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Abstract: In this paper, the focus is placed on essential aspects of finite element modelling of thermo-
mechanical behaviour of massive foundation slabs at early ages. Basic decision-making issues are
discussed in this work: the potential need to explicitly consider the casting process in the modelling,
the necessary size of the underlying soil to be modelled and the size of the FE mesh, and the need
of considering daily changes of the environmental temperature and the temperature distribution
over the depth of the soil. Next, the contribution of shrinkage to early age stresses, the role of the
reinforcement, and the type of mechanical model are investigated. Comparative analyses aiming
to investigate the most important aspects of the FE model and some possible simplifications with
negligible effect on the results are made on the example of a massive foundation slab. Finally,
the results are summarized with recommendations for creating the FE models of massive slabs at
early ages.

Keywords: early age concrete; foundation slabs; hydration temperature; thermal stress; finite element
analysis (FEA)

1. Introduction

Modelling of mass concrete at early ages using finite element analysis (FEA) has
received a lot of attention among researchers. Some of them present the influence of the
particular factors on the behaviour of the structure [1–8]; some are focused on the presen-
tation of the original theoretical models, their implementation, and validation [9–20]. For
the purpose of performing the FE analysis of concrete structures at early ages, usually,
user-friendly commercial tools are available, for example, DIANA software, as in [21],
where the thermo-hygro finite element framework for predicting the service life perfor-
mance of reinforced concrete structures was presented, or MIDAS Civil software, which
enabled performing the FE analysis of the temperature field in the arch bridge including
the parametric analysis of the influence of the ambient temperature, cement type, and
convection coefficient [22]. Moreover, some researchers used original programs and proce-
dures dedicated to solving thermo-mechanical problems in early age mass concrete. Such
an original finite element procedure for the chemo-thermal model based on the chemical
affinity concept was applied in [23] to examine the temperature distribution of the dam
during its construction. The original software packages TEMWIL (hygro-thermal analysis)
and MAFEM (mechanical analysis) were used in investigations of the early behaviour of
reinforced concrete tank walls [24] and slabs [5].
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At this point, it should be mentioned that, despite the complexity of the theoretical
model, all FE simulation models are only an approximation of the real structures and pro-
cesses. There are two basic risks that the model produced is not an adequate approximation
to the real problem. The source of the first one can be in the imperfect and too simplified
theoretical description of the modelled phenomenon, including mainly the behaviour of
the early age concrete and its hardening process. The second one can be directly related to
the prepared finite element model and the accuracy of all actual material and technological
factors. In recent years, due to computer capabilities, the tendency was to increase the
number of introduced variables and the size of the model. Simultaneously, it increased the
time required to produce the calculation model, even when full data were known. There-
fore, efficient modelling of many phenomena using finite element analysis requires some
inevitable simplification. Customarily, this simplification process is usually based on the
modeller’s qualification to create a computation model with proper balanced complexity
and accuracy.

The above-mentioned issues are particularly related to the modelling of concrete
curing in massive foundation slabs. In this case, the challenging complex phenomena
require FE modelling, like heat and mass flow due to the evolved cement hydration heat
under conditions of variable temperature and humidity of the environment. Then, the
stress analysis requires considering the evolution of concrete mechanical properties, which
undergo phase changes during the hydration process, and finally, becomes a solid material.
Therefore, the material model and the process itself are relatively complicated. Additionally,
there are many other detailed data related to the specificity of the casting process as casting
technology, environmental conditions, and the subsoil interaction. A general review of the
early age properties of concrete, which is important for the evaluation of the cracking risk
in mass concrete, has been recently presented in [25].

The performed literature review indicates that only a few studies are devoted to
decision-making details in the adjustment of FE models for early age concrete structures.
In this regard, a summarizing study of different thermo-mechanical models with the
definition of the discrepancies between experimental results and numerical simulations is
provided in [26]. A basic overview of the main approaches for modelling the behaviour of
concrete at early ages and beyond is also provided in RILEM state-of-the-art report [27].
The investigation on the importance of some factors and numerical aspects in FE models
has been recently presented in [28] for arch dams. Nevertheless, the FE modelling strategy
is usually not thoroughly discussed and relies rather on the judgment of researchers
performing these calculations, while some aspects involved in the FE analysis can be crucial.

