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Abstract: This paper presents an analytical investigation on the forced vibration characteristics of a
rotating functionally graded material (FGM) blade subjected to rub-impact and base excitation. Based
on the Kirchhoff plate theory, the rotating blade is modelled theoretically. The material properties
of the FGM blade are considered to vary continuously and smoothly along the thickness direction
according to a volume fraction power-law distribution. By employing Hamilton’s principle, the
equations of motion are derived. Then, the Galerkin method and the small parameter perturbation
method are utilized to obtain the analytical solution for the composite blade under a combined action
of radial force, tangential force and displacement load. Finally, special attention is given to the effects
of power-law index, rub-impact location, friction coefficient, base excitation amplitude and blade
aspect ratio on the vibration characteristics of the FGM structure. The obtained results can play a role
in the design of rotating FGM blades to achieve significantly improved structural performance.

Keywords: functionally graded material; rotating blades; rub-impact; base excitation; analytical solu-
tion

1. Introduction

Rotating blades [1–3] with a low aspect ratio can compresses gas effectively; hence,
they are widely used in real-world engineering applications, such as in a gas turbine or
an aeroengine. In order to improve the performance of aeroengine, the radial clearance
between the rotor blade and the casing needs to be as small as possible. However, the
probability of rub-impact between the casing and blade tip increases with a decrease in
radial clearance. A rub-impact fault may cause the complex vibration of blades and very
high contact stresses that lead to blade fracture and degradation of system performance.
Many major accidents have happened over an extended period. For instance, in 1973, an
engine fan disintegrated in flight owing to rub-impact, as reported by the National Trans-
portation Safety Board (NTSB). From 1994 to 1996, four F16 aircraft accidents happened due
to rub-impact fault. A homemade carrier aircraft that was equipped with a WJ5A aircraft
engine was grounded on account of the touch between the stator and rotor. This problem
has received extensive attention from the scholars around the world.

Ma et al. [4] established improved rubbing models between a rotating blade and
casing based on different methods. Liu et al. [5] focused on the dynamic responses of
the whole aeroengine with a blade-casing rubbing. Hou et al. [6] studied the mechanism
of a complex bifurcation behavior caused by flight maneuvers in an aircraft rub-impact
rotor system with Duffing-type nonlinearity. Xiao et al. [7] developed a nonlinear dynamic
model of the single-stage reciprocating compressor system with a rub-impact fault caused
by subsidence, considering the piston rod’s flexibility. Tchomeni et al. [8] developed a two-
dimensional model of the Navier–Stokes equations for incompressible flow for the viscous
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fluid motion around the spinning rotor under high fluctuations induced by unbalance,
rotor–stator rub and a crack. Wang et al. [9] considered rub-impact forces, eccentricity of
the rotor, and nonlinear stiffness of the armature shaft, and built a dynamic differential
equation to investigate the bifurcation and chaos behavior of the locomotive traction system.
Ebrahim et al. [10] investigated nonlinear dynamics due to rub-impact within tilting pad
journal bearings supporting a flexible rotor. In theory, thin blades are generally established
as elastic plate models. It is noted that few studies focus on the analytical analysis of
forced vibrations of a rotating plate subject to the combined loads of rub-impact and base
excitation.

With the rapid development of modern material science [11–13], a trend to substitute
advanced lightweight materials in aerorotor systems has emerged. In the mid-1980s, a
new concept of FGMs was first introduced by a group of Japanese scientists [14] in the
context of high-performance demand of composite materials for aerospace applications.
FGM is a material with continuously varying compositions from one surface to the other.
Therefore, its material properties and microstructure are not uniform. In general, FGM
is constructed as follows: one surface is ceramic which is designed to withstand severe
external loads, such as high temperature, wear and corrosion; the other surface is attached
to another material that is designed to ensure excellent toughness and thermal conductivity.
The composition changes gradually along the thickness direction according to a designed
law. The most significant advantages of FGM are not only improving the bonding strength,
material hardness, abrasion resistance and corrosion resistance between the two materials,
but also reducing the thermal stress and residual stress. Therefore, FGM is an excellent
material for today’s engineering applications. It has been researched widely as FGM has
excellent performances compared with traditional materials.

