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Abstract: This paper presents the results of a static and dynamic tensile test of an Al7.5Mg aluminium
alloy taken from round bars made in the technology of hydrostatic extrusion. It is planned to use
the Al7.5Mg aluminium alloy for joining riveted structures. Based on the obtained results, the
nominal and true characteristics of the Al7.5Mg aluminium alloy, depending on the strain rate in the
range from 0 to 2000 s−1, were developed. The failure criterion for tension was determined. The
material characteristics were approximated by the Johnson–Cook equation, which can be used in
CAE (computer-aided engineering) programs to simulate the impact processes. FEM (finite element
method) simulation of the impact of the hammer on the part of the riveted aircraft structure was per-
formed. The FEM simulation results were compared with the experimental results on a drop hammer
to verify the material model. The following results were obtained: yield strength Re = 395.3 MPa;
strength limit Rm = 523.1 MPa at deformation 0.067; Young’s modulus E = 7.9 × 104 MPa. The
AL7.5Mg alloy after hydro-extrusion has favourable plastic and strength properties.

Keywords: Al7.5Mg aluminium alloy; blunt impact test; static tensile test; dynamic tensile test; FEM
simulation; Johnson–Cook material model

1. Introduction

There are many aspects to consider when constructing and designing any technical
device. Designing machines and devices is based on finding innovative solutions that
will make a given structure unique and different from others. However, it is necessary to
follow certain construction principles, such as functionality, reliability, ergonomics, and
efficiency. Each machine or device should also have a good value for its cost. In the case
of warships, an essential factor is a mass above the centre of gravity [1], and in the case of
aircraft structures, mass is a general factor.

Currently, the world is looking for solutions to reduce the weight of ships. Numerical
and technological methods allow for more accurate calculations, which translates into the
thickness of the structural reinforcements. In contrast, modern technologies such as friction
welding (FSW) [2] translate into a reduction in the weight of joints. Another approach
to weight reduction is using materials with higher specific strength, understood as the
mechanical strength of a given material in relation to the specific weight [3]. Aluminium–
magnesium alloys can undoubtedly be used for the production of rivets. They can probably
also be used in several other machine elements, especially where weight reduction is
necessary for aviation and marine structures or underwater biomimetic vehicles [4,5].
Aluminium alloys have many advantages over steel: their density is 2.9 times lower,
they do not rust in a marine environment, they are non-magnetic, and they conduct heat
perfectly [6].

Unlike in shipbuilding, riveting is still used to connect aircraft structures. This is
due to the low mass of the connecting elements that constitute a significant aircraft mass,
considering the economies of scale [7].
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One of the ideas for reducing the weight of aircraft structures is the use of alloys
with increased strength for rivet materials. This will reduce their diameter and weight.
Increased strength of aluminium alloys can be obtained using Severe Plastic Deformation
(SPD) processes. Such methods include equal channel angular extrusion (ECAE) [8],
equal-channel angular hydro-extrusion (ECAH) [9,10], high-pressure torsion (HPT) [11],
accumulative roll bonding (ARB) [12], repetitive corrugation and straightening (RCS) [13],
and asymmetric rolling (ASR) [14].

2. Materials and Methods

In this study, we tested the aluminium–magnesium alloy Al7.5Mg (7.5% magnesium
content) after the process of hydrostatic extrusion, with the degree of strengthening equal
to έ = 0.86, intended for the production of rivets for aircraft structures. Hydro-extrusion is
one of the many technologies of high plastic deformation, which enables controlled shaping
of the microstructure, thus increasing the strength and plastic properties of the material.
The degree of strengthening was calculated according to the formula [8,11,15–17]:

έ = 2· ln ∅i
∅e

= 2· ln 20 mm
13 mm

= 0.86 (1)

where:
∅i—initial bar diameter; and
∅e—end bar diameter.
The aim of the work is to determine the material characteristics of Al7.5Mg alloys after

hydro-extrusion for numerical calculations. The developed characteristics will then be used
in FEM programs to determine the strength of riveted structures, such as aircraft plating.
Aircraft structures work in challenging conditions. They are also exposed to impacts. At
the design stage of an aircraft structure, it is necessary to perform several numerical tests
and simulations, including fast-changing processes such as impact. Dynamic material
characteristics depending on the strain rate are needed for these simulations. Before
performing the FEM simulation, the characteristics of the material should be verified with
simple laboratory experiments, which will allow determining their suitability.