The main aim of the following paper is to facilitate the process of modelling by the
provision of the recommendations and guidelines for the FEA of massive foundation slabs
at early ages. The focus of attention is paid to the essential aspects involved in thermo-
mechanical FE modelling, such as the continuous process of casting of the slab, the size of
interacting soil in the model, and the size of the finite element mesh, the need of considering
the daily changes of the environmental temperature, and the real temperature distribution
over the depth of the soil. Furthermore, the contribution of shrinkage to early age stresses
and the role of the type of mechanical model are investigated as they may also affect the
results of the FE model. The mentioned issues are usually assumed in the numerical model
without a careful analysis of their impact on the results of the calculations. Thus, this work
aims to analyse the most critical aspects in the FE thermo-mechanical modelling of mass
concrete and show their effect on the obtained results. The applied FE model has been
previously validated through the example of a real massive foundation slab. Next, this
slab was used for the extended comparative analyses of the previously mentioned specific
issues and their impact on the results of thermal-mechanical fields.

This paper is divided into six sections. After this introduction, Section 2 presents a
brief description of the reference massive foundation slab used in the FE analysis. The
applied computational model is described in Section 3. Next, in Section 4, the scope of the
considered aspects in the FE modelling is described with the necessary data. The results
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obtained from the FE comparative study are presented and discussed in Section 5. Finally,
conclusions and recommendations, which might be useful in the FE modelling of the mass
foundation slabs, are provided in Section 6.

2. Case Study Description

The reference case for the FE analysis is the first construction stage of the massive foun-
dation slab of the sluice Sülfeld-Süd in Germany [29,30]. The considered slab has a thickness
of 2 m and dimensions of 26.5 × 41.5 m in a plan view. These dimensions, especially the
thickness of the slab, are the reason for its consideration as a massive structure [31,32]
with a significant rise in the concrete temperature caused by the cement hydration. In
such structures, close-to-adiabatic conditions are observed in the core while the external
surfaces are colder due to the heat transfer to the environment. Consequently, the interior
of the mass concrete slab initially expands more than the external layers, and non-uniform
thermal strains arise. The resulting stresses might gain significant values matching the
actual tensile strength of the concrete and consequently cause cracking. Hence, this dictates
the need for a careful study of this structure at the stage of concrete hardening, covering
both the development of hydration temperature and induced stresses.

The concrete mix composition used in the slab was as follows [29,30]: cement CEM
III/A 32.5 N (240 kg/m3), water (150 kg/m3), gravel aggregate: 0/2 mm (703 kg/m3),
2/8 mm (222 kg/m3), 8/16 mm (462 kg/m3), 16/32 mm (462 kg/m3), fly ash (110 kg/m3),
BV 15 (Melius) 1.5% (3.6 kg/m3). The 28-day compressive strength of the applied concrete
was 34.2 MPa, the tensile strength was 1.83 MPa and the modulus of elasticity was 34.4 GPa.
In the FE analyses considering the effect of the reinforcement, at all external surfaces steel
bars φ 25 mm at spacing of 15 cm and a concrete cover of 6 cm were assumed. The Young’s
modulus of the reinforcement was assumed as equal to 210 GPa and the characteristic yield
strength was 500 MPa.

The slab was cast continuously for 12.5 h in August 2005. The lateral surfaces were
protected with the formwork for the first 7 days of concrete curing. During the construction
process, the monitoring system covering the measurements of temperature, deformations,
and stresses in the slab was applied [29,30]. The locations of the sensors are presented in
Figure 1. The initial temperature of successively appearing concrete layers and ambient
temperature were registered (Figure 2). The results from the thermal and stress sensors are
depicted in Figure 3.

Figure 1. The locations of sensors in the slab: sd—vibrating wires for temperature, ss—stressmeter [29,30,33,34].
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Figure 2. The registered initial temperature of the slab layers (a) and the ambient temperature
(b) [29,30].

Figure 3. The results from the thermal (a) and stress (b) sensors [29,30].

3. Computational Model

Difficulties with the modelling of the thermo-mechanical effects in mass foundation
slabs are related to many factors influencing the magnitude and development of early age
volume changes caused by cement hydration. Additionally, these changes occur with a
simultaneous variation of mechanical properties. Therefore, the FE model requires the
determination of nonlinear transient thermal and stress fields considering the cement
hydration, developing concrete properties, and environmental impacts.

For thermal analysis, assuming concrete as a continuum isotropic material with the
internal heat source, the differential equation for energy balance is used in the following
form [35]:

ρcp
∂T
∂t

= λ

(
∂2T
dx2 +

∂2T
dy2 +

∂2T
dz2

)
+

.
q (1)

where T—temperature (◦C), ρ—density of concrete (kgm−3), cp—specific heat (Jkg−1◦C−1),
t—time (s), λ—thermal conductivity (Wm−1◦C−1), x,y,z—coordinates (m),

.
q—rate of inter-

nal hydration heat generation (Wm−3), calculated according to the formula:

.
q = f (αT)ATe

−Ea
RT (2)

where f (αT)—normalized heat generation rate, AT—rate constant, R—universal gas con-
stant (8.314 Jmol−1◦C−1), Ea—apparent activation energy (Jmol−1).



