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Abstract: The hydration kinetics of Portland-limestone cement pastes with organic additives in the
form of acetic acid and sodium acetate were studied by using solid-state 13C, 27Al and 29Si NMR
spectroscopy. The evolution of the relative content of various phases was monitored over the period
of one month: amorphous and crystalline calcite (in 13C spectra), ettringite, aluminum in C-S-H gel,
calcium aluminates and calcium hydroaluminates (in 27Al spectra), as well as alite, belite and silicon
in C-S-H gel (in 29Si spectra). The retarding effect of the additives on cement hydration at early age
was demonstrated. We show that the kinetics of phase assemblage formation is influenced by the
acetate ion adsorption on the surface of the anhydrous cement components and hydrated phases.
The kinetics of formation of ettringite in the cement paste, depending on the addition of acetic and or
sodium acetate, is discussed in the context of potential thaumasite sulfate attack.

Keywords: Portland-limestone cement; organic additives; hydration kinetics; NMR spectroscopy

1. Introduction

Cement-based building materials are among the most used in modern construction.
Despite their widespread application and the large amount of information regarding the
chemistry of cement pastes [1,2], several issues regarding their properties during the
hydration process and the effect of various environmental factors on the hardened material
are still not clear. One of these factors is the chemical sulfate attack, which might occur
in the form of conventional (ettringite or gypsum formation) or thaumasite sulfate attack
(TSA) [3,4]. The former process is associated with the active formation and growth of
expansive ettringite and gypsum crystals in the cement paste matrix, while the latter
involves the formation of thaumasite microcrystals, occurring readily in the presence of
carbonate ions and at temperatures close to the freezing point of water, about 0–5 ◦C. The
amount and volume occupied by these minerals increase during the attack, developing
internal stresses that induce cracks in the hardened cement paste. Moreover, as more
silicon is available for the formation of thaumasite during TSA, which is derived from
the continuously deteriorating calcium silicate hydrate phase, cement paste gradually
transforms into a non-cohesive mass, further contributing to the destruction of building
structures. TSA is particularly dangerous for Portland-limestone cement materials, because
the presence of calcium carbonate facilitates this type of chemical attack.

To reduce the effect of deleterious external factors and optimize the hydration process
and the properties of the obtained cement pastes, various additives based on mineral,
organic or multicomponent substances are actively used [5–8]. However, although complex
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multicomponent additives are widely used, the hydration process in the presence of
simple organic substances has not been fully investigated. In this work, we decided
to study the effect of commonly used additives, such as sodium acetate and its parent
acid, on the hydration kinetics of Portland-limestone cement. Sodium acetate is used as
anti-freeze additive [9], as well as for reducing the permeability of concrete to water and
sulfate ions [10]. Acetic acid, in turn, is used to control the hardening time of cement [11].
Moreover, an amount of additive about 3% by cement mass was observed as optimal for
achieving the maximum strength of the cement stone.

13C, 27Al and 29Si NMR spectroscopy was selected as the main research tool. The
technique allows for obtaining information about the local environment of the investigated
nuclei [12]. The advantage of the applied method, in comparison with X-ray diffraction
research methods, is that NMR spectroscopy allows for recording signals from both the
amorphous and crystalline parts of the investigated samples. In hydrated cements, the
amorphous part mainly consists of the calcium silicate hydrate phase, which provides most
of the strength of the hardened cement paste.

The main aim of this work was to study the kinetics of the phase assemblage formation
in Portland-limestone cement pastes in the presence of acetic acid and its sodium salt, as
well as to elucidate the mechanism behind the observed hardening rate and appraise
the changes of its strength properties, based on the data obtained. Research on cement
hydration that assesses a large number of nuclei with NMR spectroscopy is scarce in the
literature. The applied method is supposed to provide detailed structural and quantitative
information about the occurring phase changes.

