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Abstract: Membrane fouling is a major hindrance to widespread wastewater treatment applications.
This study optimizes operating parameters in membrane rotating biological contactors (MRBC) for
maximized membrane fouling through Response Surface Methodology (RSM) and an Artificial Neural
Network (ANN). MRBC is an integrated system, embracing membrane filtration and conventional
rotating biological contactor in one individual bioreactor. The filtration performance was optimized
by exploiting the three parameters of disk rotational speed, membrane-to-disk gap, and organic
loading rate. The results showed that both the RSM and ANN models were in good agreement
with the experimental data and the modelled equation. The overall R2 value was 0.9982 for the
proposed network using ANN, higher than the RSM value (0.9762). The RSM model demonstrated
the optimum operating parameter values of a 44 rpm disk rotational speed, a 1.07 membrane-to-disk
gap, and a 10.2 g COD/m2 d organic loading rate. The optimization of process parameters can
eliminate unnecessary steps and automate steps in the process to save time, reduce errors and avoid
duplicate work. This work demonstrates the effective use of statistical modeling to enhance MRBC
system performance to obtain a sustainable and energy-efficient treatment process to prevent human
health and the environment.

Keywords: artificial neural networks (ANN); attached growth process; biofilm; response surface
methodology (RSM); membrane fouling

1. Introduction

Membrane fouling that can result in the rapid decline of membrane flux is a major
bottleneck for limiting the wide application of various membrane technologies [1]. Var-
ious methods to curtail membrane fouling are well developed, and many conventional
and modern approaches to alleviate membrane fouling are in practice [2]. Conventional
approaches focus on improving membrane properties, optimizing operational parameters,
and tweaking the hydrodynamics near the membrane surface [3–6]. However, all these tech-
niques result in high initial cost and high energy demand, thus limiting their widespread
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application [7,8]. The requirement for extensive coarse bubble aeration for fouling control
in aerobic membrane bioreactors (MBR) imposes a high energy input of up to 50% of the
total energy [9]. The high energy constraints to mitigate membrane fouling have been used
as a basis for the development of low energy processes, such as vibrating and rotating
disk MBR [10,11], suspended bio carriers in a moving bed biofilm reactor [12], hydrophilic
modified MBR [13], and integrated fixed-film activated sludge MBR [14].

Response surface methodology (RSM) is an empirical statistical technique that can
investigate mathematical modeling to comprehend the mutual relationship of various
process parameters on the response variable. The quantitative data generated from the
design of experiments and the analysis of regression models and operational conditions
can result in high-end performance [15]. An artificial neural networks (ANN) is a statistical
technique used as a predictive tool to develop a model that can forecast the outcome
variable with a defined combination of input variables. The ANN is an emerging machine-
learning tool due to its precise estimations of complex nonlinear systems [16]. Moreover,
gravitational techniques have been also used to enhance separation performance [17–19].

Biological wastewater treatment incorporating membrane separation has been the
focus of research worldwide [20–22]. The conventional activated sludge (CAS) process has
been successfully incorporated with membrane separation technology to enhance overall
performance in form of hybrid system of MBR. MBRs have gained popularity as advanced
wastewater treatment technology that surpass the efficiency of the CAS process [23,24].
MBRs pose numerous advantages over the CAS process [25,26], which has led to their
emerging full-scale implementation, particularly for water reuse purposes. However, the
inherent drawbacks of membrane fouling in MBRs has not yet been completely addressed,
which leads to high energy input [27]. The requirement for extensive coarse bubble aeration
for fouling control in aerobic MBRs imposes high energy input cost of up to 50% of the
total energy used [28].

Some studies have focused on the optimization of the operating conditions of the
membrane process. Askari et al. [29] studied RSM to examine the effect of process condi-
tions on NF membrane removal efficiency. The operational parameters of disk rotational
speed, hydraulic retention time (HRT), and sludge retention time (SRT) significantly influ-
ence microbial community concentration, biological performance, and membrane fouling
propensity [30,31]. Disk rotational speed, HRT, and SRT can alter the extracellular polymeric
substance secretion, sludge settling characteristics, and mixed liquor properties [32,33].
When applied to wastewater treatment, RSM can describe the complex relationship between
various operating parameters and optimize them by considering the response function
linked to the overall performance evaluation of the wastewater treatment.