Materials 2022, 15, 1815 5 of 25

The heat transfer between the concrete and the environment is considered by a sim-
plified, lumped coefficient α, representing both convection and radiation [27,36]. The
Neumann-type boundary condition is used for the determination of heat transfer from the
outer surfaces:

qeq = α
(

Tsur f − Tenv

)
(3)

where qeq—the heat flux from the boundary (Wm−2), α—the lumped convection-radiation
heat transfer coefficient (Wm−2◦C−1), Tsur f —the temperature of the boundary surface of
the element (◦C), Tenv—the environmental temperature (◦C).

The convection-radiation coefficient, α, is taken as a sum of the natural convection, αn,
the forced convection due to wind action, α f , and the radiation, αr:

α = αn + α f + αr (4)

The natural convection was assumed as equal to 6.0 Wm−2◦C−1 [36], and the forced
convection due to wind action was taken as a function of wind speed v [36]:

α f = 3.7 v (5)

Generally, the radiation emitted by a given body is described by the Stefan–Boltzmann
law, according to which a material emits radiation at a rate proportional to the fourth power
of its absolute temperature T. In the presented study, a constant value of αr = 5.2 Wm−2◦C−1

is taken, as proposed in [37].
In the mechanical part, a viscoelastic material model with temperature-dependent

Young’s modulus has been applied in the analysis presented in Sections 5.1–5.6. Basic creep
of concrete is considered with the application of the Double Power Law [38]:

J
(
t, t′
)
=

1
E(t′)

+
φ1

E(t′)
(
t′
)−m(t− t′

)n (6)

where J(t, t′)—compliance function (GPa−1) at time t (days) for a load applied at instant t′

(days), E(t′)—asymptotic Young’s modulus (GPa) of concrete at each loading age t′, φ1, m,
n—material parameters.

The combined effect of temperature and time on the evolving Young’s modulus is
considered using the equivalent age approach. The equivalent age represents the concrete
age at the reference curing temperature that would result in the same properties as would
result from curing at other temperatures. Thus, the influence of elevated curing tempera-
tures on the development of Young’s modulus, E, is considered by introducing equivalent
time teq instead of time t′ [39,40]:

E
(
t′
)
= E

(
teq
)
= α1e

−( τ1
teq )

β1

+ α2e
−( τ2

teq )
β2

(7)

where α1, α2 in GPa and τ1, τ2 in days, β1, β2 (unitless)—parameters determined based on
measurements of Young’s modulus at curing temperature equal to 20 ◦C.

The equivalent age, teq, considering the influence of elevated temperature of concrete
curing, is calculated as follows [41]:

teq =

t∫
0

e
− Ea

R ( 1
T(τ)−

1
Tre f

)
dτ (8)

where T(τ) stands for the actual concrete temperature (◦C), Tre f is the reference temperature
equal to 20 ◦C, R stands for universal gas constant (8.314 Jmol−1◦C−1), Ea is the activation
energy (Jmol−1).

Additionally, another material model of young concrete has been also used
(Sections 4.7 and 5.7), enabling the analysis of crack development in early age concrete
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members. In this case, cracks are simulated with a multi-directional fixed crack model [40].
For reinforcement, an elastic-perfectly plastic model is applied. More details connected
with the applied crack-based model are given in [32,33,40].

Furthermore, the linear elastic isotropic model was applied for the subbase (lean con-
crete) and the soil. The comparative FE analysis was performed with the use of DIANA IE
10.2 software which is dedicated to a wide range of civil engineering problems. The analysis
of concrete slabs at early age consists of two steps: the first was to simulate the temperature
history due to the cement hydration and the second one was to simulate the development of
induced stresses. The influence of the thermal fields on the mechanical fields is manifested
by considering the impact of increased hardening temperature on the development of
mechanical properties, i.e., the modulus of elasticity and tensile strength used in the failure
criterion. Therefore, the applied model can be identified as one-way coupling.