2. Materials and Methods

Cement pastes were prepared with a type CEM II/A-L 42.5N Portland-limestone
cement (SLK Cement–Sukhoy Log, Sverdlovsk Region, Russia), distilled water and p.a.
organic additives (acetic acid and sodium acetate). A water-to-cement ratio of 0.45 was used.
Organic additives amounted to 3% by cement mass each, both added to the mixing water.
Cement pastes were cast in cylindrical plastic molds (12 mm in diameter; 30 mm in height),
where they remained sealed for 24 h. After demolding, the specimens were immersed
in distilled water and kept throughout the investigated hydration periods. To study the
kinetics of the changes in the phase composition of the pastes at certain ages (after 1, 2, 3, 5,
7, 14 and 34 days), about 150 mg of hardened material was scraped off the specimens’ end
and placed in paper bags to prevent any further hydration. Such quantity was sufficient
for conducting the NMR experiment. In this work, the following nomenclature was used
to label the samples: C (cement paste without additives), CAA (cement paste with acetic
acid) and CSA (cement paste with sodium acetate). The stage of hydration was indicated
by the age of the cement paste, which was added to the sample marker.

Prior to hydration, the mineralogical composition of the employed cement was de-
termined with X-ray powder diffraction (XRPD) analysis; the results are summarized
in Table 1. XRPD analysis was performed at room temperature, using CuKα radiation
2-theta range 5–80◦, step 0.0203◦, voltage 30 kV and current 10 mA. Qualitative X-ray
phase analysis was carried out with the software PDXL 2.8.4.0 (Rigaku, Tokyo, Japan), with
connection of PDF-2 database (International Diffraction Data Center, ICDD). Quantitative
phase analysis (wt.%) was carried out by applying the Rietveld method [13] on the obtained
full-profile data with the software TOPAS 4.2 (Bruker, Billerica, MA, USA).

NMR experiments were performed by using an Avance III 400 WB spectrometer
(Bruker, Billerica, MA, USA) at constant magnetic field of 9.4 T. 13C, 27Al and 29Si nuclei
were studied and characterized by the respective resonance frequencies of 100, 104 and
86 MHz. A probe that is able to rotate the samples at the magic angle to the direction of
the constant magnetic field (stabilization accuracy of the rotation frequency ±4 Hz) and
stabilize their temperature (temperature stabilization accuracy ±1 ◦C) was used. Powder
samples were loaded on a 4 mm zircon oxide rotor and rotated at a frequency of 12.5 KHz
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at 20 ◦C. Tetramethylsilane, for 13C and 29Si nuclei, and 1 M·D2O AlCl3 solution, for 27Al
nuclei, were used as external references.

Table 1. Quantitative phase analysis of Portland-limestone cement derived from Rietveld refinements
of X-ray powder diffraction data (Bragg R factor −5.2%).

Mineral Phase Formula * wt.%

Alite 3CaO·SiO2 (C3S) 56.2
Belite 2CaO·SiO2 (C2S) 4.7

Tricalcium aluminate 3CaO·Al2O3 (C3A) 5.8
Brownmillerite 4CaO·Al2O3·Fe2O3 (C4AF) 10.6

Gypsum CaO·SO3·2H2O (CSH2) 1.2
Basanite 2CaO·2SO3·H2O (C2S2H) <1.0

Anhydrite CaO·SO3 (CS) 2.8
Periclase MgO (M) 1.6
Calcite CaO·CO2 (CC) 9.3

Dolomite CaO·MgO·2CO2 (CMC2) 7.2
* The formulas in brackets correspond to cement chemist notation.

All the spectra were recorded by using a single-pulse sequence. The duration of the
exciting impulses was 2.5, 4.5 and 2.5 µs; the relaxation delay was 4, 2 and 4 s; the number
of scans was 1024, 512 and 1024 for 13C, 27Al and 29Si nuclei, respectively.

