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Abstract: Ti-based alloys are an important class of materials suitable especially for medical appli-
cations, but they are also used in the industrial sector. Due to their low tribological properties it is
necessary to find optimal technologies and alloying elements in order to develop new alloys with
improved properties. In this paper, a study on the influence of sintering treatments on the final
properties of a titanium alloy is presented. The alloy of interest was obtained using the powders in
following weight ratio: 80% wt Ti, 8% wt Mn, 3% wt Sn, 6% wt Aluminix123, 2% wt Zr and 1% wt
graphite. Two sintering methods were used, namely two-step sintering (TSS) and multiple-step
sintering (MSS), as alternatives to conventional sintering which uses a single sintering dwell time.
Evolution of sample morphology, composition and crystalline structure with sintering method was
evidenced. The lower values for the friction coefficient and for the wear rate was attained in the case
of the sample obtained by TSS.

Keywords: titanium alloy; two-step sintering (TSS); multiple-step sintering (MSS); crystalline
structure; wear behavior; P/M composites; eco-friendly parts

1. Introduction

Titanium has some spectacular properties, such as high toughness, low density and
good corrosion resistance, making it attractive to be used most frequently in the biomedical
field [1–3]. However, despite the very good physical and mechanical properties of titanium,
the reason for its diminished area of applicability in the field of engineering is the high
cost of titanium as a pure metal [4] and the difficult handling conditions, due to fine
titanium powder flammability in contact with air [5] and low tribological properties [6].
For these reasons, titanium-based alloys are used in industrial applications [7], such as
in the aerospace [8–11], automotive [12], chemical and petrochemical industries [13], as
well as electronics and electrical engineering [14]. For automotive components, Ti-based
alloys can be used as connecting rods, segments, part of the engine, chassis, pistons, valves,
cranks and shafts [15–18].

Some researchers have found that the use of TiH2 powders can improve sintered
density, induce microstructure modification, and reduce the oxygen content and cost of
raw materials, compared with Ti powders [19]. Therefore, solutions were sought in the
production of titanium alloys using cheaper manufacturing technologies from titanium
compounds (TiO2, TiH2) [20].

However, the high friction coefficient and lower wear resistance than steel and Ni
-based alloys have been a major drawback to its practical applications [21,22]. In this
context, the addition of small quantities of metals, such as: Al, Sn, Mn and Fe, leads to
improved wear resistance, while reducing manufacturing costs. The most used way to
obtain titanium-based alloys at a lower cost is the PM technique [19,23–25]. The broad
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spectrum of PM processing routes provides advantages for the elaborated Ti-products:
classical sintering, laser forming, powder injection molding, spraying, rapid solidification,
mechanical alloying and vapor deposition [24–27].

Zr has chemical properties similar to Ti, and the formation of solid solutions causes the
hardening of the alloy, increases the corrosion resistance and improves biocompatibility [20,28].
Although zirconium (Zr) and tin (Sn) are recognized as neutral elements, Zr and Sn can
also improve the mechanical and corrosion properties when alloyed with Ti [29].

According to Lu et al. [30] the addition of a minor Mn element can remove Fe, being a
good substitute for it, and improves the corrosion resistance and creep resistance of alloys;
so, adding small percentages of Mn to a Ti-based alloy gives remarkable properties [31].
In [32], a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn was obtained by the water-
cooled copper crucible and was observed to have better mechanical strength compared
with other Ti-alloys but worse elongation.

The addition of aluminum in Ni-Ti alloy researched by Pavel Salvetr et al. showed the
decrease of porosity and improvement of corrosion resistance and hardness [33]. Aluminum
(Al) addition is due to its distinctive characteristics, such as low density (2.7 g/cm3)
and combination of moderate strength and high ductility, thermal conductivity, electric
conductivity, corrosion-resistance [34,35].

Previous studies concerning sintering procedure have shown that two-step (TSS)
and multiple-step (MSS) sintering techniques allow researchers to obtain homogeneous
compositions and microstructures of Ti-based alloys at low cost [36]. The processing of
titanium alloys is increasing in the industry, since these alloys present superior mechanical
properties to commercially pure titanium [37].

