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Abstract: This review aims to present and discuss the mechanical and environmental properties of
two different type of recycled aggregates obtain from construction and demolition waste (CDW):
(1) Recycled Concrete Aggregates (RCA) and (2) Mixed Recycled Aggregates (MRA). In addition,
the properties of the concrete in the fresh (workability, water/cement ratio) and hardened state
(mechanical and durability properties), as well as the environmental impact of the concrete produced
with the two types of recycled aggregates, are presented and discussed. Due to the heterogeneous
composition of recycled aggregates, the concrete properties can be significantly variable. The system-
atic review concerns scientific papers published from 2010 to 2020 and it shows the importance of
the selection process in order to obtain high quality CDW as well as of the type of recycled aggre-
gates on concrete properties. In particular, recycled concrete aggregates show a better quality and
homogeneity than mixed recycled aggregates that make them more suitable for concrete. This work
presents an overview on the influence of recycled aggregate quality on the physical, mechanical and
environmental properties of concrete.

Keywords: construction and demolition waste; recycled aggregates; compressive strength; durability;
w/c ratio; workability; water absorption; environmental properties

1. Introduction

The construction sector in Europe uses about 50% of the total available raw materials,
thus consuming huge quantities of natural resources and soil from which this material is
extracted [1]. At the same time, according to Eurostat [2], the construction industry is also
the largest waste producer as construction and demolition wastes represent about 35% of
the total wastes produced.

This situation is also reflected at Italian level, where the construction sector in 2019 pro-
duced about 69 million tons of construction and demolition wastes (CDW) [3], representing
about 50% of the total amount of special wastes produced at national level.

During the last few years, many European Countries, no longer having the possibility
to dispose of this type of waste in landfills, and having a lack of extractable quarry material,
have encouraged the development of recovery processes to transform these wastes into
secondary raw materials that can be reused in the construction sector [4].

The practice of reuse has also been promoted in Europe by the Directive 2008/98/EC,
which required Member States to reach a minimum percentage of recovery of CDW of 70%
by 2020.

Many European countries have exceeded this minimum target, even reaching levels
of 100% as in the case of The Netherlands, or 98% as the United Kingdom [5]. Italy
for several years has exceeded this rate, with a constant increase over the years, until
reaching 78% in 2019 [3]. Unfortunately, despite the high recovery rate, the reuse of these
materials in the construction sector for structural elements is limited [6]. In fact, only 7%
of the recycled aggregates (RA) produced is used as an alternative to natural aggregates
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in concrete production, while the remaining 93% is used as a road substrate or for filling
operations, depending on their characteristics like the origin of the aggregates, and the
mechanical and environmental properties [7,8].

The Italian legislation is trying to promote the use of recycled materials in the pro-
duction of concrete by means of the Legislative Decree 11 October 2017 which has made
mandatory the use of at least 5% of recycled material in concrete structures for public pro-
curements. Furthermore, the use of RA as total or partial substitute of natural aggregate is
also allowed by the Italian structural code, which limits the percentage of natural aggregates
replacement, depending on the concrete grade and its possible structural applications [9].

The final use of RAs is related to their specific characteristics. According to Silva
et al. [10], two main types of RAs can be recovered from CDW: (1) Mixed Recycled Ag-
gregates (MRAs), and (2) Recycled Concrete Aggregates (RCA). The first one, which is
produced in higher quantity and is strongly heterogeneous, can hardly be used in struc-
tural concrete [11–14]. Conversely, RCAs are expected to be used to produce structural
concrete as these have a minimum content of recycled concrete of at least 90%, due to
the lower heterogeneity and better mechanical characteristics [15,16]. However, since the
RCAs consist of original aggregate and mortar, they can be considered as similar materials,
but their properties are generally different since they depend on the properties of the
original concrete: It should be underlined that concrete made with RCAs not only decreases
the mechanical properties and durability performance but also reduces the density and
workability at the fresh state [17].