Deconvolution of spectra into Gaussian-shape individual components was performed
by the least squares method, using the software Origin 9.0. (OriginLab Corporation,
Northampton, MA, USA) For all the spectra, the results of approximation were obtained
with a coefficient of determination R2 higher than 0.8. Since single-pulse sequence was
used to record the NMR spectra, the relative integrated intensities of the signals can be
interpreted as mole fractions of the corresponding phase components.

3. Results

3.1. 13C

The 13C NMR spectrum of the anhydrated cement (Figure 1 (top)) shows a single broad
asymmetric line at a chemical shift of about 168.7 ppm. Most likely, this line originates from
amorphous calcium carbonate and, possibly, small amounts of calcite and dolomite, which
are contained in cement, according to the phase composition obtained from the XRPD
analysis (Table 1). An effort to perform component deconvolution in this spectrum was not
attempted, because its line shape is quite broad and the 13C chemical shifts of the carbonate
compounds fall close to each other [14]. The 13C NMR spectra obtained at different ages of
cement hydration show two (except for CAA and CSA at 1 d) clearly distinguished peaks
(Figure 1 (bottom) is an example of the 13C NMR spectrum of the sample C07; the other
spectra are provided in Supplementary Figures S1a–S3a). Moreover, the peak at about
168.5 ppm consists of unresolved narrow and broad signals; the deconvolution into two
peaks is justified in Supplementary Figure S1c,d. We note, however, that the precision of the
deconvolution of unresolved signals might suffer from larger errors and a certain degree
of caution should be exercised when analyzing these results. The position of the signal at
about 171 ppm remains virtually unchanged over time. However, the narrow component of
the signal at 168.5 ppm was slightly shifted to the weak field at the initial stage of hydration,
and the broad component was shifted to the strong field throughout the entire hydration
period, with the exception of the CSA sample, for which this component was shifted, on
the contrary, to the weak field. The signals mentioned are contributed also by the presence
of calcium monocarboaluminate hydrate, forming during the hydration process. The time
dependences of the 13C chemical shift values are shown in Supplementary Figures S1b–S3b
in Supporting Information.
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Figure 1. 13C NMR spectra of the (top) anhydrated Portland-limestone cement, and (bottom) cement
paste sample without additives on the 7th day of hydration.

According to the literature, all the observed signals correspond to CO3
2− struc-

tural units of various amorphous and crystalline modifications of calcium carbonate and
dolomite [14–16]: the broad signal at about 168.5 ppm corresponds to amorphous calcium
carbonate and to metastable ikaite, which is possibly contained in the samples; the narrow
signal corresponds to calcite, dolomite and vaterite; and the signal at about 171 ppm cor-
responds to carbon atoms in aragonite and vaterite. According to Reference [17], the two
narrow signals from carbon nuclei in the structure of vaterite correspond to its two most
probable crystal structures.

3.2. 27Al

The 27Al NMR spectrum of the anhydrated cement (Figure 2 (top)) shows two isotropic
signals. The signal at 85 ppm corresponds to aluminum atoms in tetrahedral environment
of oxygen atoms Al(IV), which are in the form of impurities in alite and belite [18]. The signal
at about 10 ppm corresponds to aluminum atoms in octahedral environment of oxygen
atoms Al(VI). This signal consists of two spectral components: the narrow component at
about 15 ppm corresponds to aluminum atoms in Ca3Al2O6 (C3A), and the broad one at
about 10 ppm to C4AF [18].
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Figure 2. 27Al NMR spectra of the (top) anhydrated Portland-limestone cement, and (bottom) ce-
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Figure 2. 27Al NMR spectra of the (top) anhydrated Portland-limestone cement, and (bottom) cement
paste sample with acetic acid addition at the 7th day of hydration.

