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Abstract: The existence of chloride ions, sulfate ions, and vehicle dynamic loads may lead to a
shortened service life and premature failure of the road and bridge structures in northwestern China.
Immersed in a dual-salt solution while simultaneously applying cyclic flexural loads, the free chloride
ion concentration and erosion depth in concrete specimens were measured. The influence of the
sulfate concentration on the apparent surface chloride concentration (Cs) and apparent diffusion
coefficient (Dapp) was studied. An exponential model was used to fit the Cs, and the influence of
sulfate concentration on the Cs was analyzed. The result showed that cyclic loading and solution
concentration were two primary factors affecting chloride diffusion. Meanwhile, compared with the
emersion conditions, dynamic loading would induce significantly accelerated chloride ion penetration.
Under the coupling effect of sulfate and dynamic loading, as the sulfate concentration increased,
the chloride ion concentration and erosion depth were both decreased. The existence of sulfate ions
improved the chloride ion penetration resistance of concrete. The results provide insight in designing
concrete in regions where multiple salt ingression (sulfate and chloride) is a major durability issue of
the structures.

Keywords: concrete; dynamic flexural loading; cyclic; sulfate; chloride; ion transport; coupling function

1. Introduction

The existence of chloride ions and sulfate ions in salt lakes and saline soils in north-
western China leads to the corrosion and deterioration of road and bridge structures. For
structures in the north region, the large amount of usage of deicing salts and the existence of
dynamic vehicle loads in winter aggravate the structural damage, which, in turn, influence
the internal pores and microcracks of concrete, further affects the transport behavior of
chloride ions in concrete [1,2], and induces corrosion issues of the reinforcing steels during
the regular service life [3].

Most previous research has been focused on the influence of stress level on chloride
ion transport in existing concrete structures. Different stress levels have different influences
on the chloride ion permeability of cyclic, compressively loaded concrete [4]. Wang et al.
studied the water absorption rate of concrete after a compressive cyclic load and found that
the accumulated water content increased with the increase of load cycles and stress level [5].
Choinska et al. found that the permeability decreased slightly at a 20% stress level of cyclic
compression load, then reached the lowest at a 50–60% level, and increased significantly
at an 80% stress level [6]. A similar trend was also reported by Lee et al. [7]. Zhang et al.
found that the 28 d diffusion coefficient increased under repeated axial compression at
40% and 80% stress levels [8,9]. The influence of the compression load on the chloride
ion diffusion coefficient of ordinary concrete is more manifested than high performance
concrete [10].

Flexural loads have different influences on the chloride ion transport performance of
concrete [10]. Hrabova et al. studied reinforced beams under a long-term static loading state
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(three-point bending), coupled with a chloride ingress, and proposed potential limit states
in a sustainability design [11]. Gowripalan et al. concluded that the chloride ion erosion rate
in the tension zone is higher than that in the compression zone under a flexural load [12].
The presence of flexural loading increased the one-dimensional and two-dimensional
chloride ion diffusion coefficients of concrete [13]. The influence of dynamic bending
loads on the chloride ion transport behavior of concrete has been extensively investigated.
Under the coupling action of flexural cyclic loads and chloride ions, the service life of
concrete structures will be greatly shortened [14]. The chloride ion erosion of concrete
under the dynamic flexural cyclic load was more serious than that under the static load and
increases sharply with the increase of the dynamic bending stress level [15,16]. Jaffer et al.
found that the reinforcement corrosion products at the aggregate-paste interface under the
dynamic load were larger than those under the static load [17]. The existence of the load
will also affect the microstructure of the concrete. Cabeza et al. found the change of the
microstructure caused by the load affects the ion transport performance [18]. Gontar et al.
reported that cracking due to fatigue load could adversely affect both mechanical properties
and diffusive behavior [19]. Qi et al. obtained that the generation and propagation of
microcracks under the bending load led to the increase of chloride content in recycled
aggregate concrete [20].

As it is now, there are a few studies that applied cyclic loading coupled with multiple
salt ingress. Wang et al. investigated the transport properties of concrete under the cyclic
load and environmental factors [21]. However, the salt ingress soaking was done after the
cyclic load was applied on samples, which usually cannot reflect the authentic ingression
conditions. In this study, a patented testing scheme was designed and customized to
perform cyclic loading and salt ingress simultaneously. The influences of the bending cyclic
load and sulfate on chloride ion transport behavior was studied by analyzing chloride
ion distribution, erosion depth, apparent surface chloride ion concentration, and apparent
diffusion coefficient. The results will provide insight in designing concrete in regions where
multiple salt ingression (sulfate and chloride) is a major durability issue of the structures.