Shen et al. [15] presented free and forced vibration analyses for initially stressed
FGM plates in a thermal environment. Kumar et al. [16] proposed two new higher-order
transverse shear deformation plate theories with five variables. Singh et al. [17] investigated
the buckling responses of FGM plates subjected to uniform, linear and nonlinear in-plane
loads. Do et al. [18] analyzed the buckling responses of FGM plates under diverse types of
thermal loadings. Wang et al. [19] analyzed the vibration of FGM beams through critical
examination of midplane and neutral plane formulations. To perform further analyses,
Chen et al. [20] proposed a novel FGM porous plate in which the continuous gradient in
material properties based on a graded porosity offers a smooth stress distribution along the
plate thickness. Yang and Zhao et al. [21–29] made a systematic and extensive analysis of an
FGM graphene-reinforced composite structure. Li et al. [30] focused on the elastic structural
stability analysis of the pressurized thin-walled FGM arches in a temperature variation
field. Bourada and Bousahla et al. [31–33] studied the buckling and vibration of several
FGM structures. Sobhy et al. [34,35] investigated the bending and wave propagation of
FGM graphene-reinforced structures. To sum up, the vibration behaviors of many FGM
structures have been studied. However, to the best of our knowledge, almost no study has
been performed on the forced vibration of FGM plates subjected to rub-impact and base
excitation.

The increasing flight speed of spacecraft has necessitated higher requirements for high-
performance blades. Traditional homogeneous metal alloys no longer meet the requirement.
FGM is more widely applicable in this industry due to its excellent mechanical properties,
such as mitigating thermal stress, residual stress and stress concentration. Thus, the blade
structure is considered as a rotating FGM plate in this paper. In addition, its forced vibration
behaviors when subjected to rub-impact and base excitation need to be investigated in
detail. The differential equations of motion are derived based on Hamilton’s principle.
Moreover, the analytic solutions are obtained by employing the Galerkin method and the
small parameter perturbation method. Finally, the effects of power-law index, rub-impact
location, friction coefficient, base excitation amplitude and plate aspect ratio on the forced
vibration responses are highlighted. Consequently, this paper can provide theoretical
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guidance and technical support for the further development and application of rotating
FGM structure design.

2. Theoretical Formulations
2.1. Modeling

A rotating FGM plate model subject to rub-impact force and base excitation is estab-
lished as shown in Figure 1. For the convenience of the subsequent analysis, two coordinate
systems are proposed. O1-X1Y1Z1 is the fixed coordinate system, where X1 is the radial
direction, Y1 is the axial direction and Z1 is the radial direction. The plate rotates at the
angular velocity Ω along the Y1-axis. O-XYZ is the rotating coordinate system, in which
the origin O is fixed at the corner of the plate. The angle between the X1-axis and the X-axis
is Ω t. The sizes of the plate along three directions are a, b and h, respectively.
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Figure 1. The rotating FGM plate.

The presented plate is considered as a functionally gradient material structure whose
material properties have the following forms:

E(z) = (E1 − E2)
(

2z+h
2h

)n
+ E2

υ(z) = (υ1 − υ2)
(

2z+h
2h

)n
+ υ2

ρ(z) = (ρ1 − ρ2)
(

2z+h
2h

)n
+ ρ2

(1)

where n is the power-law index that dictates the material variation profile through the plate
thickness. The above formulas mean that for z = −h/2, E(z) = E2, υ (z) = υ2, ρ(z) = ρ2, while
for z = h/2, E(z) = E1, υ(z) = υ1, ρ(z) = ρ1. The material properties vary continuously and
smoothly from z = −h/2 to z = h/2 along the thickness direction of the FGM structure.