The fears of end users, nowadays, make it difficult to apply these materials in new
construction, therefore, increasing their knowledge, and demonstrating how the required
technical and environmental criteria are respected, how it can be used and what are the
results obtained is an important objective.

Assuming that characteristics are worse, in this research, we wish to analyze the results
obtained in the numerous studies proposed in the last 10 years, showing how concrete
produced with these types of aggregates still has good applicability and how the quality
of these aggregates allows higher value uses compared to fillings and road foundations.
Many literature studies on this topic are presented, but given the high heterogeneity of the
RAs, the results on the mechanical properties of the concrete are very variable.

This article aims to perform a statistical analysis of a large amount of data, examining
the variation of the data and find correlations between RA type and concrete properties.
Furthermore, it aims to analyze how the quality of the RA can affect the mechanical end
environmental properties of concrete and the importance of applying a suitable preliminary
treatment that allows one to obtain selected RCAs will be discussed.

2. Materials and Methods
2.1. Study Selection, Elegibility and Search Strategy

The analysis presented herein was developed on the basis of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [18]. The procedure
consists of a 27-item checklist and a flow diagram [18] that helps to develop a structured
review.

Studies were eligible if they met specified criteria. In particular, the paper selection
was carried out in relation to the selected keywords presented in Table 1. Other types of
aggregates or other recycled materials, like steel slag or fly ashes, were excluded in order to
focus the review exclusively on CDW.

To be eligible for inclusion, studies must be published in scientific papers or review
papers in order to analyze only reliable and verified results, thereby conference papers, book
chapters, conference review books and editorials were excluded. Moreover, the selected
papers must have been published in English between 2010 and 2020, which corresponds to
66% of the total studies found when placing no limitations.
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Table 1. Keyword summary.

Main Keyword Secondary Keyword Third Keyword

Concrete

Recycled Aggregates w/c ratio
Workability

Recycled materials Origin
Dimension

Recycled concrete Compressive Strength
Monolithic or tank test

The search for eligible studies was conducted using Scopus as a search engine with
the combination of keywords listed in Table 1. After an initial screening of study titles and
abstracts, each full paper was examined for eligibility. Subsequently, data were extracted
from the eligible studies and adequately processed and analyzed.

2.2. Data Analysis

Different methodologies for graphical representation were applied for the analysis of
the results of this research. All the results were analyzed and processed using the IBM SPSS
software (version 19, IBM SPSS, USA). For all the results represented, an overview of the
amount of data used in the study was initially given. This graphical representation has been
carried out by using histograms representing the frequency of the analyzed values. This
allows a first analysis of the data by evaluating which are the most representative cases.

The second methodology was based on a box plot according to the representation
of Figure 1. The box is used to define the values of the first and third quartiles, and the
interquartile range (IQR), which represents 50% of the data population. The horizontal line
inside the box, called the median, represents the second quartile. Two vertical lines, called
whiskers, are extended to the extremes of the distribution, and are the minimum and maxi-
mum values of the data population. The dots represent the outliers of the population [11].

Figure 1. Box plot scheme.

Lastly, the third and last method used is the scatterplot, which is used for the graph-
ical representation of the mechanical and physical properties analyzed in the research.
Scatterplots are used to determine the intensity of a relationship between two numerical
variables. The x-axis represents the independent variable, and the y-axis represents the
dependent variable.
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2.3. Study Selection

Initially a total of 5122 studies were identified. After the first screening and deletion
of studies falling into the categories of book chapter, conference reviews and articles and
keeping only published papers and reviews, 3720 studies remained.

After applying the second eligibility criterion, which provides for the sole inclusion of
studies published from 2010 to 2020, the number of eligible studies was reduced from 3720
to 3406. Finally, after excluding non-English published studies, the final number of eligible
studies was 3085. After removing duplicates, 1682 scientific articles remained. Of these,
about 1000 studies were discarded after reviewing the titles and abstracts as these papers
did not match the target of the study.