ANNs have been extensively used to predict effluent wastewater components in recent
years. Aber et al. [34] utilized feed-forward backpropagation ANN modeling to predict the
effluent Cr(VI) concentration in synthetic and real wastewater. The developed model gave
a high correlation coefficient (R2 = 0.976), which indicates that the predicted model was
successful. Pendashteh et al. [35] applied an ANN to optimize effluent chemical oxygen
demand (COD), total organic carbon, and oil and grease concentration in the treatment of
hypersaline oily wastewater in a membrane sequencing batch reactor. ANN modeling has
also been used in a full-scale wastewater treatment plant to optimize the dynamics of the
biological effluent characteristics (COD, biological oxygen demand, total nitrogen (TN),
suspended solids (SS)) [36]. In previous research, ANNs have been employed to predict the
membrane fouling potential and the evolution of hydraulic resistance and foulant thickness.
Geissler et al. [37] established an ANN model to predict the membrane flux in a pilot-scale
MBR by considering transmembrane pressure, SRT, filtration cycle, backwash cycle, total
suspended solids, oxygen decay, and temperature.

The membrane rotating biological contactor (MRBC) developed in our previous
study [38] diminishes membrane fouling through hydrodynamic adjustments. The mem-
brane was placed inside the bioreactor between two rotating disks to scour the foulants
from the membrane surface. The current research compares various machine learning and
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statistical approaches to maximize membrane permeability under the combined effect of
disk rotational speed, membrane-to-disk gap, and organic loading rate. The optimization
of operating parameters will help to ensure diminished membrane fouling. In addition,
experimental measurements for the evaluation of membrane permeability could lead to the
robustness of the decentralized wastewater treatment processes.

This study utilized RSM and ANN modeling and optimization techniques to in-
vestigate the relationship between variables by establishing the predicted models. This
study investigates the relationship between operational parameters (disk rotational speed,
membrane-to-disk gap, and organic loading rate) and the response parameter of perme-
ability to find the optimal condition of the process. During experimentation, different
operational parameters (disk rotational speed, membrane-to-disk gap, and organic loading
rate) values were altered through a variable speed shaft motor and increases to the organic
loading rate and sludge wastage rate, respectively, and the performance of the MRBC was
analyzed. The optimization of the membrane-incorporated wastewater treatment process
improved membrane permeability and reduced the operational cost of the process.

2. Materials and Methods
2.1. Wastewater Preparation

The synthetic wastewater was prepared by blending refined food leftovers (1 g/L)
as suggested in previous work [39]. After mixing food leftovers with water, the mixture
was left for 2 h to settle the suspended particles. The stock solution (supernatant) was then
filtered through Whatman filter paper, 11 µm medium flow filter paper (Grade 1 Qualitative
Filter Paper Standard Grade, GE Whatman, Kent, United Kingdom). The stock solution
was then diluted to obtain the influent wastewater concentration as summarized in Table 1.
The prepared wastewater was analyzed in terms of COD, TN, ammonium, and nitrate.

Table 1. Characteristics of the influent wastewater.

Sr # Contaminant Unit Concentration

1 COD mg/L 298 ± 45.6
2 TN mg/L 2.4 ± 0.2
3 Ammonium mg/L 0.92 ± 0.07
4 Nitrate mg/L 0.52 ± 0.08
5 Turbidity NTU 15.2 ± 0.6
6 pH – 6.35 ± 0.18

COD: chemical oxygen demand, TN: total nitrogen.