A sine harmonic excitation along the X-axis direction is taken into account as the base
excitation [36], expressed as: 

ub(t) = u0 sin ω0t
.
ub(t) = u0ω0 cos ω0t
..
ub(t) = −u0ω2

0 sin ω0t
(2)

where u0 and ω0 are the amplitude and frequency of base excitation, respectively.
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The rub-impact fault consists of an impact force FD, located at the point of contact, and
the resulting friction µFD, in which µ is the friction coefficient. The impact force, shown in
Figure 2, is assumed as a segmental periodic sinusoidal pulse excitation in the form of [37]:

FD(t) =

{
0 (n− 1)Tc + tp < t < nTc

Fmax sin
[
π
tp
(t− (n− 1)Tc)

]
(n− 1)Tc ≤ t ≤ (n− 1)Tc + tp

(3)

where n = 1, 2, 3, . . . ; tp is the impact time of one period; Tc is the periodic time; Fmax is the
amplitude of impact force.
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According to the principle of Fourier expansion, Equation (3) can be rewritten as:

FD(t) = a0 +
∞

∑
k=1

(
ak cos

2kπ
Tc

t + bk sin
2kπ
Tc

t
)

(4)

where 
a0 = 1

Tc

∫ tp
0

[
Fmax sin

(
π
tp

t
)]

dt

ak =
2
Tc

∫ tp
0

[
Fmax sin

(
π
tp

t
)

cos
(

2kπ
T t
)]

dt

bk =
2
Tc

∫ tp
0

[
Fmax sin

(
π
tp

t
)

sin
(

2kπ
T t
)]

dt

(5)

2.2. Energy Functionals

The position vector of an arbitrary point M is:

rOM = xi + yj + wk (6)

where i, j and k are the unit vectors of the rotating coordinate system in the X-axis, Y-axis
and Z-axis directions, respectively; w is the transverse deformation of the plate.

The position relation between the rotating and fixed coordinate system is:

rO1O = ubi (7)

From this, the position vector of point M in the fixed coordinate system can be deter-
mined by:

rO1M = rO1O + rOM = (x + ub)i + yj + wk (8)
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According to the vector and velocity relationship between the rotating and fixed
coordinate system:

i = i1 cos Ωt− k1 sin Ωt
j = j1
k = i1 sin Ωt + k1 cos Ωt


i′ = −Ωi1 sin Ωt−Ωk1 cos Ωt = −Ωk
j′ = 0
k′ = Ωi1 cos Ωt−Ωk1 sin Ωt = Ωi

(9)

in which i1, j1 and k1 are the unit vectors of fixed coordinate system, then:

.
rO1M = (x + ub)i′ +

.
ubi + wk′ +

.
wk

=
(
wΩ +

.
ub
)
i +
( .
w− xΩ− ubΩ

)
k

(10)

The kinetic energy of the plate can be derived as:

TM = 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0 ρ

.
rO1M

2dxdydz

= 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0 ρ

 .
ub

2 + w2Ω2 + 2
.
ubwΩ +

(
∂w
∂t

)2
+

(ub + x)2Ω2 − 2 ∂w
∂t (ub + x)Ω

dxdydz
(11)

Based on the Kirchhoff plate theory [38], the constitutive relations are:
εx = − ∂2w

∂x2 z
εy = − ∂2w

∂y2 z

γxy = −2 ∂2w
∂x∂y z

,


σx = − Ez

1−υ2

(
∂2w
∂x2 + υ ∂2w

∂y2

)
σy = − Ez

1−υ2

(
∂2w
∂y2 + υ ∂2w

∂x2

)
τxy = − Ez

1+υ
∂2w
∂x∂y

(12)

The deformation potential energy of the plate is given by:

U1 = 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0

(
σxεx + σyεy + τxyγxy

)
dxdydz

= 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0 Dz2


(

∂2w
∂x2

)2
+
(

∂2w
∂y2

)2
+

2υ
(

∂2w
∂x2

)(
∂2w
∂y2

)
+ 2(1− υ)

(
∂2w
∂x∂y

)2

dxdydz
(13)

where D = E/(1 − υ2).
When the instantaneous coordinates of an arbitrary point are taken as (x, y), the

centrifugal force per unit volume of the plate is:

F1 = ρΩ2(ub + x) (14)

The inertia force per unit volume of the plate is:

F2 = ρ
..
ub (15)

According to the d’Alembert principle, the total force caused by rotation is:

F3 = ρΩ2(ub + x)− ρ
..
ub (16)

The corresponding displacement can be calculated by:

ds− dx =

√
(dx)2 +

(
∂w
∂x

dx
)2
− dx =

(
∂w
∂x dx

)2√
(dx)2 +

(
∂w
∂x dx

)2
+ dx

≈ 1
2

(
∂w
∂x

)2
dx (17)
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The work that is done by F3 is:

U2 =
∫ a

x
F3(ds− dx) =

1
2

[
ρΩ2ub(a− x) +

1
2

ρΩ2
(

a2 − x2
)
− ρ

..
ub(a− x)

](
∂w
∂x

)2
(18)

The centrifugal potential energy of the plate is stated as:

U2 =
∫ h/2
−h/2

∫ b
0

∫ a
0 U2dxdydz

= 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0

{[
ρΩ2ub(a− x) + 1

2 ρΩ2(a2 − x2)
−ρ

..
ub(a− x)

](
∂w
∂x

)2
}

dxdydz
(19)

As a result, the total potential energy of the plate is:

UM = 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0 D


(

∂2w
∂x2 + ∂2w

∂y2

)2
−

2(1− υ)

[
∂2w
∂x2

∂2w
∂y2 −

(
∂2w
∂x∂y

)2
]
z2dxdydz

+ 1
2

∫ h/2
−h/2

∫ b
0

∫ a
0

{[ 1
2 ρΩ2(a2 − x2)+
ρ
(
Ω2ub −

..
ub
)
(a− x)

](
∂w
∂x

)2
}

dxdydz

(20)

The virtual work done by the rub-impact force is:

δWD = q(x, y, t)δw (21)

where
q(x, y, t) = µFD(t)δ(x− xD)δ(y− yD) (22)

in which xD and yD are the rotating coordinates of an arbitrary rub-impact point D.

2.3. Governing Equations

Applying Hamilton’s principle:

δ
∫ t1

t0

(TM −UM)dt +
∫ t1

t0

∫ a

0

∫ b

0
δWDdxdydt = 0 (23)

and substituting Equations (11), (20) and (21) into Equation (23) lead to the governing
equation of motion, expressed as:∫ h/2

−h/2

[
ρ
(
wΩ2 +

..
w
)]

dz−
∫ h/2
−h/2

{
ρ(a− x)

[
Ω2( a+x

2 + ub
)
− ..

ub
]

∂2w
∂x2

}
dz

−
∫ h/2
−h/2

{
D
[

∂4w
∂x4 + ∂4w

∂y4 + υ
(

∂4w
∂x2∂y2 +

∂4w
∂y2∂x2

)
+ 2(1− υ) ∂4w

∂x∂y∂x∂y

]
z2
}

dz
= −q(x, y, t)

(24)

When the rub-impact and base excitation are ignored, Equation (30) can be given by∫ h/2
−h/2

[
ρ
(
wΩ2 +

..
w
)]

dz− 1
2

∫ h/2
−h/2

[
ρΩ2(a2 − x2) ∂2w

∂x2

]
dz

−
∫ h/2
−h/2

{
D
[

∂4w
∂x4 + ∂4w

∂y4 + υ
(

∂4w
∂x2∂y2 +

∂4w
∂y2∂x2

)
+ 2(1− υ) ∂2w

∂x∂y
∂2w
∂x∂y

]
z2
}

dz = 0
(25)