Regarding the 1000 discarded papers, they either did not meet the requirements or did
not refer to the keywords used to find them. In fact, most of the studies were not related
to concrete produced with Ras at all, but rather to other types of aggregates obtained
from other recycled materials. Other studies were discarded because the main topic was a
statistical analysis and not actual tests on concrete cubes or cylinders. The last inclusion
criterion led to all the papers having as topic road and rail construction being discarded.

The full text of the remaining 680 publications was examined in detail. A total of
640 studies did not meet the previously described inclusion criteria, while 42 studies did
meet the inclusion criteria and were analyzed in this review. The corresponding PRISMA
flow chart is presented in Figure 2.

Figure 2. PRISMA flow diagram summarizing the study’s article selection.

3. Results
3.1. Water Absorption of Reycled Aggregates

Water absorption of RAs is a fundamental characteristic that must be considered in
the mix-design of concrete-containing RAs. Several characteristics directly depend on this
factor. In particular, compared to natural aggregates, the high water absorption of RAs
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strongly affects the concrete workability and everything that is directly related to it, such
as the water/cement ratio (w/c ratio), the compressive strength and durability properties
of concrete [19–23]. The graphs in Figure 3 show the amount of data analyzed regarding
water absorption of RAs and natural aggregates, respectively.

Figure 3. Number of water absorption data analyzed for (a) natural aggregates and (b) RAs [20,24–38].

In both cases, 161 specimens were analyzed. As shown in Table 2, the experimental
data demonstrates a clear difference in water absorption between the two types of aggre-
gates. In fact, the latter shows the average water absorption value for natural aggregates is
markedly lower than the one of RAs, and the maximum and minimum absorption values
also follow the same trend. Furthermore, from the histograms in Figure 3a it can be ob-
served that about 48% of natural aggregates have a water absorption lower than 1%, while
for the remaining 52%, 25% have an absorption value lower than 2%. On the contrary, 68%
of RA have a water absorption lower than 5% and about 50% of the 161 analyzed values
are in the range between 4% and 5% (Figure 3b).

Table 2. Average, maximum and minimum water absorption values.

Natural Aggregate WA [%] Recycled Aggregate WA [%]

Average value 1.71 5.13
Minimum 0.05 2.70
Maximum 5.20 14.70

This confirms the significant difference in water absorption between the two types of
aggregates. Generally, this increase in water absorption is due to the adherent mortar which
is responsible for the porous structure of the RAs [22,31,37,39–43]. Another reason is the
presence of microcracks on the surface of the RAs caused by the crushing process [44,45].

In order to decrease the water absorption, Pedro et al. [46] stated that increasing the
crushing process could reduce the amount of attached mortar. This consideration was also
confirmed by Nagataki et al. [44] who stated that, by increasing the crushing process of
RAs up to three times, the quality of the recycled aggregate can be improved.

Moreover, the water absorption data (161 specimens analyzed for both types of RA)
were compared between MRAs and RCAs, as shown in Figure 4. It can be observed that,
MRAs have a high dispersion, as data are distributed between 4% to 15%, and 50% of them
vary between about 4% and 8%. On the contrary, RCAs show a clear lower dispersion
having 50% of the data concentrated around the median value of 5%. This result agrees
with several studies showing that RCAs, have less water absorption than MRAs due to
a lower presence of masonry or mortar [45,47,48]. Moreover, some values, classified as
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outliers, represented by circles, can have slightly higher and lower values with respect to
the median value.

Figure 4. Comparison of water absorption values between MRAs and RCAs [20,24–38].

Ras’ water absorption depends on the aggregates’ size as well as the strength of the
initial concrete. In fact, a lower aggregates size leads to an increase of porosity on the
aggregate surfaces and, consequently, to an increase in the water absorption. The same
occurs with the strength class of the original concrete; in fact, RCAs from high strength
concrete have a less porous structure on the surface of the aggregates which leads to a
decrease of water absorption [23,31,49–51]. Due to the high-water absorption of the RAs,
additional water is necessary for concrete mixing in order to guarantee the required concrete
workability [52].