The static tensile test was carried out on the MTS testing machine, on which standard
samples with a diameter of 8 mm were stretched in accordance with the EN ISO 6892-1:
2016 standard [18]. The nominal characteristics, determined directly from the machine
based on the tensile force and measurement from an extensometer with a working length
of 40 mm, are shown in Figure 1.
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l0 A0 = l A(F)  (2)

Formulas (2)–(6) included in Table 1 determine the true and plastic characteristics 
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Figure 1. Nominal characteristics of the Al7.5Mg aluminium alloy after hydro-extrusion.
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The nominal sizes are as follows:

• Young’s modulus E = 7.9 × 104 MPa
• elastic range of material (σH = σpl=0) A = 258 MPa with strain ε = 0.0032

• Yield stress R0.002 = 392 MPa with strain ε0.002 = 0.0068
• Ultimate Strength Rm = 490 MPa with strain εm = 0.0653
• Fracture Rf = 306 MPa with strain εf = 0.1103

Using the dependence between the true stresses σtrue and nominal stresses σnom, the
volume of the stretched sample during stretching is constant, so:

l0 A0 = l A(F) (2)

Formulas (2)–(6) included in Table 1 determine the true and plastic characteristics [19].
Table 1 contains calculations for selected measuring points.

Table 1. Calculation of true and plastic material characteristics.

Enom
Nominal Strain

-

σnom
Nominal Stress

Mpa

εtrue
True Strain

-

εpl
Plastic Strain

-

σtrue
True Stress

MPa

(3) (4) (5) (6) (7)

εnom = ∆l
l0

σnom = F
A0

εtrue = ln(1 + εnom) εpl = εtrue − σtrue
E σtrue = σnom(1 + εnom)

0.00032 27.3 0.00032 0 27.3

0.00218 177.8 0.00217 0 178.2

0.00285 229.4 0.00285 0 230.0

εH = 0.0032 σH = 258.0 0.00320 0.00001 258.8

0.00355 276.7 0.00354 0.00007 277.7

0.00431 319.1 0.00430 0.00029 320.4

0.00617 382.0 0.00616 0.00134 384.4

εe = 0.0068 Re = 392.6 εe.true = 0.00675 εe.pl = 0.00181 Re.true = 395.3

0.00746 401.5 0.00743 0.00237 404.5

0.01266 429.1 0.01258 0.00714 434.5

0.03251 462.2 0.03199 0.02602 477.2

0.05680 487.7 0.05525 0.04880 515.4

εm = 0.0653 Rm = 490.0 0.06330 0.05677 522.1

0.06678 489.9 0.06465 0.05811 522.6

0.06929 489.2 εm.true = 0.0670 εm.pl = 0.0605 Rm.true = 523.1

0.07451 485.7 0.07187 0.06533 521.9

0.10670 364.4 0.10139 0.09633 403.3

εf = 0.1103 Rf = 305.9 εf.true = 0.1055 εf.pl = 0.1016 Rf.true = 313.3

The Study of Dynamic Mechanical Properties Using a Rotary Hammer

The Fundamentals of Technology Laboratory of the Naval Academy in Gdynia has a
unique stand, a rotary hammer (Figure 2) that enables the dynamic tensile test at speeds in
the range of 10 ÷ 50 m/s. A sample length of 20 mm allows the strain rate to be equal to
500 ÷ 2000 s−1. In Poland, the Silesian University of Technology still has similar laboratory
equipment [20].