In the 27Al NMR spectra of all studied hydrated samples (Figure 2 (bottom) shows
the 27Al NMR spectrum from the CAA07 sample; the rest of the spectra are shown in
Supplementary Figures S4a–S6a), it can be seen that the signal from the aluminum atoms
Al(IV) in anyhydrated alite and belite practically disappears already on the first day of
hydration; there is only a weak signal at this age for the CAA and CSA samples. At the
same time, a broad asymmetric signal appears at about 65 ppm that can be described as
the sum of the two components at 60 and 75 ppm. Both correspond to aluminum atoms
Al(IV) in the amorphous cement hydration gel. In fact, the line at about 75 ppm is typical for
aluminum incorporation in the C–S–H gel, while the line at around 60 ppm for aluminum
atoms in an unstable aluminum silicate hydrate (A–S–H) gel, forming near the surface of
clinker grains at conditions of calcium shortage and excess aluminum [19]. In this case, the
total relative integrated intensity of the signals in the given spectral region decreased with
increasing the hydration time.

For the C and CSA samples, a broad asymmetric signal in the region of Al(VI) chemical
shifts can be described also by two components: a narrow one at 15 ppm and a broad
component, whose chemical shift decreased from 14 to 10.5 ppm from the 1st to the 7th day,
and then increased to 14.5 ppm by the end of the investigated time interval. For the CAA
sample, there is another narrow component, in this region of the spectrum, at about 11 ppm
(see the example in Figure 2, bottom). The narrow intense line at about 15 ppm corresponds
to aluminum atoms in ettringite [12]. The narrow line of weak intensity at about 11 ppm
corresponds to calcium monocarboaluminate hydrate (AFm) [19]. The broad line, whose
position varies in the range of about 10.5–14.5 ppm, corresponds to signals from several
aluminum hydrates and calcium hydroaluminates of different compositions. According to
the behavior of the chemical shift of the broad line under consideration, it can be assumed
that redistribution of coexisting phases occurs, from aluminate hydrate (AH3) through
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mono-(CAH10) and dicalcium hydroaluminate (C2AH8) to tricalcium hydroaluminate
(C3AH6) [12].

3.3. 29Si

The 29Si NMR spectrum of the anhydrated cement (Figure 3 (top)) shows a single
signal, which is superposition of a narrow line at about −70.6 ppm from silicon atoms in
the structure of belite and a broad asymmetric line in the range from −65 to −75 ppm,
which corresponds to silicon atoms in the structure of alite [20] that are located in various
local environments.
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Figure 3. 29Si NMR spectra of the (top) anhydrated Portland-limestone cement, and (bottom) cement
paste sample without additives at the 7th day of hydration.

During the initial stage of hydration of all three cement mixtures, broad unresolved
lines appear in the spectrum initially in the range from −75 to −95 ppm, and then the
specified range expands to chemical shift values of about −120 ppm (Figure 3 (bottom))
shows the 29Si NMR spectrum from the sample C07; the rest of the spectra are shown
in Supplementary Figures S7–S9). This behavior corresponds to the appearance of an
inhomogeneous phase, containing silicon atoms in tetrahedral environment of oxygen
atoms, which are characterized by the presence of one to two linked silicon tetrahedra
(Q1 and Q2 structural elements, from −75 to −90 ppm) or of three to four linked silicon
tetrahedra (Q3 and Q4 structural elements, from −90 to −120 ppm) [12]. The presence
of the former two structural elements in the cement paste characterizes the formation
of the mostly amorphous C–(A−)S−H gel, while the latter two point to the formation
of crosslinked silicate chains (C−(A−S−H of low Ca/Si ratio)) and amorphous hydrous
silica [21].