The selection of the processing methods is a critical factor that influences the mi-
crostructure, phase formation and its kinetics, as well as mechanical and tribological
properties of any material. Therefore, the final properties and suitability to different
applications can be tailored by fine-tuning of a selected production technique [38]. Pre-
vious research [39] has revealed that the sintering of titanium at temperatures between
1000–1150 ◦C did not lead to an accentuated densification of the final alloy nor any re-
markable differences of its final physical-mechanical properties. The main reason was
considered to be the relatively short dwell time on the sintering temperature.

Therefore, in order to optimize the sintering process of the titanium-based alloy, it was
considered of interest to use the sintering temperature of 1050 ◦C, with the increase of the
dwell time to 100 min. At the same time, in order to find more economical solutions in
terms of energy and the total cost of obtaining the titanium-based alloy, the two types of
treatments presented in this paper were chosen: TSS and MSS.

The stated goal of this research is to find cheaper technologies for obtaining titanium-
based alloy, in order to eliminate the main obstacle in the use of titanium, especially in
the automotive field, namely the high cost of pure titanium. Therefore, it acted in two
directions: (i) the use of titanium hydride as a raw material and (ii) the use of cheaper but
more modern technologies, compared to classical sintering.

Given the previous results obtained by adding small amounts of metallic elements that
allowed to obtain Ti-based alloys with improved final properties, we developed a Ti-based
alloy with the following chemical composition: 80% wt. TiH2, 8% wt. Mn, 3% wt. Sn,
6% wt. Alumix321, 2% wt. Zr and 1% wt. graphite. This Ti-based alloy was obtained by
PM and was subjected to two types of sintering processes: TSS and MSS. The main purpose
of this work was to identify the most appropriate sintering procedure which allows the
decrease of the manufacturing cost and the optimal properties for industrial applications,
respectively, for components in the automotive industry.

2. Materials and Experimental Methods
2.1. Material Selection

The following raw materials were used in the production procedure:
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- Micronic hydride powder (TiH2) with particle size min. 99.9% <63 µm, water atomized
produced by Chemetall GmbH (Frankfurt, Germany), as a basic metal matrix, having
titanium min. 95%, hydrogen min. 3.8%, small amounts of Si, Mg, Ni, Al, Fe max.
0.1% for each of them;

- Micronic manganese powder, type MN006020, Goodfellow company (Seoul, Korea)
provenience, purity 99.5% used for improving the wear behavior in friction conditions
due to its property to form a protective layer of oxide in contact with air [40];

- Tin micronic powder, SN006020, produced by Goodfellow company (Tokyo, Japan);
tin helps titanium in the grinding process and is a metal with low influence in the
transformation temperature; it also behaves very well in friction conditions [41];

- Zirconium nanometric powder, purchased from the Goodfellow company (Hamburg,
Germany). Zirconium has the same atomic structure as titanium, being considered
an excellent alloying element of titanium, with a good corrosion resistance and has
influence on reducing the transformation temperature [36,42];

- Graphite powder, 2N5 type from American Elements company (Los Angeles, Cali-
fornia, USA), having 99.5% purity and low friction coefficient. Due to Van der Waals
forces, graphite has a very good wear resistance, being an excellent dry lubricant,
these being the reasons why it was added in the composition of the alloy [43];

- Alumix powder Al 123, based on aluminum powder but with small amounts of 4.5%
wt. Cu, 1.31% wt. Mg, 0.5% wt. Si, 0.10% Fe, 0.05% wt. Sn 2%.

2.2. Experimental Procedure

The selected powders were blended and mechanically alloyed under Ar atmosphere
for 120 min using a planetary mono mill PULVERISETTE 6 from Fritsch, (Idar-Oberstein,
Germany) (grinding balls and bowl of silicon nitride). The weight ratio between the
components were: 80%wt. TiH2, 8%wt. Mn, 3%wt. Sn, 6%wt. Alumix321, 2%wt. Zr and
1%wt. graphite.