2.2. Bioreactor Set-Up and Operation

The MRBC bioreactor was fabricated in-house using acrylic based material and op-
erated in accordance with the layout depicted in Figure 1. The bioreactor consisted of
a 45 L storage tank and a 6.5 L bioreactor. A total of 5 disks fabricated from methyl
methacrylate sheets with an 18 cm diameter were attached to a stainless-steel shaft in the
bioreactor. To colonize the microbial population, the disks were attached to polyurethane
sheets (1.22–1.27 g/cm3 density). The polyurethane-coated disks, 3 cm apart from each
other (corresponding to a net surface area of 2034 cm2), were placed inside the MRBC
bioreactor at 40% submergence. The feed wastewater from the storage tank was constantly
pumped, with a peristaltic pump, to the bioreactor. The bioreactor with 25 × 25 × 30 cm3

dimensions was fabricated in-house with methyl methacrylate sheets. The flat-sheet mem-
brane module was placed inside the bioreactor between two rotating disks. The MRBC
system does not include the settling tank part of a conventional RBC unit. The detailed
experimental procedure, equipment specifications, and membrane fabrication procedure
for the MRBC bioreactor can be seen in the previously published article [38].

The membrane sheet was cut and fixed onto both sides of the panel, forming a plate
and frame filtration panel. The membrane sheet that was attached to a panel had a semi-
circular shape and resulted in an active membrane surface area of 226 cm2. The membrane
sheets were glued to the panel with A-B epoxy glue (A-B quick epoxy, HYRO, Kuala
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Lumpur, Malaysia). The filtration panel was confirmed to be free from leakage. A spacer
fabric that was placed between the two membrane sheets acted as a permeate channel. The
membrane permeate was evacuated through a permeate pipe that connected the permeate
channel to the permeate pump.
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Figure 1. Schematic diagram of the membrane rotating biological contactor configuration.

The bioreactor was run for 42 days, divided into two periods. During the first 15-day
period, the bioreactor was operated under constant loading conditions of 10 g COD/m2 d
to grow and acclimatize the biofilm atop the polyurethane foam surface. During this period,
the biofilm was observed carefully, and biological performance was monitored regularly.
After the acclimatization phase, the biofilm was completely developed and was effective at
degrading organics and nutrients. Any detached flocs from the rotating disks were regularly
discharged. At this stage, the membrane panel was installed inside the RBC bioreactor and
the effects of the operational parameters on membrane fouling was observed.

2.3. Analytical Methods

COD, TN, ammonium, and nitrate were measured using the specific Hach digestion
solution (HACH, Loveland, CO, USA) for each compound. The solution was diluted to fall into
the range of the digestion vials being used for the study. The values were determined through
a Hach DR3900 Spectrophotometer (HACH, Loveland, CO, USA). A Hach 2100Q portable tur-
bidimeter (HACH, Loveland, CO, USA) and a Hach HQ411D benchtop PH/MV meter (HACH,
Loveland, CO, USA) were used to determine the turbidity and the pH, respectively [40].

2.4. Experimental Design Using the Response Surface Methodology Method

RSM is an aggregation of mathematical and statistical approaches to examine the
effectiveness of various operational parameters. Design-Expert software, Suite, MN, USA
(DES) version 8.0.6 was applied to evaluate the responses of multiple parameters [41,42].
The application of RSM to design optimization reduces the cost of otherwise-expensive
analysis methods and their associated numerical noise. The response variable can be
represented graphically (contour plots or three-dimensional space) to help visualize the
response surface shape. The RSM principle is based on two fundamental concepts: selecting
the approximate model and evaluating the response. The selection of an approximate model
is helpful to obtain the optimized solution at the expense of minimum experimentation.
The objective of DOE is the selection of the points where the response should be evaluated.

To scrutinize the impact of various operating parameters on the membrane fouling
propensity in the MRBC configuration, three numerical factors with a 5-level CCD model
were employed, holding 13 central points per block. In a 5-level CCD, each numeric factor
is varied over five levels: the center point, plus and minus alpha (axial points), and plus
and minus 1 (factorial points). The three independent operational parameters selected
were (i) disk rotational speed, (ii) membrane-to-disk gap, and (iii) organic loading rate.
The CCD consisted of 5 levels: high level or maximum (referred to as +1), medium level
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or central (referred as 0), low level or minimum (referred as −1), and plus and minus
alpha, for all operating parameters. The disk rotational speed varied from 30–50 rpm.
The membrane-to-disk gap was 1–3 cm, while the organic loading rate was changed from
10–30 g COD/m2 d, as shown in Table 2.

Table 2. Independent variables and levels used in central composite design.