At the later stages of hydration, a narrow line at about −86 ppm appeared in the
spectra. This line corresponds to silicon atoms in Q2 structural elements of the cement
paste, in paired (Q2

P) and/or bridged (Q2
b)silicon tetrahedra in silicate chains, which form

the bulk structure of the resulting cement paste [22].
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4. Discussion

Figure 4 shows the time dependences of the relative integrated intensities of the 13C
NMR signals for all three studied samples. It can be seen that the intensities of the lines
corresponding to amorphous calcium carbonate sharply decrease at the initial stage of the
hydration process for C and CAA samples, and then a slight increase is observed. For the
CSA sample, a gradual decrease in the relative proportion of amorphous calcium carbonate
is observed. The proportion of calcite increases for all the samples, while that of aragonite
decreases, as is especially noticeable for C sample. However, at the end of the studied
hydration period (15–34 days), the relative content of calcite and aragonite essentially
stabilizes and for CAA sample even slightly reverses. It should be noted that a significant
amount of aragonite is observed on the first day of hydration only for C sample.
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The increase in the content of the poorly soluble calcium carbonate polymorphs (calcite
and aragonite), as noted for all samples, leads to their precipitation in the pores of the
hardening cement paste, and this might cause an increase in its strength and a decrease in
porosity [1,2]. The smallest amount of these calcium carbonate polymorphs is observed for
the sample CAA.

Evidently, the formation of aragonite in the samples containing organic additives
begins only on the second day of hydration, while the fraction of the initial amorphous
CaCO3 in the CSA sample, on the first day, is much lower than for the other samples. This
observation can be attributed to the fact that the acetate ion (CH3COO−) can be adsorbed
on the surface of the anhydrated cement microparticles and prevent their hydration [10,23],
and also the crystallization of new phases [24]. However, in the case of acetic acid addition,
the acidity of the pore solution increases, and this increase, at the initial stage of hydration,
contributes to the dissolution of the fine particles of the anhydrated cement. At the same
time, the presence of sodium cations hinders this process, forming a weakly alkaline
medium in CSA mixture.

It is worth noting that it is not possible to quantify the amount of calcium monocarboa-
luminate hydrate (AFm) in CAA sample from 13C NMR spectra, although this compound
is resolved in the corresponding 27Al NMR spectra. This is because of the negligible 13C
NMR chemical shift difference between AFm phase and other calcium carbonates (calcite
and vaterite) that prevents a reliable deconvolution of the overlapped signals [14].

Figure 5 illustrates the time dependences of the relative integrated intensities of
the 27Al NMR signals for all three studied samples. Considering the observed changes
in the intensities of the aforementioned spectral components, it can be concluded that,
after the initial dissolution of the aluminate phases of the cement used, a large amount
of aluminate hydrate forms, whose quantity gradually decreases. Then the amount of
various compounds in the form of C–S–H, A–S–H or C–(A–)S–H gels grows in volume,
further gradually decreasing. Finally, a gradual increase in the amount of various calcium
hydroaluminates and ettringite is observed.

It should be noted that, for the CAA and CSA samples, on the first day, there is an
insignificant amount of residual aluminum impurity in C2S and C3S. This can be associated
with incomplete hydration of the anhydrous cement particles, due to the adsorption of the
acetate ions on their surface.

The diagrams of Figure 5 show that, for all samples, the amount of ettringite initially
increased and then decreased, and, at later stages, it again increased [2]. According to
the generally accepted theory of hydration of aluminum-containing cements, ettringite
crystallizes in two stages. In the initial stage, long narrow crystals form, which contribute
to the initial binding of the hydrated cement grains. Later, during the deceleration of
the hydration process, the initially formed ettringite recrystallizes in the form of large
crystals in the voids of the matrix. Moreover, for the C sample, recrystallization of ettringite
practically did not occur, while, in the CAA sample, the amount of the primary and
secondary ettringite is noticeably larger than for all the other samples. The presence of
acetate groups in the CAA and CSA samples can partially replace the sulfate groups [24].
Hence, the excess of the latter facilitates the formation of primary ettringite, whose content
is larger than that in the C sample, resulting in the kinetics observed.

