result in the same increase in the initial mechanical strength.

Wollastonite formation was a consequence of a SiO2 and CaCO3 reaction. This was
confirmed as ORPS and CCS increased the silica and calcium content, respectively, in
substitution of limestone and clay. Wollastonite formation from β-C2S and leftover silica in
the raw materials was also responsible for the considerable decrease in belite peak intensity
at the higher temperature of 1200 ◦C as explained in the study by El-Didamony et al. [56].
As reported by Qu et al. [57], a balance favoring β-C2S over wollastonite is related to a
Ca/Si ratio of 3. For ordinary Portland cement (OPC), a Ca/Si ratio of 3.2 resulted in belite
and lime, while a ratio lower than 2 resulted in gehlenite and wollastonite at 800 ◦C, as the
alkali content lowered the crystallization temperature. Consequently, for this study, Ca/Si
ratios were set at approximately 2.5 in order to favor belite formation and stabilization with
respect to other phases.

The tetracalcium aluminoferrite (Ca4Al2Fe2O10) phase was identified in orthorhombic
form (Pcmn) as brownmillerite. It was formed at temperatures of 1100 ◦C from the cooling
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of a Fe2O3-rich liquid phase according to Garcia-Mate et al. [58]. It should be noted that
Fe2O3 was one of the main oxides both in clay and ORPS. The hydraulic capacity of
this phase depended on the production procedures, and its reactivity increased up to
temperatures of 1200 ◦C [8].

Both Gartner and Sui [7] and Kotsay and Jaskulski [59] stated that sintering tem-
peratures of belite-rich cements could vary between 1000 and 1350 ◦C. In formulations
F1 and F2 in this study, higher intensity belite peaks were identified at a temperature of
1100 ◦C, which was lower than expected from reference works, and it was produced with
waste only.

3.3. Clinker Particle Sizes

Table 4 presents the granulometric distribution and specific surface area from BET of
the belitic clinkers of this study in accordance with sintering temperature.

Table 4. Physical characteristics of experimental clinkers.

Formulations
Granulometric

Analysis Specific Surface
Area BET (cm2/g)

D10 (µm) D50 (µm) D90 (µm) Dm (µm)

11
00

◦ C

REF 1.83 4.59 10.51 5.27 4.418

F1 1.34 3.83 9.47 4.51 4.052

F2 1.51 3.98 9.12 4.56 4.076

F3 1.25 2.89 6.44 3.30 4.787

12
00

◦ C

REF 1.27 2.91 7.00 3.42 4.517

F1 1.60 3.60 8.47 4.22 4.629

F2 1.59 3.17 6.59 3.57 4.821

F3 1.63 3.32 6.96 3.74 4.913

The results in Table 4 denote that grounding process was similar for all formulations, as
it resulted in minimal variations in diameter. Another contributing factor to the uniformity
of the results would be the similar mineral composition of the clinkers.

The specific surface area for these cements was determined so that it relates to the
hydraulic reactivity that may occur. Smaller specific surface area values were found for
formulations F1 and F2 at 1100 ◦C, which could be the result of higher reactivity due to the
presence of β-C2S. The remaining higher specific surface areas could be assumed to be the
effect of the presence of gehlenite and/or porosity of the particles. These results are similar
to those found in the research of Kacimi et al. [40] and Koumpouri and Angelopoulos [60].

3.4. Evaluation of Carbon Dioxide Emissions during Clinker Production

Thermogravimetric analyses of limestone, clay, ORPS, and CCS in natura are shown
in Figure 6. The total mass losses of limestone and calcium carbonate sludge were 33.66%
up to 787.85 ◦C and 41.72% up to 778.32 ◦C, respectively. These peaks were characteristic
of calcium carbonate decomposition. The mass loss observed for ORPS was 16.67% up to
768.69 ◦C and was also related to the decarbonation of small amounts of calcite. The clay
showed a mass loss of 3.74% up to 501.23 ◦C and was related to the dehydroxylation of
kaolinite. The mass losses at the beginning of the heating process were related to water
release and the burning of organic matter. The cited mass losses agreed with the chemical
characterization results.
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Figure 7 presents thermogravimetric curves of the raw clinker mixtures of this study.
Based on mass loss, it was possible to estimate the CO2 emissions per ton of clinker
produced, as shown in Table 5.
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Table 5. Thermogravimetric analysis of the raw clinker mixtures.