In order to obtain the green parts (not sintered), two grams of mixture were weighted
using a Partner WPS 510/C/2 (Bucharest, Romania) balance, followed by the uniaxial
pressing process with a 600 MPa pressure, at room temperature and without lubrication.
For the compaction process, a X200Cr120 cylindrical die was used.

For the green compact’s densification, two sintering treatments were chosen, as shown
in Figure 1.

Figure 1. Sintering processes flow chart.

According to Figure 1, the TSS and MSS processes consist of:

- sintering in two steps (TSS), with heating up to 1050 ◦C as the first stage, dwell time
of 25 min and then the second sintering stage at 950 ◦C, with a dwell time of 75 min.



Materials 2022, 15, 2057 4 of 15

- sintering in multiple steps (MSS), the first sintering level being at 1050 ◦C, with a
dwell time of 25 min, the second sintering level at 1000 ◦C, with a dwell time of 20 min
and the third sintering level at 950 ◦C, with a dwell time of 55 min.

The heating rate was 6 ◦C/min for both sintering types. The green compacts were
heated into a Nabertherm L3/11/C6 (Bucharest, Romania) furnace in Ar atmosphere.

After sintering, the samples were cooled down to room temperature in the furnace.

2.3. Characterization Techniques

The morphology and elemental analysis of the precursor powders and sinters were
evidenced using a scanning electron microscope (SEM) from Hitachi (SU 8010, Mannheim,
Germany) coupled with energy dispersive X-ray spectroscopy (EDXS) (Oxford Instruments,
Mannheim, Germany). For this purpose, the TSS and MSS specimens were axial sectioned
using a Metkon Metacut-M 250 (Bucharest, Romania) cut-off machine and heat-mounted
in transparent resin, using a Metkon Metapress-A (Bucharest, Romania) mounting press.
After that, the samples were grinded with silicon carbide papers with the following grits:
80, 120, 240, 400, 800, 1200 and 2000. Finally, the samples were polished with a GALAXY
Polishing cloth PHI (Standard Service, Bucharest, Romania) and Dia-Duo 2 suspension
(Struers, Bucharest, Romania). For grinding and polishing processes, a Metkon Forcipol 2V
(Bucharest, Romania) machine was used.

In order to study the particle size distribution of powders, the dynamic laser scattering
(DLS) technique was used, and the equipment was a Brookhaven 90Plus by Brookhaven
Instruments Corporation (Wien, Austria). The samples were dispersed in water and
subjected to the ultrasonication for 5 min.

X-ray diffraction (XRD) was used to perform the crystalline phase analysis in the
sintered bodies (SmartLab from Rigaku, Neu-Isenburg, Germany).

Tribological tests were performed with a TRB 01-2541 tribometer, using TriboX soft-
ware (version 2.10, Peseux, Switzerland), while a Surtronic S25 Taylor Hobson Profilome-
ter (Leicester, UK) was used to measure the worn track section. In these cases, a steel
ball 440C was used as counterpart and titanium-based alloy samples with a diameter
of 12 mm obtained by TSS and MSS were used as tested parts. The testing conditions
were: testing type—linear, normal load—2N, amplitude—6 mm, testing distance—24 m,
atmosphere—air.

After the friction coefficient measurements, the worn track sections of the samples and
the balls used were analyzed using a Nikon MA 100 microscope (Amsterdam, The Nether-
lands) equipped with NIS ELEMENTS software (Documentation version, Amsterdam,
The Netherlands).

In order to calculate the wear rates, the worn track sections were measured using the
Surtronic 25+ profilometer (Leicester, UK), and the formula used is given by:

W =
Vloss
F·D (1)

where Vloss is the volumetric loss of the sample, F is the force applied and D is the total
sliding distance.