3.2. Water/Cement Ratio of Concrete with Recycled Aggregates

The water/cement (w/c) ratio is an important parameter for the concrete mix design,
and it is strictly related to the water absorption of RA. Figure 5 presents the specimens
(total number of 374) with RA providing information on the w/c ratio.

It can be observed that the w/c values vary from a minimum of 0.29 up to a maximum
of 0.97, and the most studied values are 0.40, 0.45 and 0.50, corresponding to the most
representative values for construction applications.

Figure 6 shows the decrease of compressive strength of the concrete mixtures produced
with MRAs and RCAs, as compared to concrete produced with natural aggregates, for the
w/c ratios most commonly used in construction (0.4–0.6).

It can be noticed that, for w/c ratios of 0.4, 0.45 and 0.5, the concrete produced with
RCAs (green boxes) has a lower reduction of compressive strength than the corresponding
concrete manufactured with MRAs.

For these three w/c values, the decrease of compressive strength for concrete made
with RCAs is about 10% (average value), while for MRAs it varies from 10 to 20%. Data
for a w/c ratio of 0.6 refer to RCAs only; it can be noticed that the average value of the
compressive strength decrease is around 20%.

In summary, the relationship between the compressive strength and w/c shows
high variability in the case of concrete with MRAs, probably due to their heterogeneous
characteristics, especially for water adsorption.
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Figure 5. Number of data of water/cement ratio for concrete mixtures containing RAs [19–21,23–
32,34–36,41,43,53–68].

Figure 6. Decrease of compressive strength of concrete with RAs with respect to natural concrete
with different water/cement ratios [19–21,23–25,27,29,31,34,41,55–61,67,68].

The experimental scatter can be due also to the addition of superplasticizers used
for concrete workability, which enhances the mechanical properties. For instance, Wagih
et al. [69] stated that the use of superplasticizer could decrease the w/c ratio by 12% which,
consequently, produces a lower compressive strength decrease.

3.3. Workability of Concrete with Recycled Aggregates

An important property for fresh concrete, that has a strong influence on mechanical
characteristics and durability, directly connected also to the water absorption and wa-
ter/cement ratio, is the workability of concrete [20,28]. Figure 7 presents the values related
to the workability of concrete containing RAs.
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Figure 7. Number of cases of slump of concrete made with RAs analyzed [19–21,23–25,27,29–32,34,
35,54,57,63,65,70].

A total of 259 workability values according to UNI EN 206) [71] were analyzed. The
studies evidenced two different types of approaches. In the first approach concrete mix
designs were carried out in order to obtain a certain target workability [64,72], while in
the second case, the mix design did not take it into account the workability; the latter was
simply measured as a fresh concrete property.

The analysis of the literature shows that, among the several factors that affect the
workability of concrete, water absorption is the most important one [31,55,62]. In fact, con-
crete workability is strictly related to the degree of substitution; high levels of substitution
are related to low workability values [19,24].

Due to the high-water absorption of the RAs, RAs are often pre-saturated [25,29,31]
in order to obtain the target workability without adding high water amount. However,
Hentges et al. [73] stated that the use of pre saturated aggregates could increase the amount
of water and the w/c ratio in cement mixture, thus decreasing its mechanical properties.

Figure 8 shows the slump of concrete with RAs vs. the w/c ratio with evidenced the
different consistency classes (from S1 to S5 as listed according to UNI EN 206) [71]. As
expected, it can be noticed that a w/c ratio increase leads to a corresponding increase of
concrete workability [20,22,31] as well as the experimental scatter and high workability can
be obtained with typical w/c ratios of 0.45–0.55.

The easiest way to enhance concrete workability is the addition of allowed superplas-
ticizers, even for large levels of substitution, achieving slump values close to those of the
reference concrete [61,62].

As stated by Sri et al. [74] and Verian et al. [75], another possible solution to obtain the
same level of workability could be the addition to the recycled concrete mixture of about
10–15% of additional water (with respect to the natural aggregates mixtures).
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Figure 8. Relationship between water/cement ratio and the slump of concrete with RAs and worka-
bility classes expressed by the red horizontal lines [19–21,23–25,27,29–32,34,35,55,57,63,65,70].

