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Abstract: Poly aluminum-ferric Chloride (PAFC) is a new type of high efficiency coagulant. In this
study, high iron type gangue is used as a main raw material. It is calcined at 675 ◦C for 1 h and 3%
CaF2 is added to the calcined powder and reacted with 20% hydrochloric acid at 93 ◦C for 4 h. The
leaching ratio of aluminum ions is 90% and that of iron ions is 91%. After Fe2+ ions are oxidized in
the filtrate, CaCO3 is used to adjust the pH of the filtrate to 0.7. The microwave power is adjusted
to 80 W and the filtrate is radiated for 5 min. After being aged for 24 h, PAFC product is obtained.
The prepared PAFC is used to treat mine water and compared with the results of PAC and PAF, the
turbidity removal ratio of PAFC is 99.6%, which is greater than 96.4% of PAC and 93.7% of PAF. PAFC
is a mixture with different degrees of polymerization. It demonstrates that extracting aluminum and
iron ions from high iron content gangue to prepare PAFC by microwave is efficient and feasible.

Keywords: high iron content coal gangue; acid leaching; extraction of aluminum and iron ions; PAFC

1. Introduction

The coal gangue accounts for about 10–20% of coal production, and it is one of the
largest industrial solid wastes emitted in China [1,2]. It occupies land and pollutes the
atmosphere and water [3,4], so carrying out comprehensive utilization of coal gangue is
one of the important ways to solve these problems. The traditional utilization methods are
mainly focused on power generation [5], construction materials production [6,7], mine fill-
ing [8,9], road construction, and land reclamation [10]; these utilization methods consume
a relatively large amount of coal gangue, but there are problems such as lower technology
and lower added value and easy to produce secondary pollution.

Coal gangue is a waste resource containing aluminum, iron, and silicon elements,
which contain kaolinite, quartz, hematite, rutile, and so on [11], converted into oxides
mainly including SiO2, Al2O3, Fe2O3, CaO, MgO, TiO2, etc. The components vary ac-
cording to location due to different geological conditions. SiO2 and Al2O3 are their main
components, and their total amounts (mass fraction) can reach 60–90% [12]. Therefore,
coal gangue provides great potential in resource utilization, extracting aluminum and iron
elements to prepare new products is an important research direction [13].

Liupanshui City (Guizhou Province, China) produces over 10 million tons of gangue
each year; this amount has exceeded 200 million tons when the accumulation of previous
years is taken into account. Compared to other regions in China, coal gangue from Liupan-
shui has high iron content and medium aluminum content and is reddish after calcination,
making it unsuitable for making products requiring high whiteness, such as ceramics [14];
this further narrows the scope for utilization. However, coal gangue is a rejected resource
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of aluminum and iron, from which aluminum and iron ions can be extracted to expand the
applications of gangue. It makes up for the lack of resources such as bauxite and iron ore.

At the same time, the coal industry produces a large amount of wastewater that needs
to be treated. The particles suspended in this wastewater are often negatively charged, and
aluminum and iron salts are often used as coagulants due to their remarkable electrical
neutralization properties. In recent years, inorganic high molecular weight coagulants
have garnered significant interest as water purifying agents [15], especially PAC [16].
Poly aluminum-ferric chloride (PAFC) is a highly efficient inorganic coagulant, which is
a polymer formed by Al3+ and Fe3+ with high molecular weight, high charge and strong
bridging effect [17], and has the advantages of both aluminum and iron salts [18,19], so it is
more effective than traditional inorganic coagulants [20,21], and it has a wider pH range
for use than single aluminum and iron salts [22]. Thus, it has been widely used [23–27].

PAFC is mostly prepared from FeCl3 and AlCl3, which is more costly, and the mineral
synthesis of PAFC and other coagulants have also been reported [28–31], but they are
mostly polymerized by hydrothermal methods for several hours, which are less efficient.

In this work, aluminum and iron ions are extracted from gangue calcined powder
by acid leaching with hydrochloric acid, and the extraction ratio of both aluminum and
iron elements in it exceeded 90%, solving the problem that aluminum ions are difficult
dissolve. PAFC is prepared by microwave synthesis with a shortened time of 5 min and
the conditions of preparation are optimized. Its performance is better than that of the
commonly used polymeric aluminum chloride (PAC) and polymeric iron chloride (PAF).