3. Experimental Results and Discussions
3.1. Precursor Powder Characterization

SEM images of precursor powders are shown in Figure 2a–d. Particles with irregular
and angular geometry that embody a great benefit during compaction step can be observed
for TiH2 and Mn powders (Figure 2a,b), while round-shape particles were evidenced in
Sn and Zr powders (Figure 2c,d). SEM image and EDXS spectrum of Alumix powder are
shown in Figure 3.
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Figure 2. Scanning electron microscopy (SEM) images of: (a) TiH2 powder, (b) Mn powder; (c) Sn
powder; (d) Zr powder.

Figure 3. Alumix powders: (a) SEM image and (b) energy-dispersive X-ray spectroscopy (EDXS) spectrum.

The hydrodynamic diameter of precursor mixture measured by DLS can be slightly
larger compared to that measured at SEM because DLS measures the diameter of a sphere,
which has the same average diffusion coefficient as the measured particle [44].

In Figure 4 and Table 1, the numerical particle size distribution of the mixture is shown.
As it can be seen from Figure 4 and Table 1, the particle size distribution is in the range

of 631–904 nm with the following structure: 4% of the total number of particles are around
631 nm, 14% of the total number of particles are around 690 nm, 70% of the total number of
particles are around 755 nm, 10% of the total number of particles are around 826 nm and
2% of the total number of particles are around 904 nm.
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Figure 4. Numerical particle size distribution of the mixture.

Table 1. Data of the particle size distribution of the mixture.

d (nm) G (d) C (d) d (nm) G (d) C (d) d (nm) G (d) C (d)

441.0 0 0 1183.7 0 100 3177.1 0 100
482.4 0 0 1294.8 0 100 3475.5 0 100
527.7 0 0 1416.4 0 100 3801.8 0 100
577.3 0 0 1549.5 0 100 4158.9 0 100
631.5 6 4 1695.0 0 100 4549.4 0 100
690.8 20 18 1854.1 0 100 4976.6 0 100
755.7 100 88 2028.3 0 100 5444.0 0 100
826.6 15 98 2218.7 0 100 5955.2 0 100
904.3 2 100 2427.1 0 100 6514.5 0 100
989.2 0 100 2655.0 0 100 7126.3 0 100

1082.1 0 100 2901.4 0 100 7795.5 0 100

The morphology of the mixture, as green pellet (after die compaction), is shown in
Figure 5a, and the EDXS analysis is presented in Figure 5b.

Figure 5. The mixture based on TiH2 powder: (a) SEM image and (b) EDXS spectrum.

In Figure 6, the dispersion mode of each component of the mixture is shown using
elemental mapping of green compact. The massive dispersion of titanium powder can be
observed, while Cu powder is uniformly dispersed in the mass of the mixture. However,
small agglomerations appear for Mn and Zr powders.
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Figure 6. Elemental mapping evidencing the component’s dispersion in the mixture: (a) Ti; (b) Mn;
(c) Al; (d) Sn; (e) Zr and (f) Cu.

3.2. Sintered Pellet Characterization

During the sintering process, the TiH2 precursor powder has suffered a dehydrogena-
tion process leading to Ti-based alloy. After sintering, the variations in sample height
and diameter during shrinkage were measured. In Figure 7, the graphical variations in
average values of Ti-based sample heights and diameters for the TSS (Figure 7a) and MSS
(Figure 7b) cycles are shown.

Figure 7a,b show that the shrinkage in the height and diameter of the specimens
present a downside slope. This behavior confirms the densification process of the Ti-
based alloys.

After compaction and sintering, the green and the final density of the parts have been
established by measuring their dimensional sizes and weighing them with an analytical
balance, and then, the density formula for cylindrical parts has been applied. In Figure 7c,
a comparative analysis between the values obtained after compaction and sintering density
for each sintering cycle is given

In Figure 8, the SEM microstructure and EDXS elemental mapping for the sample
obtained by TSS is shown.
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Figure 7. The final physical properties: (a) the average dimensions for green and sintering samples,
obtained by two-step sintering (TSS); (b) the average dimensions for green and sintering samples,
obtained by multiple-step sintering MSS; (c) green and final density versus sintering cycle (φgm—the
diameter measured after compaction, φsintm—the diameter measured after sintering, hgm—the
height of the parts after pressing and hsintm—the height of the parts measured after sintering).