4. The Scope and Data for FE Simulation

The thermo-mechanical model addressed in Section 3 was applied to study a massive
foundation slab described in Section 2. In Section 4.1, the necessary data used for the
validation of the computational model are presented. For comparative purposes, further
analyses of essential aspects involved in the thermo-mechanical FE modelling of foundation
slabs at early ages were performed. These subsequent analyses are based on the same slab,
which is described in Sections 2 and 4.1. The explanations provided in Sections 4.2–4.7 are
directed to the considered modelling options in the FE analysis. Then, their impact on the
thermal-mechanical fields is examined with the identification of the most critical aspects
for the FE simulation of the massive foundation slab.

4.1. Basic Data for the FE Validation of the Case Study

The geometry and FE model of the analysed slab is presented in Figure 4. Aiming
for the diminution of the number of finite elements, the size of the FE model was reduced
to 1/4 of the structure by using symmetry conditions. The twenty-node solid brick finite
elements have been applied in the model. It is based on quadratic interpolation and Gauss
integration. In the planes of symmetry, the fixed supports are applied in the model. At
the top surface of the soil, no supports are applied. At the lateral surfaces of the model,
the horizontal movement is restricted, while at the bottom surface the vertical movement
is blocked.

Figure 4. The geometry of the 1
4 of the analysed structure: (a) dimensions, (b) the FE model [32–34,42].

Material properties assumed in the study are based on the data provided in the report
from measurements [30] and dedicated literature [29,43,44]. The proper values for slab
concrete, subbase, soil, and reinforcement used in the computations are listed in Table 1.
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Table 1. Basic material data [29,30,32–34,42].

Material Property Foundation Slab Subsoil Subbase Reinforcement

E-modulus (28-day), GPa 34.4 30 × 10−3 27 210
Poisson’s ratio 0.2 0.2 0.2 -
Density, kg/m3 2349 2070 2400 -

Thermal expansion, 1/◦C 1.2 × 10−5 1 × 10−5 1 × 10−5 1.2 × 10−5

Thermal conductivity,
W/(m·◦C)

3 (αH * = 0);
2.1 (αH * = 1) 1.4 1.7 -

Thermal capacity,
J/(m3·◦C) 2.3 × 106 2.15 × 106 1.95 × 106 -

Yield stress, MPa - - - 500
* αH—degree of heat development.

The particular values in Equation (2) as the rate constant AT = 1.75·109 Jm−3s−1 and
the apparent activation energy Ea = 38,500 Jmol−1 were derived from adiabatic data [29,33].

The following thermal boundaries were applied in the FE model: for all unprotected
surfaces (slab and subsoil), the convection-radiation coefficient is taken as 30 Wm−2◦C−1

based on Equation (4) with the assumed wind speed 5 ms−1. For lateral surfaces of the slab,
covered with a plywood formwork 22 mm thick at first 7 days after casting (with thermal
conductivity of 0.14 Wm−1◦C−1), the electrical analogy detailed in [24,37] was used to
calculate the convection-radiation coefficient, which takes the value of 5.2 Wm−2◦C−1.
For the lateral surfaces of the subsoil and the surfaces in the planes of the symmetry, the
adiabatic conditions were applied.

In the empirical Equation (6), the coefficients were based on [29,33] and adapted for
the sluice’s concrete by adjustment of the particular curves corresponding to the data
provided in [5,29,30]. Considering E(t′) in GPa and the compliance function J(t, t′) in
GPa−1, the following values are obtained: φ1 = 0.012, n = 0.263, m = 0.016. Similarly,
in the empirical Equation (7) parameters determined from measurements are as follows:
α1 = 15 GPa, τ1 = 2 days, β1 = 1.5, α2 = 20 GPa, τ2 = 4 days, β2 = 1.5. Hence, for the reference
concrete, temperature equals 20◦C, and the evolution of Young’s modulus is in GPa; the
result from Equation (7) fits the experimentally registered value of the 28-day modulus
of elasticity equal to 34.4 GPa (Table 1). In Equation (8) the apparent activation energy
Ea = 38,500 Jmol−1 was applied, similarly as in Equation (2).

In the validation of the model (later denoted as ‘validation’), the thickness of the slab
was divided into 7 layers of different thicknesses to reproduce the process of the actual
continuous casting.

Table 2 presents the start times, stepping strategy, and thickness of each layer. The
initial temperature of each layer of the slab as well as the ambient temperature were
taken based on the measurements (Figure 2). The initial temperature profile in the subsoil,
presented in (Figure 5, was determined based on the preliminary FE analysis [33,45]. The
total time of the performed analysis was 28 days.

Table 2. Data for the layer projection of continuous casting in the validation of the FE model.

