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Abstract: In this study, we evaluated the temperature- and frequency-dependent ferroelectric charac-
teristics of TiN/undoped HfO2/TiN metal-ferroelectric-metal (MFM) capacitors in which an undoped
HfO2 film was deposited through atomic layer deposition (ALD). Successful ferroelectric characteris-
tics were achieved after postdeposition annealing at 650 ◦C, which exhibited a remanent polarization
of 8 µC/cm2 and a coercive electric field of 1.6 MV/cm at 25 ◦C (room temperature). The ferroelectric
property was maintained at 200 ◦C and decreased as the temperature increased. The ferroelectric
property was completely lost above 320 ◦C and fully recovered after cooling. The frequency depen-
dency was evaluated by bias-dependent capacitance–voltage and s-parameter measurements, which
indicated that the ferroelectric property was maintained up to several hundred MHz. This study
reveals the ultimate limitations of the application of an undoped HfO2 MFM capacitor.

Keywords: ferroelectric; undoped HfO2; metal-ferroelectric-metal; temperature; frequency; atomic
layer deposition

1. Introduction

Ferroelectric thin films have promising potential for various applications, including
nonvolatile memories, energy-related devices, and negative capacitance field-effect tran-
sistors [1–5]. Although various ferroelectric materials, such as P(VDF-TrFE), Pb(Zr,Ti)O3
(PZT), and BaTiO3, have previously been intensively studied [2,5–9], HfO2 thin films have
received significant attention recently owing to their excellent properties, such as high
dielectric constant (20–25) and wide energy bandgap (~5.68 eV). Moreover, HfO2 thin films
can be deposited using a complementary metal–oxide–semiconductor (CMOS) compatible
atomic layer deposition (ALD) process [10–14]. Because ALD is based on self-limiting
reactions leading to layer-by-layer growth, it exhibits a large-area uniformity and signifi-
cant conformability, offering atomic-scale controllability [15]. The ferroelectric properties
of HfO2 thin films have been reported with doping processes using various dopant ele-
ments, such as ZrO, Gd, Si, Al, Y, Sr, and La [4,5,16–19]. It has also been reported that
the ferroelectric property can be achieved in undoped HfO2 films without the doping
process [20–23]. Considering the deposition process, ALD doped HfO2 films require a
higher deposition temperature than undoped HfO2 films to achieve the ferroelectric prop-
erty [12,24]. Therefore, undoped HfO2 films have advantages of a lower temperature
process and easy implementation without a delicate doping process [12,24,25].

Because of the mechanical dipole moment of ferroelectric materials, it is useful to
determine the maximum temperature and frequency ranges to maintain the ferroelectric
property of the MFM capacitor. Although various studies have been reported for different
ferroelectric materials in a limited range of temperature and frequency [3,25–32], no study
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has been conducted with a MFM capacitor based on undoped HfO2. In this study, the
ferroelectric property of an ALD-deposited undoped HfO2 thin film was successfully
achieved via a postdeposition annealing process. Temperature-dependent polarization
and frequency-dependent capacitance characteristics were measured up to >300 ◦C and
GHz range, respectively, to determine the fundamental limitations of the ferroelectricity of
TiN/undoped HfO2/TiN MFM capacitors.

2. Device Structure and Fabrication

TiN/undoped HfO2/TiN MFM capacitors were fabricated on a quartz substrate to
eliminate the dielectric loss during high-frequency measurements. TiN electrodes play an
important role in undoped HfO2 films. Unlike doped HfO2 films, the N impurity provided
by metal nitrides is responsible for achieving the ferroelectric properties of undoped
HfO2 films [33]. Figure 1a,b shows the top and cross-sectional schematics of the MFM
capacitor, respectively, where a ground–signal–ground (GSG) pattern was employed for
the s-parameter measurement.
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Figure 1. (a) Top view and (b) cross-sectional schematic along a–a’ of TiN/undoped HfO2/TiN MFM
capacitor fabricated on a quartz substrate.

The fabrication process of the device was as follows. After cleaning the substrates,
a TiN bottom electrode with a thickness of 100 nm was deposited via RF sputtering. The
films were deposited at a process pressure of 1 mTorr and an RF power of 600 W in Ar/N2
(10/25 sccm) ambient at two different temperatures, namely 25 ◦C (room temperature) and
250 ◦C. The sheet resistance of the TiN films deposited at room temperature and 250 ◦C
were 9.89 and 9.33 Ω/sq, respectively. After patterning the bottom electrode, the TiN layer
was etched using a fluorine-based plasma etching process. A 10 nm thick undoped HfO2
film was deposited via ALD at 220 ◦C with a TEMA-Hf precursor and O3 at a concentration
of 100 gm−3. The deposition cycle consisted of a TEMA-Hf pulse time of 1 s, purge time of
20 s, O3 pulse time of 0.5 s, and purge time of 15 s. The growth per cycle was 1 Å/cycle,
and the refractive index (RI) was 2.01. A TiN top electrode with a thickness of 100 nm was
deposited on the undoped HfO2 film using RF sputtering. The top electrode was patterned
and etched to complete the device structure. The diameter of the active region of the MFM
capacitor was 100 µm. The fabricated MFM capacitors were annealed via rapid thermal
annealing (RTA) at 650 ◦C for 1 min in a N2 atmosphere to achieve ferroelectric property. It
was observed in our previous experiments that the optimum RTA temperature was 650 ◦C;
the ferroelectric property was slightly weaker with RTA at 600 ◦C and noticeably reduced
with RTA at 700 ◦C.