Figure 8. SEM image and EDXS elemental mapping for the sample obtained by TSS: (a) SEM image
and overlayed maps, (b) Ti, (c) Zr, (d) C, (e) Al, (f) Sn and (g) Mn map distributions.

Figure 8 shows a relatively homogeneous distribution of Al in Ti matrix, while Zr, Mn
and Sn formed islands in Ti matrix. TiH2 dehydrogenation during the sintering treatment
is indicated by the presence of pure titanium grains in high ratio (over 87%; see Table 2).
The high carbon content at the surface is due to the exposure of the surface layer of the
parts to the environment when simultaneous oxidation and carburization of the surface
layer occur [45–47].
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Table 2. Weight percentage of different elements identified in the investigated samples.

Sample Sintering Procedure %Ti %Al %C %Mn %Zr %Sn %Others

TSS 87.1 6.5 2.4 3.0 0.7 - 0.3
MSS 86.1 6.1 2.5 4.0 0.8 - 0.5

In Figure 9, the SEM microstructure for the sample obtained by MSS is shown. The
sample exhibits a homogeneous distribution of all the alloying elements in the sample.
However, the porosity of the sample obtained by MSS seems to be higher compared to
those obtained by the TSS process, in agreement with density measurements.

Figure 9. SEM image and EDXS elemental mapping for the sample obtained by MSS: (a) SEM image
and overlayed maps, (b) Ti, (c) Mn, (d) Sn, (e) C, (f) Al and (g) Zr map distributions.

In Figure 10, the X-ray diffraction pattern (Figure 10a) and energy dispersive X-ray
analysis (EDX) (Figure 10b) of the sample obtained by TSS are presented.

For the sample obtained by MSS, in the Figure 11a, the X-ray diffraction (XRD) pattern
and in the Figure 11b, the energy-dispersive X-ray (EDX) spectrum are shown.

The results of EDX analysis are presented in Table 2. It is worth mentioning that
elements with atomic numbers higher than Be were detected using our Oxford Instrument
detector, and titanium was the major component in both samples.

Figure 10. Cont.
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Figure 10. The X-ray diffraction (XRD) (a) and energy dispersive X-ray analysis EDX (b) for sample
obtained by TSS.

The EDX analysis asserts the tendency of agglomeration for the alloying elements
in MSS sample and an increase of the carbon content due to the oxidation of the surface
layer and the appearance of carburizing and nitriding phenomena. The presence of a low
amount of Si is due to the contamination of the powder with the material of the grinding
bowl and balls (silicon nitride).

Using XRD analysis, crystalline phases present in the investigated samples were
evidenced. Thus, in the sample obtained by TSS (Figure 10a) three crystalline phases
ascribed to different titanium polymorphs were identified: cubic (space group F m—3 m),
titanium beta with cubic symmetry (space group I m—3 m), titanium alpha with hexagonal
symmetry (space group P 63/mmc). In addition to those, the characteristic reflexions of an
intermetallic compound were evidenced (Ti:Mn:Al = 1/1.56/0.44, space group P 63/mmc,
with hexagonal symmetry). The as-prepared sample showed a similar XRD pattern with the
sample obtained in a single sintering step at 1100 ◦C [47]. We can conclude that the decrease
in thermal treatment temperature from 1100 ◦C to 1050 ◦C and the addition of a second
step at 950 ◦C lead to the same crystalline phases in the sinters. However, a decrease in the
intensity of the characteristic peaks was evidenced, indicating a decrease in crystallite sizes
as was expected. For the sample obtained by MSS (Figure 11a), a supplementary crystalline
phase was identified beside the ones from TSS sample, namely titanium aluminum carbide
(3/1/2) with hexagonal symmetry and space group P 63/mmc.

3.3. Tribological Behavior of Titanium Based Alloy

In Table 3, the specific characteristics for the conducted wear tests for each sample
are shown.

Table 3. The values of the friction coefficients for both cases (TSS and MSS).