Formulation Mass Loss from
Decarbonation (%)

kg of CO2/ton of
Clinker

Residual Mass
at 1000 ◦C (%)

CO2 Emission
(kg)/ton of Raw

Mixture (t)

CO2 Emission
(kg)/ton of
Clinker (t)

Reduction in
CO2/ton of Raw

Mixture (%)

Reduction in
CO2/ton of Raw

Mixture (%)

REF 30.68

1000

67.08 306.80 457.36 - -

F1 25.58 73.51 255.80 347.98 16.62 23.92

F2 26.33 72.15 263.30 364.93 14.18 20.21

F3 26.56 72.44 265.60 366.65 13.43 19.83

As seen in Table 5, the REF formulation, with 90% limestone and 10% clay, had the
highest CO2 generation (decarbonation) measured at 30.68%. This result was expected due
to the high lime content of the formulation. For the clinkers, formulation F1 containing
only ORPS and CCS presented the least amount of CO2 release at 25.58%, followed by
formulations F2 and F3 with 26.33% and 25.58%, respectively. These values did not take
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into account emissions from thermal and electrical energy expenditures. Theoretically, the
use of ORPS and CCS increased CaO levels from dissociated CO2, and the mix ratios used
were ideally suited to minimizing CO2 emissions. Consequently, these industrial wastes
could have a direct impact both on reducing emissions and demand on natural resources.

Table 5 also demonstrates that all waste-containing clinker formulations in this study
presented lower CO2 emissions than the REF formulation. The full industrial waste sub-
stitution of formulation F1 resulted in 255.80 kg of CO2 generated per ton of raw mixture
and 347.98 kg of CO2 generated per ton of clinker produced. In terms of reductions in
emissions, the substitution formulations presented decreased CO2 between 19.83% and
23.92%, which are significant values for the cement industry. These considerable reductions
were due to the lower use of lime in the mixtures, since the wastes were able to supply the
same essential substances, such as calcium oxide, to the process [61].

4. Conclusions

The combined use of ornamental rock processing sludge (ORPS) and calcium carbonate
sludge (CCS) as substitutes for natural raw materials could be considered as viable for the
production of belitic clinkers. The main conclusions of this research were:

• Both ORPS and CCS presented chemical and physical characteristics that favored
clinkering;

• Mineral characterization identified predominantly belite in its meta-stable state (β-
C2S), with prevalent crystalline peaks in formulations F1 and F2 at 1100 ◦C. The
CaO/SiO2 ratio of the formulations tested in this study were within the pre-requisites
for the production of belitic cements;

• The absence of a γ-C2S phase in the diffractograms attested to the efficiency of rapid
clinker cooling, which prevented undesirable polymorph formation;

• Formulations REF and F3 formed gehlenite in both sintering temperatures, which was
undesirable due to the fact of its lack of hydraulic properties;

• Clinker granulometry results were similar for all formulations and was related to the
mineral characteristics;

• Formulations F1 and F2 presented lower CO2 emissions per ton of clinker produced.
Formulations with 95–100% replacement by solid industrial waste could be used to
produce belitic clinkers;

• Partial reduction or total substitution of limestone and clay could bring environmental
and economic benefits to both cement and waste-generating industries.

It should be noted that the substitution ratios used in this research were not viable for
widespread application due to the relatively low volume of waste generated from orna-
mental rock and paper industries compared to the elevated demand of raw materials in the
production of cement. However, bench scale production of belitic cements with industrial
waste, exclusively, could be an important strategy in the use of alternative materials.

Nonetheless, the combined use of ORPS and CCS could result in reductions in CO2
emissions and lower energy consumption in the production of belitic cements. The results
of this research represented a forward step in the preservation of non-renewable natural
resources, minimization of improper disposal of solid industrial wastes, and the search for
more sustainable and cleaner production.
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