Since the surface of the aluminum-containing clinker phases is more electronegative
than that of C3S and C2S [11], their dissolution occurs faster and, in parallel, a deficiency of
calcium arises. Thus, in the CAA and CSA samples, at the early stages of hydration, an
increased amount of aluminate hydrate is observed, which subsequently, with an increase
in the calcium content, gradually transforms into the more stable C3AH6 phase.

Moreover, aluminum actively passes into the crystalline phases of ettringite and
calcium hydroaluminate; hence, its content in the amorphous C–(A–)S–H phase decreases.
It should be noted that the increased ettringite content observed in the CAA sample may
act as a risk factor for sulfate corrosion.



Materials 2022, 15, 2004 9 of 13

Materials 2022, 15, x FOR PEER REVIEW 8 of 13 
 

 

The increase in the content of the poorly soluble calcium carbonate polymorphs 
(calcite and aragonite), as noted for all samples, leads to their precipitation in the pores of 
the hardening cement paste, and this might cause an increase in its strength and a de-
crease in porosity [1,2]. The smallest amount of these calcium carbonate polymorphs is 
observed for the sample САА. 

Evidently, the formation of aragonite in the samples containing organic additives 
begins only on the second day of hydration, while the fraction of the initial amorphous 
CaCO3 in the CSA sample, on the first day, is much lower than for the other samples. 
This observation can be attributed to the fact that the acetate ion (CH3COO−) can be ad-
sorbed on the surface of the anhydrated cement microparticles and prevent their hydra-
tion [10,23], and also the crystallization of new phases [24]. However, in the case of acetic 
acid addition, the acidity of the pore solution increases, and this increase, at the initial 
stage of hydration, contributes to the dissolution of the fine particles of the anhydrated 
cement. At the same time, the presence of sodium cations hinders this process, forming a 
weakly alkaline medium in CSA mixture. 

It is worth noting that it is not possible to quantify the amount of calcium mono-
carboaluminate hydrate (AFm) in CAA sample from 13C NMR spectra, although this 
compound is resolved in the corresponding 27Al NMR spectra. This is because of the 
negligible 13C NMR chemical shift difference between AFm phase and other calcium 
carbonates (calcite and vaterite) that prevents a reliable deconvolution of the overlapped 
signals [14]. 

Figure 5 illustrates the time dependences of the relative integrated intensities of the 
27Al NMR signals for all three studied samples. Considering the observed changes in the 
intensities of the aforementioned spectral components, it can be concluded that, after the 
initial dissolution of the aluminate phases of the cement used, a large amount of alumi-
nate hydrate forms, whose quantity gradually decreases. Then the amount of various 
compounds in the form of C–S–H, A–S–H or C–(A–)S–H gels grows in volume, further 
gradually decreasing. Finally, a gradual increase in the amount of various calcium hy-
droaluminates and ettringite is observed. 

1 10
0

10

20

30

40

50

60

70

80

90

100

3020864

a

 Al(VI) in C3A
 Al(VI) C4AF/AH3/C3AH6

 Al(VI) ettringite
 Al(IV) impurities in C-S-H
 Al(IV) A-S-H
 Al(IV) impurities in C3S and C2S

27
Al

 a
re

a 
is

ot
ro

pi
c 

lin
e,

 %

time, days
2

 

Materials 2022, 15, x FOR PEER REVIEW 9 of 13 
 

 

1 10
0

10

20

30

40

50

60

70

80

90

100

b

27
Al

 a
re

a 
is

ot
ro

pi
c 

lin
e,

 %

time, days

 Al(VI) in C3A
 Al(VI) C4AF/AH3/C3AH6

 Al(VI) ettringite
 Al(VI) AFm
 Al(IV) impurities in C-S-H
 Al(IV) A-S-H
 Al(IV) impurities in C3S and C2S

2 4 6 8 20 30

 

1 10
0

10

20

30

40

50

60

70

80

90

100

c

27
Al

 a
re

a 
is

ot
ro

pi
c 

lin
e,

 %

time, days

 Al(VI) in C3A
 Al(VI) C4AF/AH3/C3AH6

 Al(VI) ettringite
 Al(IV) impurities in C-S-H
 Al(IV) A-S-H
 Al(IV) impurities in C3S and C2S

2 4 6 8 20 30

Figure 5. Time-evolution (in logarithmic scale) of the relative integrated areas of the isotropic 
components recognized in the 27Al NMR spectra of the samples: С (a), САА (b) and CSA (c). 