The deformation is assumed as:

w(x, y, t) = W(x, y) sin(ωt + φ) (26)

where:

w(x, y) =
M

∑
m=1

N

∑
n=1

Amnφm(x)φn(y) (27)
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in which [39]:

φm(x) = cosh(αmx)− cos(αmx)− cm[sinh(αmx)− sin(αmx)] (28){
ϕ1(y) = 1, ϕ2(y) = 1− 2y

b
ϕn(y) = cosh(βny) + cos(βny)− dn[sinh(βny) + sin(βny)]

(29)

where 
cosh(αma) cos(αma) = −1
cm = cos(αma)+cosh(αma)

sin(αma)+sinh(αma)
m = 1, 2, · · · , M

,


cosh(βnb) cos(βnb) = 1
dn = cos(βnb)−cosh(βnb)

sin(βnb)−sinh(βnb)
n = 3, 4, · · · , N

(30)

Substituting Equations (32) and (33) into Equation (31), the Galerkin method leads to

∫ h/2

−h/2

∫ b

0

∫ a

0



D(1− υ)

[
−2

M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm

′(x)ϕn
′(y)φi

′(x)ϕj
′(y)

]
z2

−Dυz2


M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm ′′ (x)ϕn(y)φi(x)ϕj

′′ (y)

+
M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm(x)ϕn ′′ (y)φi(x)′′ ϕj(y)


+ρ
(
Ω2 −ω2) M

∑
m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm(x)ϕn(y)φi(x)ϕj(y)

− 1
2 ρΩ2(a2 − x2) M

∑
m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm

′(x)ϕn(y)ϕi
′(x)ϕj(y)

−Dz2


M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm ′′ (x)ϕn(y)φi(x)′′ ϕj(y)

+
M
∑

m=1

N
∑

n=1

M
∑

i=1

N
∑

j=1
Amn ϕm(x)ϕn ′′ (y)φi(x)ϕj

′′ (y)





dxdydz = 0 (31)

Eliminating the coefficient Amn, then:[
E
∫ h/2
−h/2 ρΩ2dz− (H + G− 2K)

∫ h/2
−h/2 Dυz2dz

−(I + F + 2K)
∫ h/2
−h/2 Dz2dz− Ω2

2 L
∫ h/2
−h/2 ρdz

]
−ω2E

∫ h/2

−h/2
ρdz = 0 (32)

where, E, F, G, H, I, K and L are in the same form of:

X =



X11 · · · X1j · · · X1(M×N)
...

. . .
...

...
Xi1 · · · Xij · · · Xi(M×N)

...
...

. . .
...

X(M×N)1 · · · X(M×N)j · · · X(M×N)(M×N)


(33)

in which Xij is the corresponding element in each matrix, determined by:

E[(i−1)N+j][(m−1)N+n] =
∫ b

0

∫ a
0 φm(x)ϕn(y)φi(x)ϕj(y)dxdy

F[(i−1)N+j][(m−1)N+n] =
∫ b

0

∫ a
0 φm ′′ (x)ϕn(y)φi

′′ (x)ϕj(y)dxdy
G[(i−1)N+j][(m−1)N+n] =

∫ b
0

∫ a
0 φm(x)ϕn ′′ (y)φi

′′ (x)ϕj(y)dxdy
H[(i−1)N+j][(m−1)N+n] =

∫ b
0

∫ a
0 φm ′′ (x)ϕn(y)φi(x)ϕj

′′ (y)dxdy
I[(i−1)N+j][(m−1)N+n] =

∫ b
0

∫ a
0 φm(x)ϕn ′′ (y)φi(x)ϕj

′′ (y)dxdy
K[(i−1)N+j][(m−1)N+n] =

∫ b
0

∫ a
0 φm

′(x)ϕn
′(y)φi

′(x)ϕj
′(y)dxdy

L[(i−1)N+j][(m−1)N+n] =
∫ b

0

∫ a
0

(
a2 − x2)φm

′(x)ϕn(y)φi
′(x)ϕj(y)dxdy

(34)
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The natural frequencies ωmn and coefficients Amn can be obtained by solving the
standard eigenvalue problem in Equation (34).