Sample Sintering Procedure Friction Coefficient
Min Max Average Value

TSS 0.094 0.578 0.545
MSS 0.089 0.604 0.567

As Table 3 shows, the value of the friction coefficient of the TSS sample (µ = 0.545) is
lower than the friction coefficient of the MSS sample (µ = 0.567), and this is probably due
to the higher density of the TSS sample (3.63 g/cm3) than the density of the MSS sample
(3.61 g/cm3).

The average of the penetration depth in the case of the sample obtained by the TSS
method is −9.596 × 10−3 µm, and for the sample obtained by MSS, the value of the
penetration depth is −9.607 × 10−3 µm.
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Figure 11. The X-ray diffraction (XRD) (a) and EDXS (b) for sample obtained by MSS.

In Figure 12, the worn track of the sample and the intensity profile are presented.
As it can be seen from the intensity profile (Figure 12c), the width of the worn track is
about 700 µm. Also, the profile shows the non-uniformity of the worn track, which is in
accordance with the penetration depth. The non-uniformity can be also seen in the 3D
image (Figure 12b).

Figure 13 presents the worn track and the intensity profile of the sample obtained
by MSS. The width of the sample is approximatively 650 µm, as it can be seen from the
intensity profile (Figure 13c).

In Figure 14, the worn track sections for both types of samples are presented.
Table 4 shows the values for worn track sections of the samples, the worn cap diameters

of the balls, sample wear rates and partner wear rates.
From Figure 14 and Table 4, it can be noted that the wear rate of the sample obtained

by MSS is higher compared to the other sample obtained by TSS. The same behavior can be
observed for the friction coefficient, which is higher for the sample obtained by MSS than
TSS. On the other hand, the MSS sample exhibited a lower partner wear rate than TSS. The
lowest values of the partner wear rate confirm that the material of the sample adheres to
the counter ball.

The samples obtained by the TSS process present better wear behavior in comparison
with the ones obtained by MSS process due to the highest values of the densities of TSS
samples leading to better mechanical properties. The average value of the wear coefficients
is similar and fit within the values indicated in other studies dedicated to titanium-based
alloy [22,48].



Materials 2022, 15, 2057 12 of 15

Figure 12. Sample obtained by TSS: (a) Worn track image (75X); (b) 3D image; (c) intensity profile.

Figure 13. Sample obtained by MSS: (a) Worn track image (75X); (b) 3D image; (c) intensity profile.

Table 4. The values for worn track sections and wear rates.

Sample Sintering Procedure Worn Track Section (µm2) Worn Cap Diameter (µm) Sample Wear Rate
(mm3·N−1·m−1)·10−5

Partner Wear Rate
(mm3·N−1·m−1)·10−5

TSS 14547 589.5 182 4.129
MSS 16281 588.2 202.7 4.093
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Figure 14. Worn track sections of the samples: obtained by: (a) TSS; (b) MSS.

4. Conclusions

A titanium-based alloy with superior wear behaviour has been obtained using two
sintering procedures. The structural analysis of the resulted sinters shows a relatively
homogeneous distribution of the alloying elements, as well as the simultaneous presence
of several crystalline phases. Two-step sintering or multiple-step sintering ensures lower
energy consumption, which is a great advantage from an economic point of view compared
to conventional sintering. The resulting alloy has a higher wear behavior than most
titanium alloys. Friction coefficient values of 0.545 for the TSS samples, and 0.567 for those
obtained by MSS, indicate a material with good antifriction properties. Due to its low
weight, compared to the most used materials in the automotive area and its resistance
to wear, the applicability of the as-obtained Ti-based alloy was configured in the field of
automotive components, particularly the manufacturing of a connecting rod.

This research opens future works which will be focused on the decreasing of the
particle size and to study the influence of different sintering treatments, such as spark
plasma sintering (SPS) and microwave sintering (MWS) on the properties of Ti-based alloy.
Also, Ti-based alloy as ultrafine powders can be used in the additive manufacturing (AM)
process, in order to produce parts for automotive industry.
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