2. Materials and Methods
2.1. Materials

The gangue sample comes from a coal mine in Liupanshui City. Thirty percent H2O2,
CaF2, and CaCO3 are the analytical purity reagents from Tianjin City Zhiyuan Chemical
Co., Ltd. Tianjin, China. Hydrochloric acid is an analytical purity reagent from Chongqing
Chuandong Chemical Co., Ltd. Chongqing, China. Polymeric aluminum chloride (PAC),
polymeric iron chloride (PAF), and kaolinite are bought from the market, they are chemically
pure reagents.

2.2. Procedure

The gangue is crushed and ground, then passed through a 160 mesh sieve, followed
by calcination at 675 ◦C for 1 h. After taking out the calcined powder and cooling it,
hydrochloric acid with a mass fraction of 20% is added following the solid–liquid ratio of
1:4.5, and then calcium fluoride powder is added at 3% of the mass of the gangue, and the
reaction is carried out at 93 ◦C for 4 h under stirring conditions, and the acid leach solution
is obtained by filtration.

After adding hydrogen peroxide to the filtrate to oxidize Fe2+ to Fe3+, calcium carbon-
ate powder is used to adjust the pH of the acid leach solution. An amount of 100 mL of the
above solution is taken and placed in a microwave oven for 2–7 min to polymerize, and
is then aged for 24 h to obtain a polymerized PAFC solution, which is then tested for its
turbidity removal properties. The process flow diagram for the preparation is shown in
Figure 1.

2.3. Instrumentation and Characterization

A 6100 type X-ray diffraction instrument (XRD, Shimadzu Company, Kyoto, Japan)
is used for CuKα (λ for Kα = 1.54059 Å), 2θ = 3◦–65◦, with a step width of 0.02◦. The
main components are determined by a Supermini200 type X-ray fluorescence spectrometer
(XRF, Rigaku Company, Tokyo, Japan). The morphology of the materials is identified
by a Zeiss EVO18-type scanning electron microscope (SEM, Jena, Germany). 7600 type
fourier transform infrared spectroscopy (FT-IR, Tianjin Gangdong Sci&Tech Company,
Tianjin, China). WGZ-1S type desktop turbidimeter (Shanghai Xinrui Instrument Company,
Shanghai, China). P70J17l-V1 type microwave oven (Galanz Company, Guangzhou, China).
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Figure 1. Flow chart of the experiments.

2.4. Source of Wastewater

(1) Simulated wastewater: 3.0000 g of 5000 mesh kaolin powder is added to a 1000 mL
beaker and filled with 800 mL of distilled water, stirred well and then the pH is adjusted to
7.0 with sodium hydroxide solution to obtain simulated wastewater with an initial turbidity
of 3750 NTU.

(2) Mine wastewater: from a coal mine in Liupanshui City, with an initial turbidity of
4896 NTU.

2.5. Determination of Turbidity Removal Performance

An amount of 5 mL of PAFC solution with a mass fraction of 1% is added to 800 mL
of simulated wastewater, first stirred at a rate of 1000 r/min for 3 min, then at a rate of
200 r/min for 3 min, and after standing for 30 min, the supernatant is taken to measure the
turbidity, then the turbidity removal ratio of the wastewater is calculated. Its calculation
formula is as follows:

Ratio = [(T1 − T2)/T1] × 100%

T1: initial turbidity, T2: residual turbidity.

3. Results and Discussion
3.1. XRD Analysis of Coal Gangue

As can be seen from Figure 2, the main crystalline materials in this gangue sample are
kaolinite, quartz, plagioclase, pyrite, and siderite, etc. It can be seen that the component of
this sample is complex and the main elements that make up these minerals are aluminum,
iron, silicon, and titanium.

