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Abstract: To investigate atomic oxygen effects on tribological properties of Mo/MoS2-Pb-PbS film
and further enlarge application range, atomic oxygen exposure tests were carried out for 5 h, 10 h,
15 h, and 20 h by the atomic oxygen simulator with atomic oxygen flux of 2.5 × 1015 atoms/cm2·s.
The exposure time in test was equivalent to the atomic oxygen cumulative flux for 159.25 h, 318.5 h,
477.75 h, and 637 h at the height of 400 km in space. Then, the vacuum friction test of Mo/MoS2-Pb-
PbS thin film was performed under the 6 N load and 100 r/min. By SEM, TEM, and XPS analysis of
the surface of the film after atomic oxygen erosion, it was observed that atomic oxygen could cause
serious oxidation on the surface of Mo/MoS2-Pb-PbS film, and the contents of MoS2, PbS, and Pb,
which were lubricating components, were significantly reduced, and oxides were generated. From
AES analysis and the variation in the main element content, Mo/MoS2-Pb-PbS thin film showed
self-protection ability in an atomic oxygen environment. Hard oxide generated after atomic oxygen
erosion such as MoO3 and Pb3O4 could cause the friction coefficient slight fluctuations, but the
average friction coefficient was in a stable state.

Keywords: atomic oxygen; Mo/MoS2-Pb-PbS composite film; oxide; lubricating components

1. Introduction

Friction parts are the important component of space equipment such as manipulator
arms, solar arrays, satellite attitude adjustment mechanisms, and driving mechanisms for
space exploration instruments and communication antennas, etc. [1,2]. The space envi-
ronment factors such as atomic oxygen (the abbreviation is AO), vacuum, and irradiation
directly affect the friction lubrication performance. At the same time, the space friction
device has almost no maintainability in the service cycle; hence, the space lubrication
materials put forward higher requirements. When spacecrafts are at the speed of about 8
km/s in low earth orbit (LEO), the AO density on the windward surface of the spacecraft
will increase to the order of 1012–1015 atoms/cm2·s, and the collision kinetic energy is as
high as 5 eV, which is equivalent to the high temperature effect of 4.8 × 104 K [3,4]. This
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energy value is high enough to break the chemical bonds of most materials commonly
used in space applications. Therefore, AO is considered as one of the most dangerous
environmental factors in LEO. Further research on the damage mechanism of material
tribological properties under AO can ensure the reliability of space equipment [5,6].

MoS2 is widely used as lubricating film in space components because of its ultralow
friction in ultrahigh vacuum and inert gas environment [7–9]. However, MoS2 film has a
high density of pores structures along the boundary of columnar grain, which provides a
reaction highway to the erosion process; MoS2 film can be oxidized easily by AO so that
lubrication properties of MoS2 film is weakened. During space service, components are
inevitably bombarded by AO, which requires the coating to have high oxidation resistance.
To improve oxidation resistance and tribological properties of MoS2 film, researchers have
explored metal and ceramic incorporated as well as multilayer structures by element doping
modification such as Ti, Cr, Au, Al, and Nb [10–12]. There were no obvious changes in the
morphology, phase structure, element composition, and friction property observed from
the space exposed and non-exposed composite films. So, it indicated the composite film
can exhibit better anti-oxidation ability when exposed in an LEO environment. Researchers
have investigated the structure and property changes in MoS2 film exposed to AO flux,
which has a similar density and energy to that of the low earth orbit. The pure molybdenum
disulfide film system has been studied by Wang P, the result showed the diffusion of AO
can reach 600 nm, which is much higher than the depth of AO at energy (5 eV), and is
also higher than the 2–5 nm considered in the common literature [13,14]. Meanwhile, they
found that revising the MoS2 lubricant film by doping Ti atoms or especially fabricating in
an MoS2/Ti multilayer structure can effectively improve the film resistance to oxidation
in AO exposure [15]. Liam S. Morrissey [16] simulated the impact of AO on silver and
aluminum using the Reax FF force field in molecular dynamics. The results showed that
although erosion is an important parameter to measure the damage of materials by high
energy impact, it is not enough to describe the damage amount and state of the remaining
substrate. HaiFu Jiang [17] researched reduced graphene oxide paper (rGOP)’s surface
structure and resistance characteristics by AO (AO) in a ground-based simulation device.
They found the resistance data showed that R0/R has a linear relationship with the AO
flux density. The maximum AO detect fluence reached 5 × 1019 atom/cm3 when the rGOP
thickness was 0.8 µm, which implies that greater thickness is expected to improve space
service life of rGOP. In most of the research, a ground-based AO (AO) simulation facility
was used to erode lubricated film, molecular dynamics was also a helpful tool to simulate
the AO erosion process. In order to improve oxidation resistance and good lubricating
in air, Ren [18] deposited MoS2/Pb–Ti composite and multilayer coatings by unbalanced
magnetron sputtering system. Furthermore, it is rarely mentioned that different AO erosion
times will have an influence on the tribological properties of MoS2 film. In addition, the
influence of Pb as doped elements on the nanocomposite and multilayer structure of MoS2
are still unknown.