It should be noted that, for the САА and СSА samples, on the first day, there is an 
insignificant amount of residual aluminum impurity in C2S and C3S. This can be associ-
ated with incomplete hydration of the anhydrous cement particles, due to the adsorption 
of the acetate ions on their surface. 

The diagrams of Figure 5 show that, for all samples, the amount of ettringite initially 
increased and then decreased, and, at later stages, it again increased [2]. According to the 
generally accepted theory of hydration of aluminum-containing cements, ettringite 
crystallizes in two stages. In the initial stage, long narrow crystals form, which contribute 
to the initial binding of the hydrated cement grains. Later, during the deceleration of the 
hydration process, the initially formed ettringite recrystallizes in the form of large crys-
tals in the voids of the matrix. Moreover, for the С sample, recrystallization of ettringite 
practically did not occur, while, in the САА sample, the amount of the primary and 
secondary ettringite is noticeably larger than for all the other samples. The presence of 
acetate groups in the САА and СSА samples can partially replace the sulfate groups [24]. 
Hence, the excess of the latter facilitates the formation of primary ettringite, whose con-
tent is larger than that in the С sample, resulting in the kinetics observed. 

Since the surface of the aluminum-containing clinker phases is more electronegative 
than that of С3S and С2S [11], their dissolution occurs faster and, in parallel, a deficiency 
of calcium arises. Thus, in the САА and СSА samples, at the early stages of hydration, an 
increased amount of aluminate hydrate is observed, which subsequently, with an in-
crease in the calcium content, gradually transforms into the more stable С3АН6 phase. 

Moreover, aluminum actively passes into the crystalline phases of ettringite and 
calcium hydroaluminate; hence, its content in the amorphous С–(А–)S–Н phase de-

Figure 5. Time-evolution (in logarithmic scale) of the relative integrated areas of the isotropic
components recognized in the 27Al NMR spectra of the samples: C (a), CAA (b) and CSA (c).

Figure 6 illustrates the time dependences of the relative integrated intensities of the
29Si NMR signals for all the three studied samples. When analyzing the change in the
relative integrated intensities of the observed spectral components during hydration, we
observed that the mass fraction of the silicate-containing clinker phases gradually decreases
for all samples, while the mass fraction of the C–(A–)S–H phase increases proportionally,
as well as the fraction of paired Q2 terahedra. It should be noted that the Q2 tetrahedra
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resolved in the spectrum appear on the first day for the CSA sample, on the second day
for the C sample, and only on the third day for the CAA sample. Moreover, for the CAA
sample, the spectral component, which is visually distinguishable from the baseline and is
characteristic for Q3 and Q4 structural elements, also appears only on the second day of
hydration.
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These observations, along with the fact that no resolved peaks arise from other char-
acteristic Q1, Q2 and Q3 structural elements [22], may indicate that such a characteristic
layered structure of hydrated cements remains mainly amorphous; however, the number
of paired Q2 tetrahedra increases, and this increase can correspond to an increase in the
length of silicate chains, consisting of paired silicate tetrahedra. The presence of such phase
corresponds to an increase in strength of the cement matrix. The formation of this phase
for the CAA sample is observed at later stages of hydration.

It should be noted that, during cement hydration, a relative redistribution of the
amounts of alite and belite occurs (Figure 7). For all the pastes, an increase in the relative
content of belite is observed that is much larger for the CAA sample as compared to the
other two.
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in the 29Si NMR spectra of the studied samples (C (filled points), CAA (empty points) and CSA
(crossed points)).