3. Results and Discussion
3.1. Ferroelectric Characteristics of TiN/Undoped HfO2/TiN MFM Capacitor

The polarization–electric field (P–E) characteristics of fabricated TiN/undoped
HfO2/TiN MFM capacitors measured at 100 kHz before and after RTA are shown in
Figure 2a,b, respectively. Although no hysteresis in the P–E characteristics was observed
before RTA, successful ferroelectric property was achieved after RTA. No significant differ-
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ence was observed in the P–E characteristics as a function of the deposition temperature
for the TiN electrodes. When both the top and bottom electrodes were deposited at room
temperature, the remanent polarization (Pr) was 6.8 µC/cm2, and the coercive field (Ec) was
1.46 MV/cm. When the electrodes were deposited at 250 ◦C, the values slightly decreased:
Pr = 6.15 µC/cm2 and Ec = 1.2 MV/cm.
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Figure 2. Polarization–electric field (P–E) characteristics of TiN/undoped HfO2/TiN MFM capacitors 
before (a) and after (b) RTA with different TiN deposition temperature conditions. 
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Figure 2. Polarization–electric field (P–E) characteristics of TiN/undoped HfO2/TiN MFM capacitors
before (a) and after (b) RTA with different TiN deposition temperature conditions.

The permittivity–voltage characteristics of fabricated MFM capacitors were derived
from the capacitance–voltage (C–V) characteristics measured at different frequencies. Fig-
ure 3 shows the frequency-dependent permittivity versus voltage characteristics for dif-
ferent samples; Figure 3d compares the maximum permittivity values as a function of
the measurement frequency. The permittivity decreased as the frequency increased for
all samples. The permittivity is determined by free dipoles oscillating in the presence of
an alternating electric field. As the frequency increases, the dipoles begin to lag behind
the electric field change, which decreases the permittivity [32]. As shown in Figure 3, the
MFM capacitor with only the top electrode deposited at 250 ◦C exhibited relatively higher
permittivity over the entire range of frequencies evaluated in this study. We speculate that
the difference in permittivity was associated with unbalanced strains caused by the bottom
and top TiN electrodes. Figure 4a,b shows the grazing-angle incident X-ray diffraction
(GIXRD) patterns measured for two samples prepared with different TiN electrode deposi-
tion temperatures of room temperature and 250 ◦C, respectively. It was observed that a
TiN (111) peak was dominant for the sample deposited at room temperature, whereas a
TiN (200) peak was dominant for the sample deposited at 250 ◦C. Because of the different
grain sizes and strains between TiN (111) and TiN (200) [34], the HfO2 film experienced
unbalanced strains when the top TiN electrode was deposited at 250 ◦C, whereas the bottom
TiN electrode was deposited at room temperature, which was responsible for the higher
permittivity. It was reported that the strain increased the permittivity of the dielectric thin
films [35,36]. It should be noted that new peaks appeared after the RTA process for both
samples, which corresponded to the noncentrosymmetric o-phases that are responsible for
the ferroelectric property [37].

The MFM capacitor with the bottom electrode deposited at room temperature and the
top electrode deposited at 250 ◦C was chosen for the following study.
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Figure 3. Frequency–dependent permittivity–voltage characteristics of MFM capacitors fabricated
with different deposition temperatures for TiN electrodes. (a) Top and bottom electrodes deposited at
room temperature, (b) bottom electrode at room temperature and top electrode at 250 ◦C, and (c) top
and bottom electrodes at 250 ◦C. (d) Comparison of the maximum permittivity values for devices
(a–c) as a function of measurement frequency.
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Figure 4. GIXRD patterns measured before and after the RTA process for TiN/undoped HfO2/TiN
samples with both top and bottom TiN electrodes deposited at (a) room temperature and (b) 250 ◦C.
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3.2. Temperature-Dependent Ferroelectric Property of TiN/Undoped HfO2/TiN MFM Capacitor