In this paper, Mo/MoS2-Pb-PbS composite film was obtained by combining RF mag-
netron sputtering technology with low-temperature ion sulfide. The influence of AO
exposure on the Mo/MoS2-Pb-PbS composite film’s compositional and structural changes
was studied. The samples with Mo/MoS2-Pb-PbS composite film were exposed under a
laboratory AO beam with a flux of 2.5 × 1015 atoms/cm2·s for setting time. The compo-
sitional changes due to AO exposure were evaluated by X-ray diffractometer (XRD) and
energy dispersive X-ray spectrometry (EDS), and the structural evolution was investigated
using scanning electron microscopy. The tribological properties of introducing Pb element
and multilayer structure on the erosion behavior in a vacuum was investigated using
MSTS-1 multifunctional vacuum friction tester. The changes in microstructure and friction
properties of the film after AO erosion were studied, and then the damage mechanism of
AO erosion was analyzed.
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2. Experimental Details
2.1. Materials

In this study, Mo/MoS2-Pb-PbS composite film is combined on 9Cr18 (AISI440C)
substrate by composite process of “PVD coating + low-temperature ion sulfide”, which
is the multi-element composite solid lubricating film with double-layer superimposed
structure. RF magnetron sputtering is firstly used to deposit Mo film (about 100 nm). Then
Pb film is deposited on the Mo film. The papered Mo-Pb film (about 1900 nm) are treated
by low temperature ion sulfurizing in order to obtain Mo/MoS2-Pb-PbS composite film,
which are two-layer stacking structure. The single metal (Mo) bonding layer ensures strong
bearing capacity, as well as high bond strength between film and substrate. Lubricating
surface layer with Mo/MoS2 is the main body as well as dispersing Pb (PbS) particles, so
Mo/MoS2-Pb-PbS composite film possesses low shear strength and good plastic deforma-
tion capacity. The process and parameters of RF magnetron sputtering and low temperature
ion sulfurizing are mentioned in [19].

Compared by the tribological performance under dry air and vacuum environment
(4 × 10−4 Pa) with MSTS-1 multifunctional friction tester [20–22], Mo/MoS2-Pb-PbS com-
posite film shows good friction-reduction and anti-wear properties in vacuum (4 × 10−4 Pa).
Therefore, the tribological performance of Mo/MoS2-Pb-PbS composite film under AO
erosion is investigated in order to verify its workability in space.