3.4. Compressive Strength of Concrete with Recycled Aggregates

Different factors can affect the mechanical compressive strength, including water
absorption, the strength of the original concrete used to produce RAs, the type of RAs used
in the mixture, the quality of these as well as the w/c ratio.

All the results refer to the compressive strength at 28 days, determined on cubic samples,
despite the fact some tests were carried out on cylindrical samples (fck) and transformed
into cubic compressive strength (Rck), assuming the following conventional equation:

Rck = fck/0.83 (1)

Figure 9 shows the decrease of compressive strength for concrete containing RAs
compared to the same concrete mixtures including only natural aggregates (472 values are
available). It can be noted that about 80% of the values show a decrease of the compressive
strength of concrete with RAs. In specimens with a compressive strength increase, concrete
workability was not reported in the following analysis.

Figure 9. Number of data of compressive strength decrease for concrete mixtures containing
RAs [19–38,41,42,52–68,70,72].
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Considering the specimens with a decrease of compressive strength, 34% of them have
a decrease lower than 10%, while a further 34% of the specimens have a decrease lower
than 25%. Figure 10 shows the compressive strength decrease related to the type of RAs
used for the concrete production.

Figure 10. Comparison between MRAs and RCAs compressive strength decrease [19–38,41,42,52–
68,70,72].

It can be observed that concrete mixtures produced with RCAs have a lower decrease
of compressive strength than concrete produced with MRAs. In addition, for all the
replacement ratios analyzed (except for the case of 30% replacement), the median reduction
of compressive strength of concrete with RCAs is lower than that of concrete with MRAs.

The high variability of values for MRAs concrete, with respect to RCAs concrete is
noteworthy. This is due to a lower water absorption of RCAs as compared to MRAs.

This statement is confirmed by Guo et al. [76] who stated that RCA concrete has less
compressive strength decrease than concrete with MRA.

It should be also observed that, during mixing, RAs from CDW tend to crumble into
finer particles, with higher water absorption, and make the gradation of the cement mixture
finer, which, subsequently, provokes a further decrease of concrete strength [56,77].

As mentioned above, there are several factors that influence the decrease of compres-
sive strength. As Thomas et al. [24] stated, the strength of concrete with RA depends on
factors like the cement content, the original strength of the recycled aggregate and the
interfacial transition zone between aggregates which is weaker due to attached mortar,
when using RAs instead of natural aggregates.

Bidabadi et al. [30] and Rashid et al. [31] confirmed this statement, as in fact poor
quality bonding between new cement paste and previous mortar tends to affect concretes’
compressive strength.

According to Eckert et al. [26], in order to decrease the attached mortar on the surface
of RA, and to increase the quality of RAs an intensive crushing process could be applied.

By considering the difference between high and low-quality RAs, a possible explana-
tion is the different distribution of particles coming from concrete with higher strength,
which are less brittle and coarser at the end of the crushing process [31,64]. Another reason
of the strength decrease is the increase of w/c ratio due to larger air gaps after harden-
ing [28,29,45,56]. As far as the replacement percentage is concerned, Table 3 and Figure 11
show the maximum and minimum values of decrease of compressive strength for two
different percentages of RA, namely 50% and 100%.
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Table 3. Maximum and minimum decrease of compressive strength for replacement ratio of 50% and
100% and type of aggregate.

Substitution Percentages
and RA Type

Minimum Compressive
Strength Decrease [%]

Maximum Compressive
Strength Decrease [%]

50% MRAs 0.13 48.11

50% RCAs 2.54 22.50

100% MRAs 2.94 56.83

100% RCAs 0.81 42.20

Figure 11. Comparison between MRAs and RCAs compressive strength decrease for replacement
ratio of 50% and 100% [19–38,41,42,52–68,70,72].