Levels Independent Variable Low Level
(−1)

Medium Level
(0)

High Level
(+1)

1 Disk rotational speed 30 40 50
2 Membrane-to-disk gap 1 2 3
3 Organic loading rate 10 20 30

2.5. Artificial Intelligence and Machine Learning Approach

Artificial intelligence and machine learning approaches for optimization problems
have gained popularity among researchers due to their sufficiently accurate results. A pro-
cess flow for the development of the ANN model is given in Figure 2. The proposed
ANN model took three input factors, i.e., disk rotational speed, membrane-to-disk gap,
and organic loading rate, with membrane permeability being the output variable. The
experimental data was divided into training (70%; 39 samples), validation (15%; 8 samples),
and testing (15%; 8 samples) sets. The number of hidden layers and hidden neurons of
the trained ANN model substantially impacts its predictive performance. Therefore, care-
fully choosing the number of hidden layers and hidden neurons is critical [43]. MATLAB®

2020b was utilized in this research to develop the FFBPN-based ANN model to predict the
response. The developed model was trained until satisfactory results were obtained. The
best-optimized model was selected based on the highest R-squared value, and lowest mean
squared error (MSE).

Materials 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

 

Figure 2. Process flow of artificial neural networks modelling. 

3. Results and Discussion 

3.1. Statistical Analysis and Model Development 

Design of experiment (DOE) was used to design 55 experimental runs. The results of 

experiments in terms of permeability are shown in Table 3. A central composite design 

(CCD) matrix model was applied to predict the permeability in each experimental run. 

Table 3. Design of experimental runs for the independent variables and response functions. 

Run 

Independent Variables Permeability (L/m2 h bar) 

Disk Rotational 

Speed (rpm) 

Membrane-to-

Disk Gap (cm) 

Organic Loading 

Rate (g COD/m2 d) 
Actual Value Predicted Value 

1 50 3 10 274 273.95 

2 40 2 20 296.5 297.10 

3 50 1 10 300 304.03 

4 40 2 20 298 297.10 

5 40 2 20 297 297.10 

6 30 1 30 276.5 275.86 

7 30 3 30 269 265.95 

8 50 3 10 274 273.95 

9 40 2 37 294 294.10 

10 57 2 20 277 272.31 

11 30 1 10 289.5 286.99 

12 23 2 20 245 249.95 

13 50 3 30 273.5 275.49 

14 40 2 20 297.5 297.10 

15 40 0.3 20 305 303.70 

16 40 2 20 296.5 297.10 

17 50 3 30 274 275.49 

18 30 1 10 289 286.99 

19 40 2 20 298 297.10 

20 40 3.7 20 268 270.07 
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3. Results and Discussion
3.1. Statistical Analysis and Model Development

Design of experiment (DOE) was used to design 55 experimental runs. The results of
experiments in terms of permeability are shown in Table 3. A central composite design
(CCD) matrix model was applied to predict the permeability in each experimental run.
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Table 3. Design of experimental runs for the independent variables and response functions.

Run
Independent Variables Permeability (L/m2 h bar)

Disk Rotational
Speed (rpm)

Membrane-to-Disk
Gap (cm)

Organic Loading
Rate (g COD/m2 d) Actual Value Predicted Value

1 50 3 10 274 273.95
2 40 2 20 296.5 297.10
3 50 1 10 300 304.03
4 40 2 20 298 297.10
5 40 2 20 297 297.10
6 30 1 30 276.5 275.86
7 30 3 30 269 265.95
8 50 3 10 274 273.95
9 40 2 37 294 294.10