2.2. Vacuum AO Simulation Device and Surface Analysis Methods

In order to research space friction performance of Mo/MoS2-Pb-PbS composite film
especially under the AO (AO) erosion, the designed AO source is optimized and integrated
with the MSTS-1 multi-functional vacuum friction and wear tester previously developed by
our research group. The schematic diagram of MSTS-1 can be found in the literature [19].
The main structure of the AO source is composed of a microwave source, circulator, wa-
ter loading, three screw regulator, plasma generator cavity, ECR magnetic field system,
neutralization system, and pumping system, as shown in Figure 1.
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The incident AO flux according to the above calibration procedure was 2.5 × 1015

atoms/cm2·s. During the calibration test, the irradiation distance was 190 mm, and the
microwave output power was set to 300 W with a constant O2 gas pressure prior to plasma
ignition of 0.05 Pa (gas flow 30 sccm). The uniform irradiation area of AO beam is more
than 30 mm × 30 mm, and the average energy of AO is about 5–10 eV under the given
experimental parameters.

Nano-SEM 450 field emission scanning electron microscope (with full quantitative
energy spectrometer EDS, FEI Company, Hillsboro, OR, USA) was used to observe the
microstructure and phases of the film surface, wear tracks, and counter-ground surface in-
gredients.

Rigaku D/MAX 2400 X-ray diffractometer (XRD) (Rigaku, Tokyo, Japan) was mainly
used for phase qualitative and quantitative analysis, which was with Cu target, scan-
ning speed 8◦/min and step length 0.02◦, under 40 kV, 40 mA, incident wavelength
λ = 0.15406 nm.

Relative content and chemical valence of main elements on film surface was measured
by ESCALab220i-XL X-ray photoelectron spectrometer (XPS) (VG Scientific, Waltham, MA,
USA) with Mg-Kα excitation source, power about 300 W. The base pressure was about
3 × 10−9 mbar. The binding energies were referenced to the C1s line at 284.8 eV from
adventitious carbon.

JEM-2100F high-resolution transmission electron microscopy (HRTEM) (Japan Elec-
tronic Corporation, Beijing, China) was used to obtain microstructure of composite films
under acceleration voltage 200 kV, line resolution 0.1 nm, point resolution 0.23 nm.

PHI-700 nano scan Auger Electron Spectrometer (AES) (ULVAC-PHI, Kanagawa,
Japan) was used to detect the distribution of elements in the film along the depth direction,
using coaxial electron gun and CMA energy analyzer, scanning Ar+ gun high voltage 5 kV,
and standard sample is SiO2/Si thermal oxidation.

2.3. Process

The four samples were exposed by the AO simulation device for 5, 10, 15 and 20 h
in order, and the area of AO beam with AO flux value of 2.5 × 1015 atoms/cm2·s was a
circular area with a diameter of 30 mm, and the area is about 7.065 cm2. The exposure time
was equivalent to the AO cumulative flux of exposure for 159.25, 318.5, 477.75 and 637 h
at the height of 400 km in space, where AO beam with a flux is 7.85 × 1013 atoms/cm2·s
under moderate solar activity.

The tribological performances of the Mo/MoS2-Pb-PbS composite film after AO ero-
sion were evaluated by MSTS-1 multifunctional vacuum friction tester (MSTS-1, Beijing,
China) under vacuum environment (5 × 10−3 Pa). During the test, the load was 6 N (Hertz
contact stress was 0.5366 GPa), the speed was 100 rpm, and the friction time was 1200 s.
If the friction coefficient continued to exceed 0.6 in the test process, the test was stopped.
Otherwise, the sliding friction was continuously carried out for 20 min. The upper sample
of MSTS-1 multifunctional vacuum friction tester was a 9Cr18 bearing steel ball with the
dimension of Φ9.525 mm, the hardness is HRC58, and the surface roughness is Ra0.025µm.
The lower sample disc (Φ34 mm × 6 mm) was the Mo/MoS2-Pb-PbS multi-component
composite film.

In order to investigate effect of AO erosion on structural damage and tribological
properties of Mo/MoS2-Pb-PbS thin film, we chose the sample that was exposed for 15 h
with AO as the research subject in following discussion.