Number of the Layer Thickness, m Start Time, h Steps

1 0.15 0 4 × 0.375 h
2 0.25 1.5 6 × 0.4167 h
3 0.35 4 8 × 0.4375 h
4 0.50 7.5 6 × 0.4167 h
5 0.35 10 4 × 0.375 h
6 0.25 11.5 4 × 0.25 h
7 0.15 12.5 12 × 0.5 h, 33 × 0.1 h, 14 × 0.24 h
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Figure 5. The initial temperature of the subsoil [33,45].

4.2. The Slab Casting Process

In this study, the need to model a continuous process of casting of the slab in the
FE simulation was investigated. A detailed scheme of the continuous casting of the slab
applied in the validation of the FE model (Table 2) has been compared with the model
omitting this process and assuming placing of the concrete in the slab at ‘one time’. Such
an approach, undoubtedly simplified, significantly shortens the time of data preparation
for the model, and it seems interesting how it affects the results of calculations. The same
material data and the FE mesh as for the validation (Section 4.1) were applied in this
study. The initial temperature of concrete was assumed to 24 ◦C, as a mean value from the
registered temperature of each subsequent layer (Figure 2). Additionally, a slab with the
same plan view dimensions but with a thickness of 4 m was also examined.

4.3. Computational Domain

The foundation slabs are usually large in their dimensions and a significant number
of finite elements can be generated. Furthermore, it is necessary to consider the subsoil
interaction in the FE simulation. The result is a large FE model with long computation
times. Hence, two issues are investigated in this part of the comparative FE analysis:

1. The size of the finite element mesh applied in the slab structure and its impact on the
temperature and stress development,

2. The adequate size of interacting soil in the FE model, not affecting the thermal and
stress development.

Considering the first issue, it is known that the accuracy of the finite element analysis
as an approximation method is determined by the mesh size. A dense mesh significantly
increases the time of analysis; thus, the optimal selection of the FE size is crucial during the
pre-processing of the model. The effect of the mesh density on the numerical results was
the subject of many studies [46,47]. Moreover, guidelines might be found in the manuals of
particular software [48,49]. Nevertheless, the adoption of the finite element mesh usually
stands on the researcher or practitioner performing the FE simulations. This part of the
pre-processing of the model is especially important in foundation slabs, of usually large
dimensions and, consequently, a great number of finite elements.

Thus, the optimal FE mesh and its influence on the development of hardening temper-
ature and stress in the slab were examined. In this regard, both reduction and densification
of the initial mesh (Figure 4b) at the thickness of the slab have been applied as presented in
Figure 6. The slab with a thickness of 4 m is also considered (Figure 7). The finite element
mesh at the top surface in the examined slabs was the same due to the effects of boundary
conditions. The same material data as for the validation (Section 4.1) were applied, except
the casting process which was assumed at ‘one time’, as described in Section 4.2.
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Figure 6. The height of finite elements at the thickness of 2 m slab: (a) based on Figure 4b—validation
case, (b) coarse mesh, (c) dense mesh.

Figure 7. The height of finite elements at the thickness of 4 m slab: (a) basic case, (b) coarse mesh, (c)
dense mesh.

In the second part of the comparative analysis dedicated to the computational domain,
the different sizes of the cooperating soil were compared. Obviously, the smallest size of
the subsoil is preferred due to the number of finite elements in the model. Therefore, it
has been examined how the vertical and horizontal sizes of the subsoil interfere with the
obtained thermal and stress results. The vertical dimension of the subsoil was evaluated
in the preliminary FE study [33,45]. The results showed that a depth of 10 m is sufficient
and does not affect the temperature and stress distributions in the slab. It is also the depth
below which the initial ground temperature is stable (Figure 5).

It is also reasonable to reduce the horizontal dimensions of the interacting soil due to
the limitation of the number of finite elements and consequently the time of analysis. Thus,
the key issue pertains to the subsoil dimensions which should be included in the finite
element model. In this regard, the validation case (Section 4.1) with the soil dimensions in
the plan view of 4 m longer in the directions X and Y than the above-laying slab (Figure 4a)
has been compared with three additional FE models. In the first case, the top surface of the
soil was loaded with the weight representing the embankment, which is usually omitted in
FE simulations although usually the foundation slabs are made in an excavation (Figure 8a).
The second case considered the dimensions of the soil in the plan view assumed as the
double-length/width of the slab (Figure 8b), while the last case represented the longer
dimensions in the plan view with the load representing the embankment (Figure 8c). The
remaining data in this study were taken as for the validation case (Section 4.1).
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Figure 8. Study on the subsoil modelling: (a) case ‘load’, (b) case ‘long’, (c) case ‘long_load’.