Materials 2022, 15, 1920 4 of 17

Materials 2022, 15, x FOR PEER REVIEW 4 of 17 
 

 

0.03251 462.2 0.03199 0.02602 477.2 
0.05680 487.7 0.05525 0.04880 515.4 

εm = 0.0653 Rm = 490.0 0.06330 0.05677 522.1 
0.06678 489.9 0.06465 0.05811 522.6 
0.06929 489.2 εm.true = 0.0670 εm.pl = 0.0605 Rm.true = 523.1 
0.07451 485.7 0.07187 0.06533 521.9 
0.10670 364.4 0.10139 0.09633 403.3 
εf = 0.1103 Rf = 305.9 εf.true = 0.1055 εf.pl = 0.1016 Rf.true = 313.3 

The Study of Dynamic Mechanical Properties Using a Rotary Hammer 
The Fundamentals of Technology Laboratory of the Naval Academy in Gdynia has a 

unique stand, a rotary hammer (Figure 2) that enables the dynamic tensile test at speeds 
in the range of 10 ÷ 50 m/s. A sample length of 20 mm allows the strain rate to be equal to 
500 ÷ 2000 s−1. In Poland, the Silesian University of Technology still has similar laboratory 
equipment [20]. 

 
Figure 2. Rotary hammer station (Fundamentals of Technology Laboratory, Polish Naval Academy) 
and scheme of dynamic tensile test on a rotary hammer. 

The rotary hammer station enables samples to be picked with a strain rate in the 
range of 0 ÷ 2000 s−1. The rate of deformation can be determined from the formula [21]: = = ∙ =  (8)

Table 2 shows the results of sample breaking using a rotary hammer. The strain rates 
in the range of 535–2159 s−1 were obtained, for which the values of the strength limit Rm 
increase to over 631 MPa. 

Table 2. Summary of test results on a rotary hammer. 

Sample 
Name φ 

Measuring 
Length 

Area  
A0 

Breaking 
Force 

Fm 

Hammer 
Rotational 

Speed 

Strain 
Rate 

Dynamic Ultimate 
Strength Rm 

 mm mm mm2 kN m/s s−1 MPa 
Al7.5Mg_v1 5.05 18.69 20.03 12.65 10 535 631.6 
Al7.5Mg_v2 5.04 19.36 19.95 12.80 20 1033 641.6 
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Figure 2. Rotary hammer station (Fundamentals of Technology Laboratory, Polish Naval Academy)
and scheme of dynamic tensile test on a rotary hammer.

The rotary hammer station enables samples to be picked with a strain rate in the range
of 0 ÷ 2000 s−1. The rate of deformation can be determined from the formula [21]:

.
ε =

dε

dt
=

d
dt

(
υ·t
l

)
=

υ

l
(8)

Table 2 shows the results of sample breaking using a rotary hammer. The strain rates
in the range of 535–2159 s−1 were obtained, for which the values of the strength limit Rm
increase to over 631 MPa.

Table 2. Summary of test results on a rotary hammer.

Sample
Name ϕ

Measuring
Length

Area
A0

Breaking Force
Fm

Hammer
Rotational

Speed
Strain Rate

Dynamic
Ultimate

Strength Rm

mm mm mm2 kN m/s s−1 MPa

Al7.5Mg_v1 5.05 18.69 20.03 12.65 10 535 631.6
Al7.5Mg_v2 5.04 19.36 19.95 12.80 20 1033 641.6
Al7.5Mg_v3 5.08 19.33 20.27 13.08 30 1552 645.3
Al7.5Mg_v4 5.06 18.53 20.11 13.07 40 2159 650.0

In CAE programs, functions σtrue = σtrue (εpl ,
.
ε, θ) in the form of a polynomial are

used to describe the plastic characteristic depending on the strain rate and temperature.
The Johnson–Cook constitutive model is widely used in CAE programs [22]. Given is
a pattern:

σpl = (A + Bεn
pl)

[
1 + C ln

( .
ε
.
ε0

)][
1−

(
θ − θ0

θmelt − θ0

)m]
(9)

where:
A—elastic range of the material σpl=0 (εpl ≤ 0.00002), it is often simplified in form

A = Re;
B—hardening parameter;
n—hardening exponent;
C—strain rate coefficient;
εpl—true plastic strain;
.
ε—strain rate;
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.
ε0– quasi-static strain rate (0.0001 s−1);
θ—current material temperature;
θ0—ambient temperature;
θmelt—melting temperature; and
m—thermal softening exponent.
Parameters A, B, C, n, and m can be determined in many ways [21,23–25] from the

transformation of individual members of Equation (9). The results obtained from static and
dynamic tests are substituted. We propose the following algorithm. From the nominal or
real characteristic (in the proportionality range, both characteristics coincide), the coefficient
A is determined: proportionality limit σH = σpl=0 for εpl ≤ 0.00002.