3.2. Morphology and Energy Spectrum Analyses of the Coal Gangue

From Figure 3, it can be seen that the crushed raw coal gangue particles have an
irregular shape, the smallest particle diameter is about 1 micron, the larger particles are
about tens of microns, and there is an agglomeration phenomenon; the smaller particles are
conducive to the acid leaching reaction. To understand the elements inside the mineral, a
region within the yellow box as shown in Figure 4 is selected for energy spectrum analysis;
the results are shown in Figure 5.
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From Figure 5, it can be seen that the main elements in this sample are silicon,
aluminum, iron, titanium, and calcium, which is in agreement with the analysis of the
XRD spectrum.
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3.3. XRD Analysis of Calcined Powder and Acid Leaching Residue of Coal Gangue

To master the physical phase changes after calcination and acid leaching, XRD analysis
of calcined powder and acid leaching filter residue is carried out, and the results are shown
in Figure 6.
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After calcination, the diffraction peaks of kaolinite, pyrite and siderite disappeared.
Kaolinite (Al2O3·2SiO2·2H2O) is a silicate with a 1:1 type structure consisting of [SiO4]
tetrahedral layers joined with [AlO2(OH)4] octahedral layers [32]. The substances of this
crystal structure are chemically inactive and must be activated [33]. Activation methods in-
clude mechanical activation, thermal activation [34], microwave irradiation activation [35],
and composite activation, among which, high-temperature calcination is one of the most
common activation methods [36,37] and is suitable for industrial production.

During high temperature calcination, the crystalline structure of kaolinite is de-
stroyed [38] and the following reactions occur:

Al2Si2O5(OH)4 (kaolinite)→ Al2O3·2SiO2 (metakaolin) + 2H2O ↑

After calcination, the hydrogen and oxygen bonds between the [SiO4] tetrahedral layer
and the [AlO2(OH)4] octahedral layer in kaolinite are broken, and the lamellar structure
is distorted by disruption [39,40], and kaolinite becomes amorphous metakaolin, which
includes amorphous alumina and silica with high activity [41].

Iron-bearing substances such as pyrite undergo the following chemical reaction [42]:

4FeS2 (pyrite) + 11O2 → 2Fe2O3 + 8SO2

As can be seen from Table 1, the iron content of the gangue is high, but it is difficult to
find the diffraction peaks of Fe2O3 in Figure 6, which indicates that the newly generated
Fe2O3 is mainly amorphous with high chemical activity, which is also conducive to the
dissolution of iron ions.
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Table 1. Main components of the coal gangue, calcined powder, and residue wt %.

Components Coal Gangue Calcined Powder Residue

SiO2 44.23 52.1 78
Al2O3 18.78 21.89 2.84
Fe2O3 12.46 14.34 1.28
CaO 2.40 2.72 0.02
MgO 0.75 0.84 _
MnO 0.19 0.23 _
P2O5 0.30 0.34 _
TiO2 3.98 4.48 15.5

S 0.31 0.35 _
K2O 1.24 1.37 0.78

Na2O 0.22 0.24 0.02
FC and others 15.14 1.1 0.92

There are various processes for extracting Al2O3 from gangue [43], more commonly
acid and alkali methods are used. Calcined powders are chemically active and Al2O3 can
be extracted by acid [44–47], with the following reactions occurring.

Al2O3 + 6H+ → 2Al3+ + 3H2O

Fe2O3 + 6H+ → 2Fe3+ + 3H2O

The diffraction peak shapes of the filter residue after acid leaching are similar to those
before acid leaching, but their intensities are different because quartz and brookite cannot
react with dilute hydrochloric acid, and after acid leaching, the dissolution of the aluminum
and iron ions causes the relative content of the remaining material to rise, so their diffraction
intensities are enhanced.

The added CaF2 reacts first with the hydrochloric acid and then with the silica in the
following equation.

CaF2 + 2HCl→ CaCl2 + 2HF

SiO2 + 6HF→ H2SiF6 + 2H2O

The silica ions in the partial kaolinite are dissolved, and the pore channels formed
promoted an increase in the dissolution ratio of aluminum ions. Comparative experiments
show that the dissolution ratio of aluminum ions without CaF2 is up to 61%, and after
adding it is 90%, which shows a more obvious effect.

3.4. XRD and Composition Analysis of Calcined Powder and Acid Leaching Filter Residue of
Coal Gangue

To grasp the content of the elements in this sample, the raw coal gangue, calcined
powder, and acid leaching filter residue are analyzed for their composition. The results are
shown in Table 1.