2.4. Analytic Solution for Forced Vibration

The analytic solution for Equation (30) is assumed as:

w(x, y, t) =
M

∑
m=1

N

∑
n=1

Bmn(t)Wmn(x, y) (35)

where
Wmn(x, y) = Amnφm(x)ϕn(y) (36)

Applying the free vibration theory and substituting Equation (36) into Equation (30)
leads to:

d2Bmn(t)
dt2 + ω2

mnBmn(t) +
[ ..
ub(t)−Ω2ub(t)

] Cmn

Mmn
Bmn(t) =

Pmn(t)
Mmn

(37)

in which 
Pmn =

∫ b
0

∫ a
0 q(x, y, t)Wmn(x, y)dxdy

Mmn =
∫ h/2
−h/2

∫ b
0

∫ a
0 ρW2

mn(x, y)dxdydz

Cmn =
∫ h/2
−h/2

∫ b
0

∫ a
0 ρ(a− x) ∂2Wmn(x,y)

∂x2 Wmn(x, y)dxdydz

(38)

The base excitation and rub-impact are considered as first-order small quantities in
the form of: {

ub = εu0 sin(ω0T0)
q(x, y, t) = εq(x, y, t)

(39)

The response is set as a second-order small quantity, expressed as:

Bmn(T0, T1) = εB1
mn(T0, T1) + ε2B2

mn(T0, T1) (40)

Substituting Equations (38) and (39) into Equation (37), the first-order equation can be
derived as:

∂2B1
mn(t)

∂T2
0

+ ω2
mnB1

mn(t) =
Pmn(t)
Mmn

(41)

Based on the forced vibration theory, the analytic solution for Equation (41) can be
given by:

B1
mn(x, y, t) = amn sin(ωmnt) + bmn cos(ωmnt) + µ

Wmn(xD ,yD)
Mmn

a0
ω2

mn

+µ
Wmn(xD ,yD)

Mmn

∞
∑

k=1

[
ak

ω2
mn−ω2

d
cos(ωdt) + bk

ω2
mn−ω2

d
sin(ωdt)

] (42)

in which ξ = a means that the rub-impact occurs at the edge of the plate; amn and bmn are
constants determined by initial conditions; and ξd = 2kξ/Tc is the rub-impact frequency.

Similarly, substituting (45) and (46) into Equation (43), the second-order equation can
be obtained as:

∂2B2
mn(t)

∂T2
0

+ ω2
mnB2

mn(t) = −2
∂2B1

mn(t)
∂T0∂T1

+
[
Ω2ub(t)−

..
ub(t)

] Cmn

Mmn
B1

mn(t) (43)

Then, eliminating the secular term of Equation (43), namely

∂2B1
mn(t)

∂T0∂T1
= 0 (44)
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gives:
∂2B2

mn(t)
∂T2

0
+ ω2

mnB2
mn(t) =

[
Ω2ub(t)−

..
ub(t)

] Cmn

Mmn
B1

mn(t) (45)

Based on the principle of linear superposition, the analytic solution for Equation (45)
can be written as:

B2
mn(t) = AA1

mn cos[(ω0 −ωmn)t]− AA2
mn cos[(ω0 + ωmn)t]

+BB1
mn sin[(ω0 + ωmn)t] + BB2

mn sin[(ω0 −ωmn)t]

+CC1
mn

∞
∑

k=1

{
ak

ω2
mn−ω2

d
sin[(ω0 + ωd)t]

}
+ CC2

mn
∞
∑

k=1

{
ak

ω2
mn−ω2

d
sin[(ω0 −ωd)t]