In the first part of Equation (9), there are two unknown coefficients, B and n, con-
stituting a dependent pair. From the transformation of the first term of Equation (9),
we obtain:

B =
Rm,true − A

εn
m,pl

(10)

The pair of coefficients B and n must satisfy Equation (9) at the point Re,true and Rm,true:

Re,true − A
εn

e,pl
=

Rm,true − A
εn

m,pl
= B (11)

Consequently:

n = ln
(

Re,true − A
Rm,true − A

)
/ ln

(
εe,pl

εm,pl

)
(12)

The C coefficient is determined from the second term of Equation (9) for a given strain
rate (Table 3).

C =

(
Rm,true

( .
ε
)

Rm,true
( .
ε0
) − 1

)
/ ln

( .
ε
.
ε0

)
(13)

The actual values of the strength limit are determined from Formula (6) (Table 3).

Rm,true = Rm(1 + εnom) (14)

Table 3. Ultimate strength Rm,nom, Rm,true,
.
ε , Rm,JC,

.
ε, C for various strain rates.

Strain Rate
.
ε0 = 0.0001 s−1 .

ε = 535 s−1 .
ε = 1033 s−1 .

ε = 1552 s−1 .
ε = 2159 s−1

Rm,nom,
.
ε, MPa 490 631 641 645 649

Rm,true,
.
ε, MPa 523 672 683 687 692

Rm,JC,
.
ε, MPa 523 676 682 686 689

C - 0.01847 0.01898 0.01897 0.01916

The average value was assumed constant C = 0.018893. The characteristics of JC for
selected strain rates are shown in Figure 3.

The values for the temperature component can be taken based on the literature [21,26,27].
They are similar for most steels, so:

• Ambient temperature θ0 = 293.15 K;
• Melting temperature θtop = 850 ÷ 855 K;
• Thermal coefficient m = 1.3 ÷ 1.7.
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Figure 3. Failure diagram of the true characteristics of Al7.5Mg (σtrue− εtrue).

3. The Failure Mechanism for AL7.5Mg

The material failure model used in CAE programs is detailed in the works [21,28–31].
The value of the destructive deformation is a function of the so-called stress state indicator
ηTRIAX (stress triaxiality). It is the ratio of the pressure being the mean of the principal
stresses to the Huber–Mises–Hencky (HMH) reduced stress σHMH [28,29,31].

ηTRIAX =
p

σHMH
(15)

where:
p =

1
3
(
σx + σy + σz

)
σHMH =

1√
2

√(
σx − σy

)2
+
(
σy − σz

)2
+ (σz − σx)

2 + 6
(
τxy2 + τzy2 + τxz2

)
The triaxiality coefficient is an excellent identifier for the state of stress in complex

states where it is difficult to discern whether an element is in compression, tension, bending,
or twisting. For the uniaxial stretching state, the value of the triaxiality coefficient is equal
to 0.33 (Table 4).
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Table 4. The values of the triaxiality coefficient for selected 3D cases [32].
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The failure mechanism for AL7.5Mg is shown in Figure 3, where 0–1 is the elastic
range, 1–2 is the plastic range (hardening), and 2 is the initiation of the destruction process.
Above 2, if the material model has no failure criteria, the stresses will vary to point 5 and
beyond. If the load in point 2 disappears, the deformation will drop to point 7 along path
2–7 parallel to path 0–1. In the failure model, point 5 is above point 3 in curves 2–4. This
is where strength (softening) is lost. The 2–4 degradation or failure curve is defined by
parameter d, which takes values from 0 to 1. The stress on the degradation curve is:

σ = (1− d)σ (16)