3. Results and Discussion
3.1. Composition and Structure

After RF magnetron sputtering and low temperature ion sulfurizing, Mo/MoS2-Pb-
PbS multilayer thin film was exposed to the AO with different incident fluence, and the
corresponding composition and structure changes were investigated by SEM and EDS.
Figure 2 shows the surface morphology and composition of Mo/MoS2-Pb-PbS film before
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and after AO exposure. The microstructure of the film without AO erosion was composed
of nano-scale irregular particles with some pores between particles, as shown by Figure 2a.
After AO erosion for 15 h, about 1.35 × 1020 atom/cm2 incident fluence exposure, the
surface morphology Mo/MoS2-Pb-PbS film is shown by Figure 2d. The composition
Mo/MoS2-Pb-PbS film without AO erosion is shown in Figure 2b. The contents of Mo and
Pb were 41.29% and 38.26%, respectively. After AO erosion, the number of cauliflower-like
large particles on the surface of the film decreased because of flash etching of the AO
beam. Therefore, the film surface became flat and full of pitting. In order to study the
composition changes in Mo/MoS2-Pb-PbS film further, XPS was used to RBS. Figure 2c
shows the XPS results of the valence of the Mo and Pb elements on the surface of Mo/MoS2-
Pb-PbS composite film before AO erosion. As shown in Figure 2c, the main peaks of Mo
element on the surface of the film are mostly located at 230 eV, corresponding to Mo, the
molybdenum compound of MoS2 and MoO3, respectively. Due to the inevitable contact
with air during the preparation of XPS samples, the Mo element on the surface of the
original sample was also partially oxidized to MoO3, but the high content of MoS2 is still
the main component. After AO erosion, the contents of Mo and Pb were decreased to
18.73% and 18.33%, respectively, while the content of O was increased to 47.81%, because
of the oxidizing reaction shown by Figure 2e. Combining with Figure 2f, the content of
MoS2 decreased significantly because a large amount of Mo was oxidized to MoO3 and
metastable MoO2 as shown in Figure 2f. An obvious feature in the spectrum is the increase
in the content of elemental Mo on the film surface caused by AO erosion because of the
sputtering etching effect of high-energy AO removed the S-rich layer on the film surface.
The Pb element on the original film surface mainly exists in the form of elemental Pb, PbS,
and PbO, and the content of PbO was small. After AO erosion, the Pb element on the
film surface was oxidized to Pb3O4 and minor PbSO3, and the spectral peak of elemental
Pb disappeared.
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XPS results reveal clearly that mostly Mo and Pb elements in the film surface were
both oxidized to MoO3 and Pb3O4, respectively. There were rare amounts of the simple
substance Pb, and the content of MoS2 was decreased compared by Pb and Mo elements
atomic percent form Figure 2b,e. The Pb decreased to 18.33% from 38.26 without AO
erosion, and Mo element decreased to 18.73% from 41.29 without AO erosion. In order
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to get more information about the structural evolution, Mo/MoS2-Pb-PbS multilayer film
before and after the AO exposure were investigated by TEM. Figure 3a shows that there
were long-range ordered structures and glassy substances with different orientations and
plane spacings in the Mo/MoS2-Pb-PbS film before AO erosion, and there were obvious
interfaces between different structures. Glassy substances were one crystal structure of 2H,
which is the stable state structure. Molybdenum disulfide crystal belonged to hexagonal
system, with three crystal structures of 1T, 2H, and 3R. 1T-MoS2 and 3R-MoS2 crystal
belonged to a metastable structure. After AO erosion, the original large-scale regular
structure disappeared and the cluster size became smaller, while the glassy region became
larger (the yellow circle region shown in Figure 3), and a small-scale ordered structure
region appeared (the green circle region shown in Figure 3b), which is consistent with the
test results of the decrease in metal (Mo, Pb) and metal sulfide (MoS2, PbS) in Figure 2, and
the new generation of a large number of oxides (MoO3, Pb3O4, etc.). Highly active atomic
oxygen impacts caused great heat, whereby 1T-MoS2 and 3R-MoS2 of metastable states
transformed into stable 2H-MoS2. Hence, the glassy region became larger.
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Figure 3. TEM images of Mo/MoS2-Pb-PbS composite film before and after AO erosion: (a) composite
film without AO erosion, (b) composite film with AO erosion.