The temperature-dependent P–E characteristics of the MFM capacitor were evaluated
in the temperature range from room temperature to 320 ◦C. As shown in Figure 4a, the
ferroelectric hysteresis was maintained at 150 ◦C with a slight decrease in Ec and a slight
increase in the saturation polarization (Ps). The increased Ps is owing to the relaxation of
oxygen vacancies, which can significantly contribute to their recombination, improving
the ferroelectricity of the HfO2 film [28]. As shown in Figure 5a–c, significant deformation
in the polarization characteristics occurred at 200 ◦C and significant degradation was
observed at higher temperatures. The decreased Pr value at 200 ◦C is attributed to weaker
spontaneous polarization caused by partial transition from the ferroelectric phase to the
antiferroelectric phase and/or more defect formation at higher temperatures [28]. The
hysteresis disappeared at temperatures higher than ~310 ◦C. Notably, this is the highest
temperature at which an HfO2 MFM capacitor exhibits ferroelectric properties, although
special composite materials, such as BaTiO3:Sm2O3, can achieve even higher operation
temperature [3,28–31,38,39].
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Figure 5. P–E characteristics of fabricated TiN/undoped HfO2/TiN MFM capacitor as a function of 
temperature: (a) from room temperature to 200 °C, (b) from 200 °C to 280 °C, and (c) from 280 °C to 
320 °C. (d) Pr and Ec as functions of temperature. 
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Figure 5. P–E characteristics of fabricated TiN/undoped HfO2/TiN MFM capacitor as a function of
temperature: (a) from room temperature to 200 ◦C, (b) from 200 ◦C to 280 ◦C, and (c) from 280 ◦C to
320 ◦C. (d) Pr and Ec as functions of temperature.

3.3. Frequency-Dependent Ferroelectric Characteristics of TiN/Undoped HfO2/TiN
MFM Capacitor

To determine the frequency-dependent ferroelectric property of the fabricated MFM
capacitor, C–V and s-parameter measurements were employed. The butterfly-shaped
capacitance characteristics were measured at frequencies ranging from 10 kHz to 1 MHz,
as shown in Figure 6a. The maximum capacitance value (CMAX) was obtained at a bias
voltage of −0.5 V, whereas the minimum capacitance value (CMIN) was obtained at −3 V,
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and the capacitance tunability was defined by CMAX − CMIN [25]. Because conventional
C–V measurements cannot be used at very high frequencies, the equivalent circuit of
the MFM capacitor was extracted by s-parameter measurements; for high frequencies,
it is convenient to describe a given network in terms of waves rather than voltages or
currents [40]. The s-parameter measurements for the GSG pattern were performed in
a frequency ranging from 100 MHz to 10 GHz using a network analyzer with the bias
voltage conditions obtained for CMAX and CMIN at C–V measurements. The GSG-type
MFM structure shown in Figure 1a can be modeled as capacitors connected in series, and
the intrinsic ferroelectric capacitance can be extracted by converting the s-parameter into
ABCD parameters [25,27]. Zo in Equation (1) was 50 Ω in the s-parameter measurement.

Capacitance =
1

jω× imag(B)
, where B = Zo

(1 + S11)(1 + S22)− S12S21

2S21
(1)
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Figure 6. (a) Capacitance characteristics measured from 10 kHz to 1 MHz and (b) capacitance
tunability characteristics versus frequency.

The CMAX and CMIN values extracted from the C–V and s-parameter measurements are
plotted as functions of frequency in Figure 5b. Both the CMAX and CMIN values decreased
as the frequency increased, reducing the capacitance tunability. Nevertheless, a capacitance
tunability of up to several hundred MHz was achieved in this work. It is inferred that
fabricated TiN/undoped HfO2/TiN MFM capacitor can be utilized as a variable capacitor
up to hundreds of MHz, which can be used to explore a new field of undoped HfO2
MFM capacitors in microwave applications [41]. It is speculated that the rapid increase in
capacitance at frequencies near 10 GHz is attributed to the series LC resonance.

4. Conclusions

In this study, the ferroelectric properties of TiN/undoped HfO2/TiN MFM capacitors
were evaluated over a wide range of temperatures and frequencies. A 10 nm thick undoped
HfO2 film was deposited via ALD, which was annealed at 650 ◦C after forming the elec-
trodes. The fabricated MFM capacitor exhibited stable ferroelectric properties up to 150 ◦C
with negligible degradation. Although the ferroelectric property weakened at temperatures
higher than 200 ◦C, the hysteresis characteristics were maintained up to ~300 ◦C, which
is the highest temperature reported for ferroelectric films. The frequency limitation was
examined using C–V and s-parameter measurements, from which the capacitance tunability
was achieved up to several hundred MHz. This study reveals the ultimate application
conditions for a ferroelectric undoped HfO2 MFM capacitor.
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