The material fracture occurs in point 4 after reaching the value of the fracture defor-
mation ε

pl
failure. However, if the element breaks or the forces loading the element disappear,

e.g., in point 3 during the degradation of the material on the curve 2–4, then the remaining
elastic forces will reduce its deformation to point 6 along the 3–6 path, which is not parallel
to the 0–1 path. The evolution of failure determines the degree of degradation at which
material failure will occur. The value d = 0 means that the plastic stress has reached the
value of Rm, but the material has not yet been degraded, while the value d = 1 means
complete degradation of the material. The failure evolution is described as a function of
the plastic displacement of the upl, defined as [33]:

upl = L·εpl (17)

where L is the characteristic length of the FEM element.
The rate of evolution of failure describes the path along which material degradation

develops. In CAE programs, linear, exponential, and tabular descriptions are adopted. The
linear relationship is expressed as the ratio of plastic displacement to failure displacement:

d =
upl

ufailure
(18)

Table 5 lists the points from the diagram in Figure 3, based on which the failure
parameters for tensile strength of Al7.5Mg were determined.

Table 5. The values in Figure 3 used in the calculations.

Point Label Strain Stress Remarks

εel, - σtrue, MPa

A 0.0040 258.0 Elastic range of the material σH = σpl=0

1 0.0068 395.3 Yield point Re
2 0.0671 523.1 Ultimate tensile strength Rm
3 0.1055 313.3 Sample fracture
4 0.1140 0.00 d = 1 material total degradation
5 0.1055 550.1 Stresses in the material model without failure parameters
6 0.0987 0.00 Fracture deformation
7 0.0590 0.00 Deformation at ultimate strength Rm, d = 0



Materials 2022, 15, 1920 8 of 17

Following these parameters, calculations were carried out for uniaxial stretching:

εfailure = ε4 − ε7 = 0.114− 0.059 = 0.055

dσ = σ5 − σ3 = 550.1− 313.3 = 346.1 MPa

since σ = (1− d)σ so d = 1− σ

σ
= 1− 313.3

550.1
= 0.4304

E′ = (1− d)E = (1− 0.4304)·79.9 = 45.5 Gpa

ufailure = 0.055· L

Summarizing the tested Al7.5Mg can be described by the following equations:
Young’s modulus: E = 79.9 GPa
Johnson–Cook Model:

σ =
(

258 + 448.7·ε0.1877
)[

1 + 0.01889 · ln
( .

ε

0.0001

)][
1−

(
θ − 293.15

855

)1.3
]

Failure parameters:
d = 0.4304; εfailure = 0.055; ηTriax = 0.33.

4. Material Data of the Elements of the Aircraft Structure

Rivets are the main research object in this work. For this reason, simplified bilinear
material models were adopted for the remaining elements of the aircraft structure. The
plating and reinforcement profile are made of the aluminium alloy 7075-T6 with the
following mechanical properties:

• Young’s modulus E = 71.7 GPa;
• Yield stress R0.002 = 463 MPa;
• Strength limit Rm = 530 MPa;
• Poisson number ν = 0.33; and
• Density ρ = 2810 kg/m3.

The material of the hammer and support is made of high-strength steel with the
following mechanical properties:

• Young’s modulus E = 2.09 × 105 MPa;
• Yield stress Re = 665 MPa;
• Strength limit Rm = 776 MPa;
• Poisson number ν = 0.33; and
• Density ρ = 7850 kg/m3.

5. FEM Simulation of the Impact Strength of Riveted Aircraft Structure

The obtained model of the AL7.5Mg alloy should be verified. For this purpose, we
performed a FEM simulation of the strength of the riveted aircraft structure, loaded with
the impact of the drop hammer. The results of the FEM simulation were compared with the
results of the same experiment.