It can be observed that, with 50% substitution, for MRAs the mean value of com-
pressive strength decrease is about 15% while it is lower than 10% when RCAs are used.
With 100% substitution of RA, the difference increases to about 22% and 13%, respectively.
Figure 12 shows the effective compressive strength of the analyzed concretes after RA
substitutions, as obtained from the available papers; once again, it can be observed a lower
scatter of experimental results from concrete produced with RCAs only. It can also be
noticed that concrete compressive strength can be higher than 45 MPa for most of the
replacement ratios for concrete produced with RCAs while, to concrete produced with
MRAs up to 25% of aggregate substitution, compressive strength can be higher than 35 MPa
but it decreases for higher replacement ratios.
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Figure 12. Effective final compressive strength of concrete made with MRAs and RCAs in relation
with the replacement ratio [19–38,41,42,52–68,70,72].

3.5. Other Mechanical Caractheristics
3.5.1. Tensile Strength

A total number of 11 papers were considered for the analysis of tensile and flexural
strength of concrete containing recycled aggregates [55]. Referring to the tensile strength,
recycled aggregates with less attached mortar can be used as a substitute of natural aggre-
gate, producing a concrete with a similar or even better performance [40]. In fact, it has
been confirmed that a smoother surface of the recycled aggregates leads to better tensile
properties [26]. The influence of adhered mortar on concrete properties has been discussed
by some authors, who also found that concrete mixes containing aggregates with a more
porous structure have a lower tensile strength [21,64].

As expected, tensile strength also decreases for increasing values the w/c ratio [24,28,55],
although this decrease is lower than that of the compressive strength [32]. Figure 13 shows
the decrease of tensile strength in concrete made with recycled aggregates from mixed
CDW and from concrete only. Table 4 defined the average decrease of tensile strength
related to the replacement ratio.
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Table 4. Average decrease of tensile strength related to replacement ratio and type of RA.

Type of RA Minimum–Maximum
Replacement Ratio

Tensile Strength
Decrease Reference

MRAs 10–100% 10–64% [31]

MRAs 10–100% 2–13% [54]

RCAs 25–100% 4–14% [24]

MRAs 25–100% 5–35% [60]

MRAs 10–100% 7–28% [22]

RCAs 100% 6% [65]

RCAs 100% 6% [66]

Comparing recycled concrete with the natural one, the average decrease of tensile
strength for concrete containing mixed recycled aggregate increases from 5% to 25% with
increasing the recycled aggregate amount up to the total substitution. Some extreme values,
represented by circles and asterisks, are present and represent values which rarely are
found in the selected studies.

The average decrease of tensile strength for concrete containing MRAs increases
from 5% to 25% when the amount of recycled aggregate increases up to total substitution.
Conversely, a lower decrease of tensile strength is observed if aggregates from recycled
concrete are used, showing a 5% decrease with total substitution.

3.5.2. Elasticty Modulus

Similar results are observed for the elastic modulus since these mechanical properties
are closely related to each other. Also in this case, by increasing the percentage of replace-
ment of natural aggregate with recycled aggregate, the modulus of elasticity generally
decreases [34,35,58]. This is mainly due to the increase in adhered mortar and microcracks
on the surface on the recycled aggregates which leads to an increase in porosity [19,41,66].
Furthermore, Cordinalesi [70] found that elastic modulus decrease is higher for concrete
produced with mixed recycled aggregates than recycled concrete aggregates and lower
values were obtained with increasing the replacement ratio [72].

Also in this case, due to the characteristics of the RAs, some authors found that
increasing w/c ratio from 0.4 to 0.5 leads to a decrease in elasticity modulus up to 12%,
due to an excess of water after the hydration phase that can reduce the stiffness of the
mortar phase in concrete. The latter does not occur if there was an increase of cement in the
mixture [24,54].

3.6. Other Properties

Durability of concrete is the ability to maintain its integrity and its characteristics
during the whole service life. As compared to concrete made with natural aggregates, due
to the attached mortar, shrinkage, chloride penetration and freeze and thaw of RAs concrete
can be reduced [77].