10 57 2 20 277 272.31
11 30 1 10 289.5 286.99
12 23 2 20 245 249.95
13 50 3 30 273.5 275.49
14 40 2 20 297.5 297.10
15 40 0.3 20 305 303.70
16 40 2 20 296.5 297.10
17 50 3 30 274 275.49
18 30 1 10 289 286.99
19 40 2 20 298 297.10
20 40 3.7 20 268 270.07
21 40 2 3.2 302 302.16
22 40 2 37 294 294.10
23 40 2 20 297 297.10
24 30 3 10 271 269.16
25 57 2 20 277 272.31
26 50 1 30 295 297.66
27 40 2 20 297.5 297.10
28 40 2 37 294.5 294.10
29 30 1 10 290 286.99
30 30 3 10 271 269.16
31 40 0.3 20 304.5 303.70
32 50 3 30 272 275.49
33 50 3 10 272 273.95
34 30 3 30 269.5 265.95
35 30 3 30 270 265.95
36 40 2 3.2 301.5 302.16
37 30 1 30 277 275.86
38 40 3.7 20 269 270.07
39 57 2 20 278 272.31
40 23 2 20 244 249.95
41 50 1 30 295.5 297.66
42 50 1 10 301 304.03
43 30 3 10 272 269.16
44 40 2 20 296.5 297.10
45 30 1 30 276.5 275.86
46 40 0.3 20 305.5 303.70
47 40 2 20 297 297.10
48 40 3.7 20 268.5 270.07
49 40 2 3.2 302 302.16
50 23 2 20 245 249.95
51 40 2 20 297.5 297.10
52 40 2 20 297 297.10
53 50 1 10 301 304.03
54 50 1 30 296.5 297.66
55 40 2 20 296.5 297.10
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3.2. RSM Model Optimization

A full-fractional, three factorial CCD was applied to examine the effects of three inde-
pendent parameters to model the steady-state membrane permeability. The model analysis
results show that the quadratic model was significant, as the R2 was high (0.9762) and
the probability values were low (p ≤ 0.0001). According to the results of the quadratic
model, 8 out of 9 model terms were significant (p ≤ 0.05). The coded and actual factors for
membrane permeability are shown in Equations (1) and (2).

Steady-state membrane permeability (L/m2 h bar) = 297.10 + 6.65 A − 10.00 B − 2.40 C − 3.06 AB + 1.19 AC
+ 1.98 BC − 12.72 A2 − 3.61 B2 + 0.3632 C2 (1)

Steady-state membrane permeability (L/m2 h bar) = 71.72939 + 11.21426 × Disk rotational speed + 12.74987
× Membrane-to-disk gap − 1.25576 × Organic loading rate − 0.306250 × Disk rotational speed × Membrane-

to-disk gap + 0.011875 × Disk rotational speed × Membrane-to-disk gap + 0.197917 × Membrane-to-disk
gap × Organic loading rate − 0.127182 × Disk rotational speed2 − 3.61425 × Membrane-to-disk gap2 +

0.003632 × Organic loading rate2

(2)

The significant model terms were disk rotational speed (A), membrane-to-disk gap (B),
and organic loading rate (C), the square terms of disk rotational speed (A2) and membrane-
to-disk gap (B2), and the interaction terms of AB, AC, and BC (Table 4). The insignificant
term square of organic loading rate (C2) was removed from the final equations. The au-
thenticity and significance of the model were calculated based on different constraints. The
R2 value determines the quality of fitness of the model. An R2 close to 1 signifies the good
quality of the model, while p ≤ 0.05 defines the significance of the proposed model. In the
current study, the R2 for permeability was 0.9762 while Adj.R2 was 0.9714, respectively. For
a good fitness of model, R2 should be higher than 0.8, and an R2 close to 1 suggests great
accordance between the experimental data and the proposed model data.

Table 4. ANOVA results of the coefficient of quadratic model for permeability.

Source Sum of
Squares Df Mean Square F-Value p-Value Parameter

Significance

Model 13,229.15 9 1469.91 204.66 <0.0001 Significant
A-Disk rotational speed 1809.98 1 1809.98 252.01 <0.0001 -
B-Membrane-to-disk gap 4096.07 1 4096.07 570.32 <0.0001 -
C-Organic loading rate 235.28 1 235.28 32.76 <0.0001 -

AB 225.09 1 225.09 31.34 <0.0001 -
AC 33.84 1 33.84 4.71 0.0353 -
BC 94.01 1 94.01 13.09 0.0007 -
A2 6316.25 1 6316.25 879.45 <0.0001 -
B2 510.08 1 510.08 71.02 <0.0001 -
C2 5.15 1 5.15 0.7173 0.4015 -