5.1. Research Object, Its Geometry and Discretisation

The test object is a fragment of the aircraft plating made of the 7075-T6 aluminium
alloy with dimensions of 120× 148× 0.8 mm. It is connected with six rivets with a diameter
of 3 mm with an S-shaped reinforcing profile with dimensions of 16 × 25 × 20 × 1.6 mm.
The rivets are symmetrically spaced every 23.5 mm. The aluminium alloy Al7.5Mg after
the hydro-extrusion process was proposed as a material for rivets. The geometry of these
elements and the basic dimensions are shown in Figure 4. A fragment of the aircraft
structure will be subjected to the impact of the drop hammer.
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In the Fundamentals of Technology Laboratory of the Naval Academy (AMW) in
Gdynia (Poland), an experiment was conducted on an identical object loaded with a drop
bumper. The aircraft structure was hit by a 35.81 kg bumper falling from a height of 30 cm
to its flat side (Figure 5). At the moment of impact (contact), the bumper reached a speed of
2.42 m/s.
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The geometry of individual elements of the aircraft structure was reflected in the CAD
program, where it was also assembled into a set (Figure 6). It was exported to the CAE
program, where steel supports and a bumper were reflected. The entire structure with
supports and a hammer was discretised by 124,643 linear eight-node hexagonal elements
delimited in space by 140,899 nodes, giving 845,394 degrees of freedom (Figure 6). Each
rivet was divided into 16,852 elements delimited in space by 18,738 nodes. The size of the
rivet mesh is L = 0.2 mm.
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5.2. Boundary Conditions and Loads

The following boundary conditions were assumed: all displacements were suspended
on opposite surfaces with a rectangular base on which the sample rests. The hammer
was given an initial velocity at the moment of impact of 2.42 m/s and made to ensure
vertical movement. In addition, all elements were mass-loaded with the acceleration due to
gravity of 9.81 m/s, which is a gravitational load. All individual parts were given “general
contact” interactions in the assembly, i.e., mutual interactions between all elements. The
symmetry of the task was used, and half of the structure was solved. Displacements in the
perpendicular direction and rotations in planes perpendicular to the plane of symmetry
were obtained from all nodes lying on the plane of symmetry (Figure 7).
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5.3. Equation of Motion

Due to the impact nature of the load, material nonlinearities, and interactions between
structural elements, the FEM dynamic equation of motion (dynamic explicit analysis) was
solved using the Newmark numerical integration method in the form of:

M(U)
..
U + C

.
U + K

(
U,

.
ε, εpl , εfailure

)
U = F(v(t), m, BC, Cint, t) + G

U(t0) = U0
.

U(t0) =
.

U0

(19)

where:
K—structure stiffness matrix;
M—inertia matrix;
C = αM + βK—damping matrix, where α and β are constant coefficients;
U,

.
U,

..
U—vector of displacement, velocity and acceleration;

U0,
.

U0—initial conditions, displacements and velocities;
F—vector of loads;
.
ε—strain rate;
εpl—vector of plastic strains (JC model);
εfailure—failure parameters f (d, ηTriax);
v(t)—hammer speed;
m—the mass of the bumper;
BC—the influence of boundary conditions;
Cint—interactions and contact forces between colliding structural elements; and
G—the force of gravity

5.4. The Time Step

One of the problems in the numerical integration of motion equations is selecting the
appropriate time step, which depends on the structure elements’ elasticity modulus and
material density [35]. The time step value is the ratio of the smallest size in single-element
mesh to the speed of the elastic (acoustic) wave propagation in the element material, i.e.,

∆t =
h
a

(20)

where:
h—the smallest size of single element mesh; and
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a =
√

E
ρ —elastic (acoustic) wave velocity.

For aluminium, the speed of sound is approximately 5100 m/s. In the aircraft structure,
the smallest size in the mesh of finite elements has rivets h = 0.2 mm, so the required time
step must be less than 3.92 × 10−8 s.

6. FEM Simulation Results—Rivets Made of Al7.5Mg Alloy

Only selected results are presented, mainly the HMH reduced stresses (Figure 8). The
focus is on stresses in rivets, as they are of extreme value. The stresses of the HMH exceed
the limits of their strength and break as a result. The form of deformation is similar to the
results of the experiment (Figure 9). Figure 10 shows the shape of the aircraft structure after
impact and in rivets.
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Figures 11 and 12 show the development of deformation and the HMH reduced stress
state in the extreme rivets.
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Figure 11. Deformation and distribution of HMH (MPa) reduced stresses in extreme rivets; t = 5, 10,
20, 30, 40, 48 ms.
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Figure 13 shows the failure criterion in extreme rivets at selected time moments.
Already in 3 ms, it reaches the value of 1 in several finite elements and develops into the
following elements, covering the entire rivet core in 20 ms.
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Figure 13. Development of destruction in the elements of the extreme rivets; t = 3, 5, 6, 8, 20, 39 ms.