Referring to shrinkage, some studies demonstrate a correlation between the increase
of shrinkage and the replacement percentage of natural aggregates with RAs [26,34,78],
probably due to the mortar attached to the recycled aggregate [34,36]. Some authors
observed the formation of shrinkage cracks during curing of concrete containing RAs [42].
Rashid et al. [31] found that shrinkage can be decreased using special additives in concrete
with RAs, while Duan et al. [40] confirmed that concrete with high quality RA with low
attached mortar had similar behavior as natural concrete.

Density of concrete with RAs was also analyzed in 16 papers. Figure 14 shows results
obtained from different studies and confirmed that density of RAs is lower than the density
of natural aggregates and, consequently, concrete produced with RAs has lower density
than the one with natural aggregates. In particular, as reported in the analyzed studies,
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the average density of RAs is about 2480 kg/m3 while the average density of the natural
aggregates is about 2660 kg/m3 [19,20,26,30,31,43], the lower density is mainly due to the
adhered mortar of RAs [56]. Moreover, some values, classified as outliers and extreme
values, represented by circles and asterisks, can have lower values as 2310 kg/m3.

Figure 14. Comparison of the decrease of density between natural and recycled aggregates [20,21,26,
29,32–38,41,42,66,67,72].

Lavano et al. [20] studied the influence of water/cement ratio on the density of concrete
and found that it does not significantly affect the difference in density between the concrete
with natural and recycled aggregates.

As far as chloride penetration is concerned, some authors observed that, by increasing
the replacement ratio, the resistance of concrete to chloride penetration decreases due
to the higher porosity of RAs [21,58,79]. Duan et al. [40] found that concrete with low
mortar attached on RAs shows similar resistance to chloride penetration as natural concrete.
Moreover, different studies proved that decreasing w/c can lead to a decrease chloride
penetration [58,79].

Referring to the freeze and thaw resistance of concrete, contrasting results were found.
Guo et al. [41] stated that freeze thaw performance for concrete with RAs is lower than
conventional concrete, due to higher water absorption, porosity, and the presence of
attached mortar. On the contrary, Yildirim et al. [79] found that concrete containing 50% of
RAs is comparable to the natural one. Moreover, Tuyan et al. [80] stated that increasing
w/c ratio could worsen the performance due to freezable water in concrete.

3.7. Leaching and Environmental Properties

Environmental behavior of concrete containing RAs was evaluated according to both
leaching of pollutants from the recycled concrete and the whole sustainability of recycled
concrete production. As concerns the leaching of pollutants, Diotti et al. [11,81] found that
RCAs, due to the main presence of high quantities of cement, have an important release
of total chromium with respect to the mixed one. On the other hand, MRAs have a high
release of sulphates due to the presence of ceramic materials and gypsum. Galvin et al. [82]
verified how the use of RA can lead to an increase in the release of pollutants from the
monolithic concrete. The same authors, from the leaching test on RAs, observed a high
level of release for all the regulated metals (Mo, Se, As, Sb, Cr, Zn, Cu, Ni, Pb, Cd, Ba).
However, concrete blocks produced with different replacement percentages of natural
aggregate with RAs (20%, 50% and 100%) showed a similar leaching behavior with respect
to the control one.

Additionally, the analysis of the life cycle and the environmental impacts generated
by the use or production of RA for concrete was investigated. Marinkovic et al. [68] found
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that the process of production of RAs has a slightly higher impact than natural aggregates.
Conversely, Hossain et al. [83] found that the greenhouse gasses emission for the production
of RAs is 58% lower than that of natural aggregate, while the phase of recycled concrete
production drastically increased this impact due to the higher quantity of cement, required
to reach the target mechanical properties. In fact, with 100% substitution with RAs the
emissions of concrete were about 2% lower than the conventional one. Martinez-Lage
et al. [70] determined the difference in environmental impact between the production of
concrete with RCAs and MRAs and found an almost identical impact to that of natural
concrete. The authors found that the impact increases with increasing the transportation
distance of the RAs and the percentages of replacement.