As can be seen from Table 1, the content of aluminum and iron elements in the gangue
and calcined powder is high, when acid leaching, aluminum and iron ions react with
dilute hydrochloric acid, so the content of aluminum and iron becomes low, and it can
be calculated that the leaching ratio of aluminum and iron elements are more than 90%,
which achieves the extraction of aluminum and iron and other metal elements in the
gangue. Titanium and quartz do not react with dilute hydrochloric acid, so the titanium
and silicon elements in the filtrate are enriched, resulting in their relative content in the
filtrate increasing, which is consistent with the conclusion of Figure 6. The filtrate contained
mainly aluminum and iron ions, with a leaching ratio of 90% for aluminum ions and
91% for iron ions. The concentration of aluminum ions in the filtrate is 0.858 mol/L and
0.366 mol/L for iron ions, which could be used to prepare PAFC.
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3.5. Effect of pH of the Preparation System on the Turbidity Removal Performance

The microwave oven is at 80 W and the pH is adjusted to 0.5, 0.6, 0.7, 0.8, and 0.9, the
reactions are carried out in the microwave oven for 5 min and the products are used to treat
the simulated wastewater after preparation.

Figure 7 shows that with the increase of pH, the turbidity removal ratio first increases
and then decreases. The maximum turbidity removal ratio is 99.26% at pH = 0.7. Because
the pH will affect the degree of hydrolysis of aluminum and iron ions, appropriate pH can
promote hydrolysis, generate various hydroxyl aluminum ions and hydroxyl iron ions, and
promote the polymerization reaction, the main reactions of the process are as follows [48]:

Al2O3 + 6HCl→ 2AlCl3 + 3H2O

2AlCl3 + nH2O→ Al2(OH)nCl6−n + nHCl

m[Al2(OH)nCl6−n]→ [Al2(OH)nCl6−n]m (m ≤ 10, n ≤ 5)

Fe2O3 + 6HCl→ 2FeCl3 + 3H2O

2FeCl3 + nH2O→ Fe2(OH)nCl6−n + nHCl

m[Fe2(OH)nCl6−n]→ [Fe2(OH)nCl6−n]m (m ≤ 10, n ≤ 5)

m1[Al2(OH)n1Cl6−n] + m2[Fe2(OH)n2Cl6−n]→ [Al2(OH)n1Cl6−n]m1[Fe2(OH)n2Cl6−n]m2 (m1,2 ≤ 10, n1,2 ≤ 5)
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The chemical formula of PAFC shows that the substance is a multimer with aluminum
and iron ions as the central ions and hydroxide and chloride ions as the ligands, and due to
the different values of m and n, it is a complex mixture of components.

If the pH of the system is too high, the aluminum and iron ions will form mononuclear
hydroxyl complexes, which will eventually produce aluminum hydroxide and iron hydrox-
ide precipitates and affect its turbidity removal performance. If the pH is too low, the acidity
of the system is high and the hydrolysis of aluminum and iron ions is inhibited, making
it difficult to form polymers; if the pH is high, the system can promote the hydrolysis of
aluminum and iron ions, but too high a pH will easily produce Fe(OH)3 and Al(OH)3
precipitates in the system, so pH = 0.7 is chosen.
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3.6. Effect of Microwave Power on Turbidity Removal Performance

The pH is adjusted to 0.7, and the microwave power is changed to 80 W, 240 W, 420 W,
650 W, 800 W, and the reaction is carried out for 5 min, and the product is used to treat the
simulated wastewater after preparation, and the results are shown in Figure 8.
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As can be seen from Figure 8, the turbidity removal ratio with the increase in power
and a decreasing trend, microwave power is 80 W suitable for the highest turbidity removal
ratio. As the power determines the polymerization temperature of the product, the power
is larger and the temperature of the reaction system is higher [49], which will lead to
the system of aluminum and iron ions in violent hydrolysis, thus producing aluminum
hydroxide, iron hydroxide, and other precipitation;, aluminum and iron ions cannot be
well polymerized, so the product turbidity removal performance is poor and the choice
power is 80 W.

3.7. Effect of Radiation Time on Turbidity Removal Performance

Setting pH = 0.7, microwave power = 80 W, changing the reaction time from 2 min to
7 min with a step length of 1 min. The products are used to treat the simulated wastewater
after preparation; the results are displayed in Figure 9.