Residual 323.19 45 7.18 - - -
Lack of Fit 308.45 5 61.69 167.37 <0.0001 significant
Pure Error 14.74 40 0.3686 - - -
Cor Total 13,552.35 54 -

Other statistical parameters
R2 Adjusted R2 S.D. A.P. C.V. (%) - -

0.9762 0.9714 2.68 47.3233 0.9396 - -

The model precision can be assessed using a diagnostic diagram of predicted vs. actual
values. Figure 3 shows the plot of predicted vs. actual permeability values. All the experi-
mental points lie near the straight line, indicating the consistency of a normal distribution.
A good correlation between the actual and predicted values for the response function
confirms the adequacy of the proposed model.
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3.3. Process Analysis

Figure 4 shows the effects of the operating parameters (disk rotational speed, membrane-
to-disk gap, and organic loading rate) on the permeability in 2-D contour and 3-D response
surface plots.

Figure 4a,d demonstrate the effects of disk rotational speed and membrane-to-disk
gap on the permeability. In these conditions, the organic loading rate was kept constant at
20 g COD/m2 d. The results demonstrate that with the increase to disk rotational speed,
permeability increases because higher shear is generated with increased speed, which re-
moves the deposited foulants from the membrane surface. However, it can be seen from the
figures that, after 45 rpm, the value of permeability decreases. The decline in permeability
was due to a higher shear rate, which shreds the biofilm layer from the rotating disks. The
shredded layer remains suspended as biofilm floc and does not settle easily. The shredded
biofilm layer is deposited at the membrane surface, blocking the membrane pores and
decreasing its permeability [44–46]. The optimum disk rotational speed for the maximum
permeability was around 45 rpm. A less critical effect was observed for membrane-to-disk
gap than disk rotational speed on the permeability. As the membrane-to-disk gap decreases
from 3 cm to 1 cm, the permeability increases because the membrane’s placement near the
disks results in a higher shear being induced at the membrane surface. This result indicates
that a small membrane-to-disk gap results in higher membrane permeability.

Figure 4b,e show the effect of disk rotational speed and organic loading rate on the
permeability when the membrane-to-disk gap was kept constant at 2 cm. The organic
loading rate, which varied from 10 to 30 g COD/m2 d, did not significantly impact the
system’s overall performance. The influent wastewater was readily degraded by the
microorganisms present in the bioreactor. The previous study showed results indicating
a higher biological performance efficiency at a lower hydraulic retention time. The lower
the organic loading rate, the higher the permeability due to efficient microbial activity.

The interaction between the membrane-to-disk gap and organic loading rate is shown
in Figure 4c,f. Both the membrane-to-disk gap and the organic loading rate increases
were directly proportional to permeability. A rise in permeability was observed at lower
membrane-to-disk gaps and higher organic loading rates. Indeed, the membrane perme-
ability increases further at higher organic loading rates. Overall, high values of organic
loading rate and minimum membrane-to-disk gaps favor higher permeability. Our results
showed higher permeability at around the 10 g COD/m2 d organic loading rate and with
a 1 cm membrane-to-disk gap, respectively.
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The results indicate that membrane fouling was significantly dependent on the oper-
ating parameters. Optimal membrane permeability was found at higher disk rotational
speeds, lower membrane-to-disk gaps, and higher organic loading rates. Higher microbial
community growth facilitated the decomposition of the substrate at higher loading rates.
The selection of optimized operating conditions can help obtain higher permeability with
minimum energy demand.
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3.4. Process Optimization

The optimization of membrane permeability under the operating conditions was
performed through process optimization. The highest permeability value was selected
under the optimum operational parameters to optimize the response function. Table 5
shows that the maximum permeability value of 308.4 L/m2 h bar was obtained at the
44 rpm disk rotational speed, the 1.07 cm membrane-to-disk gap, and the 10.2 g COD/m2

d organic loading rate, respectively. Under these conditions, the degree of desirability of
the model was equal to 1.

Table 5. Optimized operational parameter values at maximum permeability.