In the rivet elements, the average strain rates oscillate within the limits of 0–2000 s−1,
temporarily reaching the values of 5000 s−1, while locally, in the broken elements, the strain
rates reach a value of up to 43,700 s−1 (Figure 14).
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7. Discussion

The simulation results for a fragment of the aircraft structure were compared with
the experiment results. Satisfying compliance of the deformation state after impact was
obtained. This confirms the correctness of the modelled task and description of the tested
material, the AL7.5Mg alloy after hydro-extrusion.

The extreme rivets were broken, but it should be noted that a fragment of the structure
was analysed. The rivets will probably not fail in the continuous plating, with an impact
of similar parameters, but the structure is likely to become unsealed. The internal rivets
withstand the set load due to aluminium’s relatively high strength limit and high plasticity.
The static strength limit is 523 MPa, and at deformation rates over 500 s−1, it increases over
670 MPa. With rivets of larger diameter, they will not break.

In this paper, the material characteristics of the tested material were developed for
uniaxial stretching. The triaxiality coefficient identifies the plastic failure depending on
the stress state, the value of which is 1/3, and for uniaxial compression, the value is 1/3.
Other values of the triaxiality factor can be obtained by stretching the sample with a
notch. The shape of the notch changes the direction of the forces, which was shown in the
works [36–38], which investigated samples with a notch. In these studies, the triaxiality
coefficient determined by the Bridgman equation [15] was used to identify the direction of
the forces:

ηTRIAX =
1
3
+ ln

( r
2R

+ 1
)

(21)

where (Figure 15):
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r—radius of the smallest cross-sectional area, mm; and
R—notch radius, mm.
The tests of the Al7.5Mg aluminium alloy will be continued in order to complete the

material characteristics for the remaining values of the triaxiality coefficient, which will be
the subject of the next article.

The characteristics of the Al7.5Mg alloy presented here and verified can be used to
simulate much more complex structures and objects, which requires appropriate computing
power. The presented task was calculated on an 8-core PC (i7—2.80 GHz) and lasted about
20 h.

8. Conclusions

Strength tests carried out in the laboratory allowed us to determine the mechanical
properties of the AL7.5Mg alloy after hydro-extrusion in the deformation speed range of
0–2000 s−1. The following results were obtained: yield strength Re = 395.3 MPa; strength
limit Rm = 523.1 MPa at deformation 0.067; Young’s modulus E = 7.9 × 104 MPa. The
AL7.5Mg alloy after hydro-extrusion has favourable plastic and strength properties.

Based on the above research, a constitutive model of Johnson–Cook AL7.5Mg was
developed, which is ready for use in CAE programs.

The increase in the strain rate above 2000 s−1 increases the strength of the tested alloy
to 690 MPa.

The failure parameters for tensile strength (η = 0.33) were determined. The same
parameters were adopted for compression for η = −0.33. Failure parameters: d = 0.4304;
εfailure = 0.055. For the remaining values of the η coefficient, tensile tests of the notched
samples should be carried out using the Bridgman equation [15].

The use of rivets made of Al7.5Mg alloys subjected to SPD processes may contribute to
the reduction in the cross-sectional area of the joints of aircraft structures. This will reduce
the weight of the aircraft.

The presented characteristics constitute a ready-made solution to be implemented in
CAE programs. They do not deal with the influence of machining on mechanical properties,
but represent an engineering solution for implementation in calculations related to the use
of Al7.5Mg alloys.

The correctness of the task can be verified only by an actual experiment. When
designing individual objects, e.g., ships and vehicles, so-called crash tests are impossible or
too expensive in many cases. FEM simulations are the only source of information about the
behaviour of the structure under dynamic loads.
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20. Pawlicki, J.; Rodak, K.; Płachta, A. Plastyczność wybranych materiałów metalicznych w warunkach dynamicznego odkształcania.
Zesz. Nauk. Transp./Politech. Śląska 2014, 83, 173–182.
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35. Dobrociński, S. Stability of Solutions to the Problems of Impact Resistance of Structures, (in Polish, Stabilność Rozwiązań Zagadnień
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