4.4. Effect of the Environmental Temperature

In the validation case (Section 4.1) the actual changes of the environmental tempera-
ture throughout the 28 days of concrete curing were applied in the FE model. Nevertheless,
most of the FE simulations used a fixed value of the environmental temperature, which
is a simplified but less troublesome approach. In this regard, introducing the real envi-
ronmental temperature to the model, different for each time step in the analysis, can be
time-consuming in some software, especially if it is required to adjust the set ambient
temperature changes to the assumed calculation steps. Additionally, in the prediction
analysis, only the forecasted data are available, and thus, it is hard to predict the real
temperature conditions in the design phase. Therefore, the defined safe-side scenarios for
the ambient temperature will be beneficial for the simulation of the slabs.

The main objective of this study is to assess the differences in temperature and stress
developments simulated using the model including real changes of the ambient temper-
ature throughout the analysed period with the simplified approach assuming constant
ambient temperature. The validation case (Section 4.1) with the actual ambient tempera-
ture registered during operation (Figure 2b) was compared to the different values of the
fixed temperature:

• the average ambient temperature throughout the analysed 28 days, equal to Tenv= 18 ◦C;
• the minimum ambient temperature occurring in this time, equal to Tenv= 11 ◦C;
• the maximum ambient temperature occurring in this time, equal to Tenv= 28.8 ◦C.
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The remaining data in this study was taken as for the validation case (Section 4.1).
The FE analysis was extended also to a slab of 4 m thick, using the same material and
technological data.

4.5. Properties of the Soil

Two additional soil-related options were investigated in the FE comparative study.
The first concerned the significance of the precise reproducing of the initial temperature
profile over the depth of the soil in the FEA while the second was related to the importance
of the actual soil stiffness.

Considering the first issue, the analysis of the mass foundation slab requires assigning
the initial temperature not only to the concrete slab but also to the underlying ground. The
temperature of the soil depends on the environmental temperature, and it is not constant
over its depth. This fact can be considered in two ways. In the first approach, an additional
calculation step in which the FEA is performed only for the soil using the actual ambient
temperature. The second approach is based on the analytical calculations of the temperature
distribution in the soil [45,50,51]. Then, the obtained temperature distribution over the
soil depth is set as the initial soil temperature in the FE model of the whole structure. In
both cases, feeding such input to the model results in both additional time and preliminary
calculations. In this context, the assumption of constant soil temperature in the FE model
would be much more convenient and less time-consuming. Thus, the models with the
diversified and constant initial temperature over the soil depth have been compared to
assess the importance of the assumed initial soil temperature. Two casting seasons were
analysed in this regard:

1. the validation case (Section 4.1) related to the summer season was compared with the
FE model with the assumed constant temperature of the soil equal to 16 ◦C;

2. the autumn/winter casting conditions with varying temperature distribution at the
soil depth (Figure 9) were compared with the constant temperature equal to 8 ◦C.

Figure 9. Initial temperature distribution at the soil depth in the autumn/winter seasons [33,45].

In the validation case, the soil with low stiffness was applied (Table 1). To verify the
importance of the proper soil stiffness in FEA, the soil with higher stiffness with E-modulus
equal to 100 MPa was also examined.

All data in this investigation were taken as for the validation case (Section 4.1), except
the environmental temperature in the autumn/winter seasons assumed as a fixed value of
8◦C because of the absence of precise data.

4.6. Effect of Shrinkage

In the validation case, shrinkage deformations have been disregarded as in massive
foundation slabs, they are generally considered to have a negligible effect on stresses. To
assess the validity of this frequently used simplification, the FE analysis of the slab including
drying shrinkage deformations was additionally performed. The shrinkage strains were
computed using the moisture model [37,40], based on the averaged pore relative humidity
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Hc as a driving potential. Next, the transformation of the computed moisture field Hc into
a field of unrestrained potential shrinkage is described by the following equation [37]:

εsh,pot = εsh,∞

(
0.97− 1.895(Hc − 0.2)3

)
(9)

where εsh,∞ is the ultimate concrete shrinkage equal to 364 µε, estimated for 60% RH.
Afterward, the unrestrained potential shrinkage was subsequently implemented in

the mechanical model as an imposed pre-strain to the particular layers of the slab. The time
of the shrinkage analysis was extended to 365 days to examine this effect also in the later
period. Figure 10 shows the potential free shrinkage evolutions along the slab thickness
resulted from the computed pore relative humidity Hc, which have been applied as input
to the mechanical model. The obtained curve evolutions clearly show the tendency of
concrete to progressively shrink from the surface to the core.

Figure 10. Potential drying shrinkage in the successive layers along with the slab thickness.