In summary, AO with high activity and high energy will cause serious oxidation on
the surface of Mo/MoS2-Pb-PbS film, and the contents of lubricating components MoS2,
PbS, and Pb were significantly reduced, and a large number of oxides was generated.

The element distribution along the depth direction of Mo/MoS2-Pb-PbS composite
film after 15 h AO erosion was shown in Figure 4 by used AES analysis, when the Ar+

sputtering rate is 30 nm/min. The contents of Mo, Pb, and S elements in the top layer
of the film are 18.1, 14.8 and 10.3%, respectively, and the content of O element is as high
as 54.4%. With the sputtering etching depth increasing, the content of the Mo, Pb, and S
elements increased gradually. However, the content of the O element decreased sharply.
When the etching time was 3 min (about 100 nm from the surface), the contents of the S and
Pb elements reached their maximum values 18.52% and 19.72%, respectively. Subsequently,
the content of the S element decreased slowly, and the content of the Pb element was stable
at about 18.5%. After sputtering for 10 min (about 300 nm from the surface), the content of
each element tended to be stable, and the content of the Mo, S, and O elements was stable
at about 65, 9 and 5.5%, respectively. In the range of 60–70 min, the contents of the Mo,
Pb, and S elements were mutated. In this region, the contents of Fe and Cr, which are the
main elements constituting the 9Cr18 matrix, were rapidly increased to about 70% and 10%,
respectively. There were 1800–2100 nm away from the surface of the sample, which was
close to the Mo/MoS2-Pb-PbS film thickness of 2000 nm. The position where the element
mutation occurred was the film–substrate interface.
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Previous research results showed that the S element content of ion-sulfurized film
often had a decreased gradient in the depth direction, and the S element enrichment layer
generally appeared near the surface in general [23]. As shown in Figure 4, the S element
content of the film surface in the range of 300 nm was indeed relatively high, but the
maximum S element content did not appear on the top surface. Because the standard
formation free energy of oxides was low, it is very easy to form oxide. When the AO
beam with high energy is on the surface of Mo/MoS2-Pb-PbS film, AO will “grab” some
metal ions from the metal sulfides. Then MoO3 and Pb3O4 will be formed after AO enters
the surface layer of the film. Therefore, it is obvious that the content of Mo, Pb, and S in
the surface layer of the film will be low, and the content of O is high. However, with the
increase in film depth, the oxidation decreased rapidly [24,25]. Combined with the variation
in the main element content, the Mo/MoS2-Pb-PbS film has a certain self-protection ability
in the AO environment. Oxides such as MoO3 and Pb3O4 can hinder the deep oxidation
of the lubricating material in the subsurface. The thickness of the oxidized area is clearly
about 300 nm.

3.2. Tribological Properties

Because the remarkable tribological properties of Mo/MoS2-Pb-PbS composite film
in a vacuum, the effect of the space environment and especially AO erosion through the
top surface to depth in determining the film tribological properties are also discussed.
Tribological tests were performed on a ball-on-disk tribometer in the low-pressure vacuum
of 5 × 10−3 Pa, and the results are shown in Figure 5. The variation in the friction coefficient
of Mo/MoS2-Pb-PbS film without AO erosion showed obvious three-stage characteristics
of ‘starting-running-stability’. The starting friction coefficient was about 0.075, which rose
rapidly to 0.175 when friction time was 30 s. Then, the friction coefficient decreased rapidly
and stabilized to 0.05 when friction time was 80 s. After which, the fluctuation of the friction
coefficient was very small, and the friction coefficient curve was very stable as shown in
Figure 5c. We found that the starting friction coefficient of Mo/MoS2-Pb-PbS film after AO
erosion increased to 0.2, and then the friction coefficient oscillated violently and decreased
gradually. When the friction test time was about 330 s, the friction coefficient was stable at
about 0.06. During the whole test process, the friction coefficient curve fluctuated slightly
compared with the film before AO erosion.
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Figure 5. Comparison of tribological properties of Mo/MoS2-Pb-PbS composite film before and after
AO treatment: (a) The wear scar morphology before AO erosion. (b) The wear scar morphology after
AO erosion. (c) Friction coefficient curve. (d) 3D wear scar morphology.