}
+DD1

mn
∞
∑

k=1

{
bk

ω2
mn−ω2

d
cos[(ω0 −ωd)t]

}
− DD2

mn

{
bk

ω2
mn−ω2

d
cos[(ω0 + ωmn)t]

} (46)

where: 

AA1/2
mn = u0

(
Ω2 + ω0

2) Cmn
Mmn

amn
2

1
ωmn2−(ω0−/+ωmn)

2

BB1/2
mn = u0

(
Ω2 + ω0

2) Cmn
Mmn

bmn
2

1
ωmn2−(ω0+/−ωmn)

2

CC1/2
mn = u0

(
Ω2 + ω0

2) Cmn
Mmn

µSmn
2Mmn

1
ωmn2−(ω0+/−ωmn)

2

DD1/2
mn = u0

(
Ω2 + ω0

2) Cmn
Mmn

µSmn
2Mmn

1
ωmn2−(ω0−/+ωmn)

2

(47)

Consequently, the analytical solution for forced vibration is:

w(x, y, t) =
M

∑
m=1

N

∑
n=1

[
B1

mn(t)Wmn(x, y) + B2
mn(t)Wmn(x, y)

]
(48)

3. Results and Discussion
3.1. Validation Study

As there are no existing solutions available in the open literature for the problem
being considered, the free vibrations are investigated to validate the accuracy of the present
analysis. In Table 1, the results given by Yoo [40] and Zhao [41] are provided for a direct
comparison with the present results. The material and structural parameters in this example
are plate length a = 1 m, width b = 1 m, thickness h = 0.01 m, Young’s modulus E = 71 GPa,
mass density ρ = 2750 kg/m3, and Poisson’s ratio υ = 0.3.

Table 1. Comparison of first five natural frequencies with different rotating speeds.

Dimensionless
Rotating Speed Frequency Present Yoo [40] Zhao [41]

γ = 1

1st 3.478 3.516 3.639
2nd 8.514 8.533 8.571
3rd 21.325 21.520 21.469
4th 27.208 27.353 27.194
5th 31.013 31.206 31.068

γ = 2

1st 3.493 3.596 4.101
2nd 8.517 8.551 8.755
3rd 21.388 21.865 21.877
4th 27.214 27.384 27.284
5th 31.062 31.477 31.379

As can be observed from Table 1, the present results agree well with those in the
literature. The errors among those results are very small, which indicates that the proposed
model is sufficiently accurate.
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3.2. Forced Vibration Analysis

In this section, an analytical analysis is performed on the rotating FGM plate under rub-
impact and base foundation. A detailed parametric study in graphical form is conducted to
investigate the influence of volume fraction index and rotating speed on frequency field and
the effects of base excitation, rub-impact and plate size on displacement fields of the FGM
structure, which is made of Al and Al2O3. Unless otherwise stated, the material parameters
of the plate are E1 = 70,000 MPa, ν1 = 0.317756, ρ1 = 2707 kg/m−3, E2 = 380,000 MPa, ν2 =
0.31, ρ2 = 3800 kg/m−3, n = 0.1; the dimension parameters are a = 1 m, b = 0.3 m, and h =
0.01 m; and the load parameters are Tc = 2π/Ω, tp = 0.01 Tc, Fmax = 6400 N, µ = 0.3, ξ = a, η
= b/2, ω0 = Ω = 300 rad/s, u0 = 0.1.