4.7. Effect of the Material Model

The material model applied in FEA has a crucial impact on predictions of concrete
behaviour. Generally, in most FE analyses of massive concrete structures, the viscoelastic
material model without the crack simulation is used. Hence, the viscoelastic model used
in the validation case was compared to the crack-based model mentioned in Section 3.
Additionally, the influence of the surface reinforcement on the cracking behaviour of the
slabs was examined. All above-mentioned issues were investigated for the data from the
validation case (Section 4.1) with the casting process modelled as ‘one time’ (Section 4.2).
The study was extended to a slab with a thickness of 4 m, using the same data.

5. Results and Discussion

The results of the comparative analysis depicted in Section 4 have been presented for
three selected points in the slab, located in the intersection of its vertical planes of symmetry.
In the case of massive concrete structures, the main objective of the FE analyses is to assess
the developing stresses and the risk of early-age cracking because it may reduce the later
load-bearing capacity of the structure. The thermal fields are a load on the structure, and
their determination is an indirect task here. Nevertheless, the temperature development is
always carefully analysed because it can be relatively easy compared with the results of in
situ measurements, which is the first stage of model validation at the load checking level.
Hence, the crucial outputs of the FE thermo-mechanical modelling are both temperature
and stress developments. Considering the obtained results, both hardening temperature
and induced σxx stress developments have been analysed for 28-days of concrete curing. In
each case, the difference between different modelling options was presented, but in general,
we did not try to rate the discrepancies at a percentage level. Where the discrepancies
between the respective models were qualitatively different or quantitatively different
by more than 10%, we assessed the impact as significant. Additionally, we focused our
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attention primarily on the maximum hardening temperature and maximum tensile stresses
in the heating phase, which is the most important for the possible cracking. The typical
sign convention for stresses induced in the slabs has been used in the presentation of the
results. Hence, tension is positive, and compression is negative. The precise locations of
reference points are given in Figure 11.

Figure 11. Locations of the reference points in the slabs of the thicknesses of (a) 2 m, (b) 4 m.

The values of temperature have been read for relevant adjacent nodes. Next, assuming
a linear change of its value, the proper temperatures were determined for three selected
points shown in Figure 11. In the case of stresses, the stress values for the top elements have
been taken. The heights of these elements are 7.5 cm (2 m slab) and 15 cm (4 m slab). The
reference points are related to the 5 cm from the top surface (2 m slab) and 10 cm (4 m slab).
Thus, they are included in the considered finite elements. Additionally, at the beginning,
we checked the stress distributions in the exemplary cross-sections, and the values of the
stress based on the linear interpolation of stresses between the adjacent finite elements for
the points located at 5 cm and 0.5 × 7.5 cm = 3.75 cm (the centre of the finite element) did
not differ by more than 0.05%. The same were obtained for the slab with a thickness of 4 m.

5.1. Validation of FE Model

The validation of the FE model of the structure has been already included in previous
studies [32–34,44]. However, for the completeness of the considerations presented in this
article, the compact results of the validation are depicted in Figure 12. Based on Figure 12a,
quite good compliance was obtained in the temperature development generated by the
hydration process. The difference in the maximum interior temperature obtained from
the simulation differs from the measurement results by only 1◦C. Considering the stress
development (Figure 12b), good compliance between the measurement and FE model is
visible by the 8th day of concrete curing. Later, the convergence becomes worse. In [32,34],
it was explained by cracking occurring in an area close to the stressmeter’s location and
affecting both the functionality of this sensor and the stress distribution in its surrounding.
Nevertheless, the good coincidence in the first few days of concrete curing, as well as the
correct stress inversion in the cooling phase, may be considered as a reliable FE simulation
of all stresses.
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Figure 12. Validation of the FE model: (a) temperature development, (b) stress development [32–34,42].

5.2. Modelling the Casting Process in FEA

The results of the study are presented in Figure 13 (temperature development) and
Figure 14 (thermal stress development). First of all, the method of modelling the casting
process in FEA affects the hardening temperatures in the centre and at the bottom of
the foundation slabs. For these two points, the calculated temperatures are higher in
the simplified model without simulation of the casting process, which is perspicuous
because then the successive cooling of subsequent layers of the slab is not modelled. The
discussed differences are greater for the thicker slab (4 m). At the same time, the method of
modelling the casting process does not affect the temperature development at the slab top
surface (Figure 13a,b).

Figure 13. The influence of the casting modelling on the development of hardening temperature in
the slabs with the thicknesses of (a) 2 m and (b) 4 m.