Before AO erosion, obvious material transfer was observed on the worn surface of the
film, which was seen as separate deep scars along the sliding direction. A large amount of
material piled up outside the wear scar. In the vacuum environment, because the ambient
medium was rarefied and there was no convection heat dissipation in air, the friction
interface temperature was higher. The surface of the film was further softened during the
friction process. The friction dual ball was embedded in the soft film surface under the
positive pressure, and the soft film was pushed in the sliding to make plastic flow, and
furrows were formed; meanwhile, a large amount of material accumulation was formed on
both sides of the wear scar. Hence, the wear of Mo/MoS2-Pb-PbS film without AO erosion
was dominated by plastic deformation and material transfer, and there were few lubricants
separated from the friction orbit in the form of debris.

After AO erosion, the wear of the film became uneven, and the local material removal
was serious. A plentiful supply of parallel grooves with different depths were distributed
along the sliding direction. Irregular black particles could also be observed on the wear
track. Compared with the three-dimensional morphology and profile data of the wear scars
before and after AO erosion, the depth, width, and volume of the wear scars of the film
after AO erosion were significantly increased, especially the depth of the wear scars, which
increased from 0.618 to 1.287 µm.

Sputtering and oxidation of spacecraft surface materials by AO with high speed and
high activity often lead to significant changes in the quality of materials [26,27]. As shown
in Figure 6a, the quality of Mo/MoS2-Pb-PbS thin film increased after AO erosion at
different times, because the molecular weight of the newly formed oxides, namely, MoO3
and Pb3O4, was larger than that Mo and Pb elements’ sulfides, and some elemental Mo
and Pb were also oxidized. After AO erosion for 5 h, the sample mass increased by 0.6 mg.
When the erosion time was extended to 10 h, the mass of the sample increased to 1.63 mg.
When the erosion time continued to extend, the increase rate of sample mass decreased and
stabilized at 1.7–1.8 mg.
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Figure 6. The mass and tribological properties of Mo/MoS2-Pb-PbS thin film samples after AO
treatment at different times: (a) Mass change. (b) Average friction coefficient and variation in wear
scar depth.

As shown in Figure 6b, after AO erosion for different time, the average friction
coefficient of Mo/MoS2-Pb-PbS film in the stable wear period remained around 0.06. When
the erosion time was less than 15 h, the wear scar depth of the film increased approximately
linearly with the extension of erosion time, but when the erosion time continued to increase
(after 20 h), the wear scar depth no longer increased significantly.

3.3. Discussion

The microstructure of Mo/MoS2-Pb-PbS composite film changed significantly after
AO erosion at different times, and the tribological properties were also degraded to varying
degrees. In this section, we briefly analyze the mechanism of spatial AO on the structural
change and tribological performance degradation of Mo/MoS2–Pb-PbS thin film.