Over the entire investigated time interval, the silicon-containing anhydrous phases
did not completely hydrate. It should be noted that, in the CAA sample, the remaining
amount of such phases is slightly less than for the other two samples; the addition of acetic
acid leads to the involvement of a larger amount of alite in the formation of the C–(A–)S–H
gel. That is, at the later stages of the hydration process of the CAA paste a smaller amount
of alite remains anhydrated, and, thus, it is more effectively transformed to amorphous
hydrate phase, affecting the strength properties of the hardened material.

5. Conclusions

In contrast to X-ray studies, one of the advantages of the NMR method is the ability
to directly observe the signals of the nuclei both in the crystalline and amorphous local
environments. As a result, in this work, it was possible to trace the time dependences of
a set of chemical phases in the studied cement pastes. Despite the natural difficulty in
obtaining unambiguous deconvolution of strongly overlapped signals of some cases, it
was possible to identify the main components the presence of which is assumed in the
chemistry of cementitious materials, including the amorphous phases, especially the crucial
ones containing 29Si nuclei.

Considering all the above, it can be deduced that the addition of acetic acid and sodium
acetate changes the kinetics of the cement paste phase composition during the hydration
process. Adsorption of the acetate ion on the surface of the anhydrated and hydrated phases
has a significant effect on the hydration process when the studied organic substances are
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added in the mixtures. Moreover, the presence of sodium ions slightly increases the
alkalinity of the pore solution, partially reducing the efficiency of such adsorption.

It can be concluded that the addition of 3% acetic acid or sodium acetate, by cement
mass, to the cement paste hindered the initial stages of the hydration process. The addition
of sodium acetate led to the formation of a large amount of poorly soluble forms of calcium
carbonate and a significant increase in the amount of polymerized silicon-containing phases.

Concerning the sulfate degradation of the cement paste, we see that the addition of
acetic acid led to the development of favorable conditions for the formation of ettringite; in
contrast, the addition of sodium acetate slightly slowed down this process. Thus, in the
future studies, it would be interesting to investigate whether sodium acetate is a useful
additive for improving the durability of hardened cementitious materials against sulfate
attack. As only cement pastes were investigated in this work, further applied studies in
this field are needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma15062004/s1. Figure S1: 13C NMR spectra of the anhydrated Portland-limestone cement and
cement paste samples without additives (C) (a) and the chemical shift of spectra components (b) at
the different hydration times. Deconvolution of C07 spectra per three (c) and two (d) components.
Figure S2: 13C NMR spectra of the anhydrated Portland-limestone cement and cement paste samples
with acetic acid (CAA) (a) and the chemical shift of spectra components (b) at the different hydration
times. Figure S3: 13C NMR spectra of the anhydrated Portland-limestone cement and cement paste
samples with sodium acetate (CSA) (a) and the chemical shift of spectra components (b) at the
different hydration time. Figure S4: 27Al NMR spectra of the anhydrated Portland-limestone cement
and cement paste sample without additives (C) (a) and the chemical shift of spectra components (b) at
the different hydration time. Figure S5: 27Al NMR spectra of the anhydrated Portland-limestone
cement and cement paste samples with acetic acid (CAA) (a) and the chemical shift of spectra
components (b) at the different hydration time. Figure S6: 27Al NMR spectra of the anhydrated
Portland-limestone cement and cement paste samples with sodium acetate (CSA) (a) and the chemical
shift of spectra components (b) at the different hydration time. Figure S7: 29Si NMR spectra of the
anhydrated Portland-limestone cement and cement paste sample without additives (C). Figure S8:
29Si NMR spectra of the anhydrated Portland-limestone cement and cement paste samples with acetic
acid (CAA). Figure S9: 29Si NMR spectra of the anhydrated Portland-limestone cement and cement
paste samples with sodium acetate (CSA).
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