2. Materials and Methods
2.1. Materials

P.O 42.5 cement was purchased from the Jidong Cement Company (Xi’an, China). The
chemical compositions are shown in Table 1.

Table 1. Chemical composition of the cement.

Items CaO Al2O3 SiO2 Fe2O3 MgO Alkali Insoluble Loss on Ignition

Weight (%) 64.98 5.33 21.69 3.47 1.17 1.04 0.07 2.68

Concrete proportion and flexural strength are presented in Table 2. The fineness
modulus of the river sand was 2.82. The coarse aggregate with continuous gradation was
crushed by Shaanxi limestone, the size range was 5–20 mm, and the apparent density
was 2710 kg/m3. The clean tap water was used as mixing water. The sulfate ion in water
reducer was less than 0.01% by mass; thus, the sulfate ion in admixtures can be neglected.

Table 2. Proportion and flexural strength of the control samples.

W/C

Constituent (kg/m3)
Water

Reducer (%)
Slump (mm)

28d Flexural
Strength

(MPa)Cement Water Fine
Aggregate

Coarse
Aggregate

0.38 450 180 569 1211 0.3 40 6.87
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To mix the concrete, aggregates were added to the mixer and dry mixed for 60 s, and
then, cement was added during the next 30 s. Then water and superplasticizer were added,
respectively, during the next 30 s and mixed for another 90 s before the fresh concrete was
poured into 100 mm × 100 mm × 400 mm molds. All concrete specimens were kept at
room temperature for 24 h and then demolded and cured in a standard curing room with
20 ± 2 ◦C and >95% RH for 28 d. Before each cyclic loading, specimens were placed in an
oven at 50 ◦C for 24 h and then cooled to room temperature. The purpose was to drive out
excessive free water in the specimens and to better mimic the field condition.

2.2. Dynamic Flexural Loading and Erosion Setup

The 28 d flexural strength was used as the initial strength to calculate the loading
stress level. The mechanical erosion cyclic test device is shown in Figure 1. The loading
system was customized, based on the universal mechanical testing machine, and patented
(Chinese patent number: CN201819856U).
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Figure 1. Scheme of the flexural loading device with the erosion chamber.

The specimens with five surfaces were sealed with epoxy and plastic wrap; one side
was selected as the exposed surface to bear up the erosive solution as well as the cyclic
loading. The treated specimens were immersed in a container filled with a prepared erosive
solution (8% NaCl, 8% NaCl + 5% Na2SO4, 8% NaCl + 10% Na2SO4). The cyclic loading
was a sine wave function increasing from a stress level of 10% (Smin) to 60% (Smax), then
dropping back to 10% (as shown in Figure 2), with a 50 s full cycle (0.02 Hz). More details
can be found in the literature [22]. This cycle continued throughout the salt ingression. The
loading durations were 20 d, 40 d, 60 d, 80 d, and 100 d, respectively. Table 3 shows the
experimental program of the cyclic loading condition and salt ingression.

Table 3. Experimental program of the concrete chloride ion erosion under the coupling condition of
the cyclic load and dual salt.

Group
NaCl

Concentration
(%)

Na2SO4
Concentration

(%)

Dynamic Loading Level Loading
Frequency

(Hz)
Time (d)

Smin Smax

1 8 0 0 0 0 20–100
2 8 0 10% 60% 0.02 20–100
3 8 5 10% 60% 0.02 20–100
4 8 10 10% 60% 0.02 20–100
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Figure 2. Loading diagram.

The erosion cyclic specimens were removed and dried after the specified erosion age.
The room temperature (20 ± 3 ◦C) was controlled by air conditioning to avoid the influence
of temperature effect.

2.3. Chloride Transport Behavior Evaluation of Concrete
2.3.1. Free Chloride Concentration

The powder was collected from the exposed surface by a drill with a diameter of 5 mm.
The sampling depth was 3 mm, 6 mm, 9 mm, and 12 mm until it reached 30 mm. The
powder was sieved through a No. 100 (with 0.15 mm opening) sieve. The free chloride
concentration was evaluated according to ASTM D512-12 [23]. It should be noted that
when preparing samples for calculating chloride concentration (% concrete), large aggregate
particles were discarded to reduce the grinding time.