As can be seen from Figure 9, the turbidity removal ratio of the product gradually
increases with the increase of the reaction time from 1 to 5 min, and is highest when the
reaction time is 5 min. Because the hydrolysis absorbs heat, the temperature of the system
at the beginning of the reaction is low, the degree of hydrolysis reaction is low, and the
degree of polymerization of the product is not high at this time. As time increases, the
temperature gradually increases [50], the hydrolysis gradually deepens, hydroxide ions
gradually replace the chloride ions, promoting the polymerization reaction, while the
resulting polymer also has a strong ability to absorb microwaves, which accelerates the
polymerization reaction [51], so the degree of polymerization of the product correspond-
ingly increases, and the product of the turbidity performance is also improved. Continue
to increase the radiation time, the product of the turbidity ratio gradually decreased, due
to the length of time taken to make the polymerization of the product too high or even to
generate a high degree of polymerization of hydroxyl complexes, resulting in the product
of the turbidity performance decline, so the appropriate time is 5 min.
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3.8. XRD Analysis of the Products

The products prepared under the optimized conditions are dried at 50 ◦C for phase
analysis, and the results are shown in Figure 10.
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Figure 10. XRD patterns of the product.

As can be seen from Figure 10, the diffraction peaks of the product are very low in
intensity, no strong diffraction peaks of aluminum and iron chloride appear, the main
body is diffuse and the spectrum has a high back-bottom, which indicates that the alu-
minum and iron chloride in the filtrate have polymerized. The diffraction peaks are not
high in intensity, indicating that they are predominantly amorphous. Several crystalline
polymers of aluminum and iron also appear, e.g., Al29(OH)78Cl19, Al2(OH)5Cl·2H2O, and
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Al13(OH)24Cl15·37.5H2O, but the intensity of the diffraction peaks is low. The difficulty
in finding peaks for the iron polymers in Figure 10 suggests that the iron polymers are
in an amorphous form, suggesting that the product is a mixture of PAFCs with varying
degrees of polymerization. Diffraction peaks of unknown substances also appear in the
figure, which is a good indication of the complexity of the composition.

3.9. FT-IR Analysis of the Product

As can be seen from Figure 11, at 2426.41 cm−1 is the Al(Si)-O stretching vibration
peak; near 1095.02 cm−1 is the Al-O-H-Al stretching vibration peak; at 797.15 cm−1 is the
Fe-O-H-Fe stretching vibration peak; at 3462.93 cm−1 and 1626.07 cm−1 are the stretching
vibration peaks of H2O and -OH The characteristic absorption peak of hydrated chloride is
at 598.57 cm−1. The analysis of the infrared spectra reveals that PAFC is a hydroxyl-bonded
iron-aluminum salt.
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3.10. Treatment of Mine Wastewater 
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3.10. Treatment of Mine Wastewater

Referring to the above method, three samples of 800 mL of mine wastewater are taken
and tested separately for turbidity removal. The results are shown in Table 2. The turbidity
removal performance of PAFC is better than that of PAC and PAF.

Table 2. Comparison of the effectiveness of PAFC, PAC, and PAF in treating mine water.

PAC PAF PAFC

Turbidity removal ratio/% 96.4 93.7 99.6
residual turbidity/NTU 176.26 308.45 29.38

4. Conclusions

(1) The gangue sample contained 18.78% Al2O3 and 12.46% Fe2O3, which belonged to
the high iron and low aluminum type gangue.

(2) After calcining the gangue at 675 ◦C for 1 h, 20% hydrochloric acid is used, 3%
calcium fluoride is added and acid leaching occurs at 93 ◦C for 4 h. The leaching ratio of
aluminum ions is 90% and that of iron ions is 91%, and the concentration of aluminum ions
in the filtrate is 0.858 mol/L and that of iron ions is 0.366 mol/L.
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(3) The optimized process conditions for the preparation of PAFC are: pH = 0.7 of
100 mL acid leach solution is adjusted with calcium carbonate, the power is 80 W, and the
time is 5 min. The XRD and FT-IR spectra showed that the prepared product is a mixture of
PAFC with different degrees of polymerization.

The preparation of PAFC from coal gangue can realize the resource utilization of
gangue. It is mainly used for the treatment of coal industrial wastewater and the treated
water can be recycled.

Author Contributions: D.K.: Literature search, Conceptualization, Methodology, Investigation,
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