Variables Optimum Values
Steady-State Permeability (L/m2 h Bar) Error (%) Standard

DeviationPredictive Experimental

Disk rotational speed 44 rpm
309 309.5 0.16 2.68Membrane-to-disk gap 1.07 cm

Organic loading rate 10.2 g COD/m2 d

Two more experiments were performed using the optimum operating conditions to
confirm the achieved results from the experiments and model (Table 6). The experimental
and model membrane permeability obtained from these optimum values were in close
agreement, verifying the precision of the developed model.

Table 6. Permeability response function for the experimental and model values.

Steady-State Permeability
(L/m2 h Bar)

Run Predictive Experimental Error (%) Standard
Deviation

1 143.5 143.00 0.35 0.26
2 137.3 137 0.18 0.13

3.5. Artificial Neural Networks (ANN)

The statistical modeling approach, ANN, was used to improve the accuracy and
reliability of the predicting process. An ANN establishes a complex correlation among
independent and dependent variables and may replace traditional multiple regression
modeling techniques [47]. During the network’s training phase, the Levenberg–Marquardt
algorithm was suitable for the trained network. The ANN model was trained based on the
feed-forward backpropagation iterative method in MATLAB® 2020b. The sigmoid function
”tansig” and the linear activation function ”purlin” were used in the hidden and output
layers. The ”tansig” activation function is given in Equations (3) and (4) [47].

f (x) =
ex − e−x

ex + e−x (3)

xj =
N

∑
i=1

wijyi + bj (4)

where x is the weighted sum of the inputs calculated using weights (w), biases (b), and
outputs (yi).

Various topological networks have been tried by changing the hidden layer neurons
to optimize the network. However, for this study, the trained network with the highest
accuracy and robust predictive ability was found with the architecture of 3-9-1, as given in
Figure 5.
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Figure 5. The architecture of the trained artificial neural networks model.

The regression plots for the developed model for the training, testing, and validating
models are provided in Figure 6. A good correlation can be observed between the actual
data and the values predicted by the model. The model’s performance was also investigated
for the validating and testing datasets of experimental data. Figure 6 shows the actual
vs. predicted values for the training, validation, testing, and comprehensive data sets
with R2 values of 0.99965, 0.99783, 0.99863, and 0.99912, respectively. Furthermore, the
obtained mean squared error (MSE) values were 0.137, 1.44, 1.10, and 0.468 for training,
validation, testing, and overall model development, respectively. These results show that
the anticipated and test values were highly correlated. The higher R2 values and lower
MSE values ensured the robustness of the trained model [48]. The results show that the
developed network was adequately capable of learning the relationship between the input
and output parameters and, therefore, could be applied to predict the optimal operating
conditions for the process.

The RSM and ANN models were compared based on the statistical performance
indices given in Equations (5)–(7) to highlight the predictive ability of the developed
models. The coefficient of determination R2 measures how much of the overall statistical
variance in the observed dataset can be explained by the model, as given in Equation (5).
The MSE given in Equation (6) is the average squared difference between the estimated
values and the actual values. A measure of the overall credibility of the entire spectrum
of the dataset is calculated using the Root Mean Square Error (RMSE). A squared scale
given in Equation (7) makes it responsive to small changes in model outcomes while also
exhibiting strong sensitivities to larger errors at higher magnitudes [2].

R2 =

 ∑N
i=1

(
LPred

i − LExp
i

)(
LPred

i − LExp
i

)
√

∑N
i=1

(
LExp

i − LExp Mean
i

)2√
∑N

i=1
(

LPred
i − LPred Mean

i
)2


2

(5)

MSE =
1
N

N

∑
i=1

(
LExp

i − LPred
i

)2
(6)
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RMSE =

√√√√∑N
i=1

(
LExp

i − LPred
i

)2

N
(7)

where LExp is experimental permeability, LPred is predicted permeability LExp Mean is the
mean of the experimental values, and LPred Mean is the mean of the predicted permeabilities.
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Figure 6. Regression plots for R values with overall R-squared = 0.99824.