4. Future Perspective

The paper presents a systematic review of literature published within the past 10 years
(from 2010 to 2020) to provide an overview on the main characteristics of concrete with RAs.
The results found in the literature survey presented in this paper show that a sustainable
concrete requires specific rules.

First of all, the difference in properties of natural aggregates with respect to recycled
aggregates from concrete only (RCA) and from mixed construction and demolition waste
(MRA) is mainly driven by the presence of attached mortars on the surfaces of the aggre-
gates. Mortar is responsible for the higher absorption, lower density and lower mechanical
properties of RAs as compared to the natural one. The removal of attached mortar can in-
crease the characteristics of recycled concrete quality, thus reducing the cement content for
reaching the target strength; a possible solution is the increase of the crushing steps without
creating further cracks on the surface. Due to the reduced strength of RA concrete, the
compressive strength should be related to the environmental requirements; therefore, struc-
tural elements requiring lower strength can be made with RAs concrete while structural
elements with higher strength should be made with concrete with natural aggregates.

From an environmental point of view, beside structural safety, designers should carry
out LCA analyses in order to choose the best compressive strength to be adopted for
structural elements. The maximum percentage of aggregate substitution should consider
the availability of RAs in the surroundings of the construction site, in order to avoid
inconvenient environmental costs. If RAs are not enough for a total replacement of natural
aggregates, a lower replacement helps in increasing the concrete strength and reducing the
cement content.

The use of pre-saturated RAs allows to increase concrete workability but this requires
special attention to avoid changing the w/c ratio of the concrete with a consequent reduc-
tion of mechanical properties. A new generation of superplasticizers could be developed
for concretes with RAs.

In any case, the quality of the initial CDW for the production of RAs is fundamental
and it is possible through a selective demolition. It would allow to obtain higher quality
aggregates that enhance the concrete quality which can be hardly reached with MRAs [84].

Leaching test on RAs lead to an increase of pollutants, but under the regulatory limits.
In particular, the two types of RAs considered lead to a release of different pollutants,
especially chloride from RCA and sulphates from MRAs. Leaching test from monolithic
concrete blocks produced with RAs gives no significant results in terms of pollutants.

Referring to the economic impact from the use of RAs in construction, results show
the difference between revenues and total costs that come into play throughout the life
cycle of the product, concluding that downcycling is preferable to landfill. Furthermore,
recycling after selective demolition presents a higher income even if demolition is more
expensive. Finally, referring to the production of concrete, the most cost-efficient path is
mobile recovery, in which cost savings are mainly achieved through a reduction in the
transport and production of higher value-added and lower heterogeneity materials. In this
context, results show that RAs are sustainable both from the environmental and economic
point of view.
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In a future perspective Xu et al. [85] demonstrate how by increasing the support of
research studies and funds coming from national bodies, can anchorage the use of RAs in
building construction.

5. Conclusions

The 42 selected papers evidence that, by increasing the substitution percentage of
natural aggregates, concrete properties become worse. The studies, also demonstrate the
importance of the quality of the type of RAs.

Regarding the water absorption of the two types of RAs analyzed (RCAs and MRAs),
the experimental results highlight the importance of the selection during demolition for
reducing water absorption. Experiments also demonstrate the importance of checking the
attached mortar on the surface of the RAs; by increasing the number of crushing processes,
the attached mortar reduces, thus enhancing the mechanical properties of concrete.

Referring to the water/cement ratio, results show the importance of RCAs, in order to
enhance workability and limit the compressive strength decrease.

For concrete mechanical properties (in particular compressive strength), the impor-
tance of the quality of the RAs is observed and discussed since the reduction of compressive
strength for concrete produced with RCAs is lower than that of concrete with MRAs. The at-
tached mortar, the size and shape of MRAs are the main reason of the compressive strength
decrease. Average compressive strength values of 35 MPa and 45 MPa are obtained using
MRAs and RCAs respectively.

From the environmental point of view, the release of pollutants from concrete blocks
is very low. However, concrete with RAs has a higher environmental impact evaluated by
the life cycle assessment analysis, due to the higher cement dosage and RAs transportation
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