2.3.2. Chloride Erosion Depth

The corroded specimens were cut along the direction of the chloride ion erosion.
0.l mol/L silver nitrate solution was sprayed on the cross section of the specimens. A clear
brown and white boundary was formed after the silver nitrate solution was sprayed. It was
generally considered that the white area was the chloride erosion area and the brown area
was the chloride-free area. The chloride erosion depth is shown in Figure 3. The average
value of the five discoloration depths was considered as the chloride penetration depth of
the concrete.
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2.3.3. Apparent Diffusion Coefficient (Dapp) and Apparent Surface Chloride Ion
Concentration (Cs)

The surface chloride ion concentration is not a fixed value and will accumulate and
gradually reach stability with the extension of exposure erosion time. Wang et al. applied
Fick’s diffusion law to perform a regression analysis on the experimental data and deter-
mined the diffusion coefficient and surface chloride ion concentration [24]. Researchers
have studied the time-varying model of the chloride ion concentration on the concrete sur-
face. Song et al. found that the time-varying law of the surface chloride ion concentration
conforms to the power function model [25]. Kassir et al. found that the exponential model
was more consistent with the time-varying law of surface chloride ion concentration [26].
In this study, Fick’s law was adopted to describe the chloride ion concentration at different
depths for the concrete near the exposed surface.

A regression analysis of the experimental data on the chloride ion concentrations at
different depths of concrete under different conditions was carried out by applying Fick’s
law of diffusion. The apparent surface chloride ion concentration and apparent diffusion
coefficient were obtained at different erosion ages. The regression analysis was based on
Equation (1):

C = Cs·
(

1 − er f
x

2
√

Dappt

)
(1)

where C is the measured chloride ion concentration at depth x; the fitting parameters are Cs
and Dapp, based on the time-chloride penetration depth curve for each group.

2.4. Effect Coefficient K

Existences of sulfate ion and cyclic load have certain influence on the resistance of
concrete to the chloride ion penetration. The influence can be expressed by the influence
effect Coefficient K. Coefficient K was calculated in Equation (2):

K = Dx/Dtm (2)

where Dx is the chloride ion Dapp of concrete at a certain erosion age under the multifactor
coupling action; Dtm is the chloride ion Dapp of concrete at the same age under the con-
ditions of chloride immersion. From the equation, it can be seen that a K value over 1.0
indicates that the sulfate ion or/and cyclic load is facilitating chloride ion diffusion.

3. Results and Discussion
3.1. Concentration Distribution of Chloride Ion

The existence of load and sulfate ion did not change the general rule of chloride ion
distribution in concrete, and the distribution of chloride ion concentration in concrete still
complies with Fick’s second law (Figure 4). The chloride ion concentration at different
depths under cyclic loading increased significantly compared with the immersion test. At a
depth of 4.5 mm, the concentration of chloride was increased from 1.55 to 1.93 times while
at the depth of 7.5 mm, the increase was between 1.66 to 2.11 times. The concentration of
the chloride ion (100 d) at the depth of 7.5 mm was about 2.11 times of that without loading.

The concentration of chloride ions was relatively high under the load and dual-salt
condition but less than the concentration under the coupling action of cyclic load and
immersion. With the introduction of sulfate ions, the chloride ion concentration of each
layer in the concrete decreases correspondingly with the increase of the sulfate solution
concentration. When the erosion age was relatively short, the presence of sulfate ions in the
dual-salt solution will make the internal pores more compact, thereby reducing the cyclic
bending load to a certain extent on the promotion of the diffusion of chloride ions in the
concrete [21].
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Figure 4. Chloride concentration distribution of concrete immersed in different sodium sulfate and
sodium chloride coupling of cyclic loading condition. (a) 20 d; (b) 40 d; (c) 60 d; (d) 80 d; (e) 100 d.

3.2. The Time-Varying Law of Cs and Dapp

3.2.1. Apparent Surface Chloride Ion Concentration (Cs)

Concrete Cs increases continuously with the extended erosion age (Figure 5). Cs (100 d)
at a 60% stress level loading increased by 41.8%. The presence of sulfate did not change the
overall time-varying characteristics of Cs. Cs decreases due to the introduction of the sulfate
ion, and its value decreases with the increase of sulfate concentration. The exponential
function (Equation (3)) was used to fit Cs at different erosion ages, and the results are shown
in Table 4.

Cs = Csmax × (1 − e−bt) (3)

where t is the soaking time (d); Csmax is the maximum Cs; b is the accumulation rate. In this
equation, two fitting parameters are Csmax and b, which is a typical mathematic description
of the apparent surface chloride ion concentration.
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cyclic loading condition.

Table 4. Cs exponential model fitting experimental results.