Firstly, the preparation process and composition compatibility of Mo/MoS2-Pb-PbS
thin film determine that the surface roughness of the thin film is relatively large, and
there is a certain gap between the structural unit particles. Mo/MoS2-Pb-PbS thin film
were prepared by the two-step composite process of ‘RF magnetron sputtering and low
temperature ion sulfurization’. The Mo-Pb thin film was formed of atomic groups of
Mo and Pb elements, which were sputtered from the target, in the way of layer-by-layer
stacking and mutual doping. After sulfurization treatment, Mo and Pb in the Mo-Pb thin
film were partially sulfurized; thus, the special structure was formed. The two-phase of Mo
and Pb mixed structure was the bulk of this special structure, and rich in MoS2 and PbS
metal sulfide as lubricating phases. The microstructure of Mo/MoS2-Pb-PbS thin film was
metal and metal compound particles with nano-sized, and their agglomerated micron-sized
particles. However, the important difference from the sputtering deposition of pure MoS2
thin film was that the Mo/MoS2-Pb-PbS thin film lacked coarse columnar crystal growth,
and that there were no structural defects, such as penetrating deep holes, on the surface of
the thin film.

Secondly, AO with high energy and high activity will sputter and etch the film surface;
meanwhile, AO will react with elements on the film surface when the film is irradiated
by AO. The components in Mo/MoS2-Pb-PbS thin film are metals or metal compounds,
and each component is bound by strong chemical bonds. The atomic mass of Mo and
Pb is large, and the kinetic energy is transferred to the surface of the thin film when the
AO hits the surface of the film with high speed. These energies are not enough to destroy
the chemical bonds inside the film, but the long-term physical sputtering will produce an
etching effect on the surface of the film, making the film surface smoother and denser. After
kinetic energy transfer, a lot of oxygen atoms are adsorbed on the surface of the film and
the film surface is oxidized, as shown in Figure 7.
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When AO reached the film surface, it preferentially reacted with particles on the top
of surface, so severe oxidation occurred at the top of the film. With the increased AO
cumulative flux, some of the oxygen atoms will fill the gap of particles on the surface of
the film, and even migrate to the film interior along the shallow defects of the film until
the reaction with the film stops moving. The filling and migrating of AO also oxidizes
the film interior. After AO reacts with Mo, Pb, MoS2, and PbS in the film, a thick and
tightly bonded oxide layer is formed on surface of the film, and the quality of the film is
significantly increased.

Thirdly, according to the molecular random dynamics model and chemical reaction
dynamics model’ of the interaction between AO and the surface of the film, the oxidation
degree of the film in the AO environment was closely related to the diffusion force of AO
into the film and the activation energy of the oxidation reaction. The oxidation ability of
AO in the thermal state was strong. With the increase in erosion, the continuous coverage
of oxide thin layers such as MoO3 and Pb3O4 will be formed on the surface of the film.
These formed dense oxide layers can prevent the diffusion of oxygen atoms into particles.
There was also no penetrating deep hole in the film as a ‘channel’ for oxygen atoms to
diffuse deeply. However, the Mo/MoS2-Pb-PbS thin film will undergo seriously oxidation
under the action of AO, even if the erosion that increased the oxidation damage of the film
was limited to hundreds of nanometers on the surface of the film.

After AO action, the starting friction coefficient of the film Mo/MoS2-Pb-PbS film
increased due to the hard oxide shell formed on the surface of the film. As the sliding
friction progresses, these oxide thin layers were broken and removed quickly. The hard
oxide particles embedded in the surface of the soft lubrication film, which increases the
fluctuation of the friction coefficient; however, the average friction coefficient will not
change significantly in the stable period.

4. Conclusions

The main conclusions are as follows:

1. The quality of the Mo/MoS2-Pb-PbS thin film increased. Partial oxidation occurred
because of AO erosion, and dense oxide film, such as MoO3 and Pb3O4, was formed.

2. The starting friction coefficient of the film increased after AO erosion because the
lubricating of these oxides was weaker, but with the removal of the oxide thin layer,
the friction-reducing lubrication performance of the film recovered quickly.

3. Oxides can also prevent the metal and elements inside the film structure from being
oxidized by AO, and the oxidative damage is limited to hundreds of nanometers in
the surface layer.
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