The forced vibration responses of the rotating FGM plate are presented in Figure 3.
It can be seen that the vibration responses along the plate length direction have obvious
irregularity, while those along plate direction are relatively uniform. In addition, it is found
that the time–domain response of the FGM plate at the rubbing point (a, b/2) is periodic,
while the main frequencies of its responses are in the low frequency region.
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Figure 4 plots the variations of the forced vibration responses of the rotating FGM
plate for different power-law indices. The results show that increasing the power-law index
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leads to a rise in the vibration amplitudes, while the main frequencies of the responses are
less affected by the power-law index. This implies that more Al2O3 in the FGM plate can
enhance the structural stiffness. Moreover, it can be found from Figures 3a and 4a,b that the
vibration differences along the plate length direction decrease significantly with an increase
in the power-law index. This means a rise in the power-law index tends to improve the
vibration stationarity of the rotating FGM plate.
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Figure 5 plots the variations in the forced vibration responses of the rotating FGM
plate for different base excitation amplitudes. One can find that increasing base excitation
amplitudes tends to achieve higher vibration amplitudes. Besides, the base excitation can
cause a high frequency vibration of the rotating FGM plate, especially for 1000 Hz and
2400 Hz. This indicates that decreasing the foundation vibration plays an important role
in achieving better mechanical performance. By comparing the vibration modes from
Figures 3 and 5, it can be seen that the vibration differences along the plate width direction
decrease with an increase in base excitation amplitudes.
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In Figure 6, the variations of the forced vibration responses of the rotating FGM
plate for different rub-impact locations are presented where u0 = 10. It is obvious that the
vibration amplitudes of the FGM plate for different rub-impact locations differ very little.
However, the vibration amplitudes corresponding to 1000 Hz increase considerably when
the rub-impact location is close to the midpoint of the plate edge. This shows that the
high-frequency vibrations may occur in the case of the rub-impact course near the midpoint
of the plate edge. Besides, the vibration differences along the plate width direction increase
markedly as the rub-impact location approaches the midpoint the of plate edge. Due to the
vibration differences along the width direction, the two-dimensional plate model has more
advantages than a one-dimensional beam model.
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Figure 7 illustrates the variations of the forced vibration responses of the rotating
FGM plate for different friction coefficients. It can be seen that the main frequencies of the
responses and the vibration modes change little for the different friction coefficients. On the
contrary, the vibration amplitudes increase steadily with the increase in friction coefficients,
which indicates that a higher friction coefficient would exacerbate the vibrations caused by
rub-impact. For the purpose of preventing damage, we can decrease the friction by reducing
the surface roughness between the tip of the plate and the casing during production.
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Figure 8 illustrates the variations in the forced vibration responses of the rotating FGM
plate for different plate width-to-length ratios in which the plate length remains constant.
One can see that the vibration amplitudes decrease obviously with the increase of the plate
width-to-length ratio. Therefore, the FGM plate with a higher plate width-to-length ratio
should be designed to reduce vibrations in actual engineering. Moreover, it can be told
from the vibration modes that the vibration fluctuation along the plate length direction
decreases with an increase in the plate width-to-length ratio. This implies that a higher
plate width-to-length ratio can improve the vibration stationarity of a rotating FGM plate.
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4. Conclusions

By employing the Kirchhoff plate theory, this paper examines a rotating FGM plate
subjected to rub-impact force and base excitation. The equations of motion are derived
by Hamilton’s principle. Then, the analytical solutions are obtained by adopting the
Galerkin method and the small parameter perturbation method. Furthermore, the effects
of the power-law index, base excitation amplitude, rub-impact location, friction coefficient
and plate width-to-length ratio on vibration characteristics of the rotating FGM plate are
examined in detail.

The results show: (1) decreasing the power-law index leads to a decline in the vibration
amplitudes, which means that setting more Al2O3 in the FGM plate can enhance the
structural stiffness; (2) the base excitation can cause larger vibration amplitudes and the
generated vibrations are almost in the high frequency region; (3) the vibration amplitude
corresponding to high frequency increases markedly when the rub-impact location is
close to the midpoint of the plate edge; (4) a greater friction coefficient would exacerbate
the vibrations caused by rub-impact; (5) and FGM plates with larger width-to-length
ratios should be designed to reduce vibration and improve vibration stationarity in actual
engineering.
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