Experimental Condition Csmax σ2/Csmax b σ2/b R2

8% NaCl 0.57520 0.03566 0.02744 0.00448 0.93388
8% NaCl + 60% Load 0.80118 0.01090 0.03740 0.00169 0.97870

8% NaCl + 5% Na2SO4 + 60% Load 0.74761 0.03885 0.02710 0.00368 0.95134
8% NaCl + 10% Na2SO4 + 60% Load 0.71781 0.02676 0.02597 0.00245 0.98098

Coefficients of determination (R2) in all fittings are higher than 0.95 (as shown in
Table 4), indicating a satisfactory fitting accuracy. The presence of sulfate ions makes the
surface chloride ion stability value Csmax and accumulation rate b decrease. Csmax and
accumulation rate b gradually decrease with the increase of sulfate solution concentration.

3.2.2. Apparent Diffusion Coefficient (Dapp)

Concrete Dapp decreases first and then increases with the increase of the loading erosion
age (Figure 6). Compared with the coupling effect of loading and single chloride salt, the
Dapp of concrete decreased gradually with the addition of sulfate before 80 d and decreased
gradually with the increase of the sulfate ion concentration. When the erosion age is 100 d,
Dapp of 10% Na2SO4 test is slightly greater than that of 5%. When the erosion age is less than
80 d, the existence of sulfate ion will make the concrete structure denser, which delays the
deterioration of concrete. When the erosion age is 100 d, with the high sulfate concentration,
more crystallization products are generated; this leads to the internal cracking of concrete,
which is manifested by the larger Dapp when the sulfate concentration is high.
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3.3. Chloride Erosion Depth

As shown in Table 5, the average and maximum chloride erosion depth increased
significantly under the cyclic load, and the average depth increased by 49.3% with a 60%
stress level compared with that without the load. The chloride erosion depth under the
load reduced with the existence of the sulfate ion, and the higher the sulfate concentration
was, the more obvious the depth reduction was. Under a 60% stress level load, the average
chloride erosion depth of 5% Na2SO4 and 10% Na2SO4 decreased by 15.2% and 23.1%,
respectively, while the maximum chloride erosion depth decreased by 2.8% and 16.9%. It
was proved that the existence of sulfate can inhibit the chloride ion transport in concrete
under cyclic loading in a short time.

Table 5. The erosion depth of concrete immersed in different sodium sulfate and sodium chloride
coupling of the cyclic loading condition.

Experimental Condition
Measuring Point Average

Depth (mm)
Maximum

Depth (mm)1 2 3 4 5

8% NaCl 15.9 18.6 14.1 19.6 14.8 16.59 19.6
8% NaCl + 60% Load 25.4 19.9 26.6 24.5 26.9 24.67 26.9

8% NaCl + 5%Na2SO4 + 60% Load 19.8 17.9 22.7 24.1 20.2 20.92 24.1
8% NaCl + 10% Na2SO4 + 60% Load 15.4 22.3 19.8 20.0 17.2 18.96 22.3

3.4. Effect Coefficient K

The concrete effect coefficient K increases with the extension of the erosion age
(Figure 7). Under the action of the 60% cyclic bending load, the K value is always greater
than 1, which promotes chloride ion transport. Before 80 d, the K value decreased with the
introduction of sulfate. The higher the sulfate concentration, the lower the K value was.
When the erosion age was 100 d, the K value under the cyclic load of 10% sodium sulfate
exceeds the concentration of 5%. It was caused by the combination of the compactness
of sulfate crystallization products and cyclic load damage. Before 80 d, the interaction
between the two was manifested as the compaction of sulfate crystal products, and the
higher the concentration, the more promoted effect. As the concentration increased, the
rate of crystallization product formation increased as well. This gradually changed the
filling effect to expansive pressure induced by salt crystallization in confinement, which led
to the increase of the concrete K value. At 100 d, the existence of sulfate crystals still played
a filling role in general, so the K value was lower than that under the single cyclic load.
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4. Conclusions

A testing scheme was designed and customized to test concrete samples under a cyclic
load simultaneously coupled with a dual-salt ingress. The following conclusions can be
drawn from the testing results:

• The long-term distribution of the chloride ion in the concrete immersed in sodium
sulfate and sodium chloride solutions coupled with the cyclic load is, as expected, in
accordance with Fick’s second law.

• Compared with the results of the single immersion test, the existence of the cyclic load
significantly reduces the chloride erosion resistance of concrete. When the erosion age
was 100 d, the chloride ion concentration at the depth of 7.5 mm was about 2.11 times
that of the single immersion.

• In a certain erosion time, the existence of sulfate ion slowed down the transport of
chloride ions. The depth of erosion (Csmax) and apparent diffusion coefficient (Dapp) of
concrete decreased with the increase of the sulfate solution concentration. Under the
condition of the dual-salt immersion and loading, the K value decreased continuously
with the increase of erosion age and was less than 1, indicating that the existence of
sulfate ion improved the resistance of concrete to chloride ion penetration.
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