The values for these performance indices are given in Table 7. When comparing the
two models, it was evident, based on the statistical indices, that the ANN model outper-
formed the RSM model in prediction capabilities. A higher R2 value was obtained for the
ANN (0.9982) than the RSM (0.9762). An R2 value closer to 1 indicates a good correlation
between the actual and predicted values. The MSE and RMSE values are also lower for
the ANN compared to RSM. This parameter value suggests that the ANN model was more
efficient than RSM in prediction, and therefore that it could predict more accurately the input
and output parameters of the model.

Table 7. Comparison of response surface methodology and artificial neural networks models based
on statistical performance indices.

Statistical Performance Index RSM ANN

R2 0.9762 0.9982
MSE 5.8709 0.4680

RMSE 2.4230 0.6840
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The motions of the disks in the MRBC system induce the secondary flow of liquid
dragged by the disk rotation that scours off foulant effectively from the membrane surface.
As a result, the MRBC had a higher permeability, a very promising result confirming the
effectiveness of the hybridization of RBC and membrane filtration. The distinct perfor-
mances of the MRBC indicate the positive impact of hydrodynamics in membrane fouling
control. The membrane panel in the MRBC was positioned much closer to the rotating disk
and it thus experienced a higher shear rate. In another study, 34.6% higher steady-state
permeability was obtained by exploiting the hydrodynamics near the membrane surface by
the simple projection of air bubbles using a finned spacer [49]. Vibrating the membrane
also demonstrates the effectiveness of the shear rates for the removal of macromolecules,
colloids, and other foulants from the membrane surface [10]. These studies utilized energy-
intensive coarse bubble aeration and membrane vibration to generate the shear rates and
to impose membrane fouling control.

The rate of rotational speed was, however, limited, to avoid the “seeding effect”,
a phenomenon of biofilm detachment due to centrifugal forces [50]. The highest value
of steady-state permeability observed was at a rotational speed of 44 rpm. Unlike other
rotary disk systems that use a separate membrane fouling control (which is another energy
consuming factor, as noted by [4]), the MRBC configuration utilizes the existing disk
rotation in the conventional RBC for membrane fouling control and thus does not consume
extra energy. However, the optimal adjustment of the disk rotational speed is required
because the application of higher rotational speed may result in higher permeability, but
enhanced shear rates may cause media slaughtering (also known as the seedling effect)
which promotes the development of suspended biofilm, and therefore membrane fouling.

The positive effect of hydrodynamics on membrane fouling control, as demonstrated
in this study, were extensively been reported for MBRs [51] either via liquid secondary flow
or through the addition of cleaning media, which confirmed our results. The application
of a rotary disk in combination with sponge media enhanced filtration performance in
an anaerobic membrane bioreactor [52]. A sponge-like carrier media in MBR improved
permeability in comparison to a conventional submerged MBR due to its media scouring
impact and carrier circulation [53]. Kim at al. [54] reported that membrane fouling in
an anaerobic fluidized bed bioreactor could be effectively controlled by the addition of
granular activated carbon.

4. Conclusions

Adjusting the hydrodynamics near the membrane surface can significantly dampen
membrane fouling propensity. This study demonstrated an MRBC system to control mem-
brane fouling through the generation of a certain shear rate near the membrane surface.
Membrane optimization is important role because it helps to reduce costs and can lead
to higher profitability. An RSM and an ANN were applied for optimizing membrane
permeability through its operating parameters. The RSM suggested a quadratic model
for the prediction of permeability. ANOVA analysis indicated that all three operating
parameters (disk rotational speed, membrane-to-disk gap, and organic loading rate) signif-
icantly impact the permeability. The results indicated optimum values of a 44 rpm disk
rotational speed, a 1.07 cm membrane-to-disk gap, and a 10.2 g COD/m2 d organic loading
rate would produce the highest membrane permeability of 308.4 L/m2 h bar. An ANN
was applied to investigate the potential of a feed-forward backpropagation network to
predict membrane permeability. An overall R2 of 0.9982 was obtained for the optimized
network, while the RSM resulted in an R2 value of 0.9762. This work demonstrated the
effective use of RSM and ANN modelling techniques to optimize operational parameters.
The findings showed good agreement between the experimental data and the predicted
equation. Therefore, both RSM and ANN can be proposed as valuable tools for optimizing
wastewater treatment processes.
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