Considering the stress development (Figure 14a,b), noticeable differences were ob-
tained for the centre and bottom surfaces of the thicker slab (4 m). The simplification of
the casting process in the FE model causes the reduction of the initial peak of compressive
stress by about 1 MPa in comparison to the case in which the accurate mapping of the slab
casting was implemented (Figure 14b). The differences in the stress at the top surface of
the slab are more complex. The model without the precise mapping of the casting process
provides the underestimated results of the maximum tensile stress. In detail, in the case of
the slab with the thickness of 4 m, it is 2.69 MPa (without the precise mapping of the casting
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process) and 2.96 MPa (when modelling the casting process). Simultaneously, in the earlier
period about the 2nd day of concrete curing, higher values of the tensile stresses at the top
surface are visible from the model not considering the casting process (Figure 14a,b).

Figure 14. The influence of the casting modelling on the development of stress σxx in the slabs with
thicknesses of (a) 2 m and (b) 4 m.

At this point, it should be recalled that the main purpose of the FE analyses of early
age slabs is to assess the risk of possible cracking. Such cracking risk in the foundation
slabs refers to two scenarios, as described in [8,52], and whereby the higher risk arises in
the heating phase when possible cracks may be induced at the top surface of the slab. From
this point of view, higher values of the maximum stresses were obtained in the accurate
mapping of the slab casting process. Thus, the precise reproduction of the casting process
should be recommended, especially in thicker slabs, although it is more laborious in the
preparation of the FE model.

5.3. Effect of the Various Computational Domains

The results of the comparative FE simulations are visible in Figures 15 and 16 (the
effect of the different sizes of FE at the thickness of the slab), as well as in Figure 17 (the
effect of the different sizes of the cooperated soil).

Figure 15. The effect of the different size of FE at the thickness of the slabs on the temperature
development in the slab with thicknesses of (a) 2 m and (b) 4 m.
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Figure 16. The effect of the different sizes of FE at the thickness of the slabs on the developments of
stress σxx with thicknesses of (a) 2 m and (b) 4 m.

Figure 17. The effect of the different sizes of the cooperated soil on the distributions of strains εxx at
the thickness of the slab.

Based on the presented results, the significant influence of the FE mesh size is observed
only when an enormous reduction of the number of elements was applied (presented in
Figures 6b and 7b). The application of the smallest mesh size at the thickness of the slabs
(presented in Figures 6c and 7c) did not affect the temperature and stress development
(Figures 15 and 16). As the decrease of the mesh size does not reduce the accuracy of the
model (has no meaningful influence on analysed temperature and stress values in the slab)
but increases the number of the finite elements and the time of analysis, the following
smallest required size of the mesh in the vertical direction is proposed:

min he(z) = (0.15÷ 0.20)h (10)

where: min he(z)—minimum mesh size in the vertical direction (thickness of the slab), in m,
h—thickness of the slab, in m. Simultaneously, the proposed vertical minimum mesh size
refers to the central part of the slab with the required net density at the top surface due to
the boundary conditions. Concerning the stress analysis, it should also be emphasized that
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the presented results and conclusions relate to the analysis using the viscoelastic model for
early age concrete.

Considering the different sizes of the cooperating soil, no significant influence of the
soil horizontal dimension on the distribution and stress values was detected. This result was
surprising; hence, a deeper analysis was carried out with the analysis of strain distributions.
According to Figure 17, the different values of strains εxx in the slab with the different sizes
of the interacting soil are observed. The increase of the soil dimensions (case with longer
soil presented in Figure 8b) caused the higher strains in comparison to the model with the
smaller size of cooperating soil (validation case presented in Figure 8a). These differences
concern mainly the bottom part of the slab, and gradually decrease towards the top surface
(Figure 17). At the same time, the weight of the embankment affects only slightly the strain
values at the bottom surface of the slab. An interesting issue is the difference in obtained
strains, with the simultaneous lack of differences in stresses. It may be explained by the
low Young’s modulus of concrete in the initial period of concrete hardening, which, despite
the difference in strains, results in a negligible change in stresses. Later, the modulus of
elasticity increases, but the strain values are relatively small (Figure 17).

Hence, to create an accurate finite element model for the simulation of the behaviour
of the foundation slab, the horizontal size of the soil should be taken with particular care.
Suggested action in this area is the preliminary calculations focused on the determination
of the soil of the possible smallest size, which gives the same values of strains as for the
longer interaction soil.

5.4. Effect of the Environmental Temperature

The results of the numerical simulations are presented in Figures 18 and 19. The
depicted graphs indicate a significant role of the ambient temperature in the FE analysis
of foundation slabs at early ages. The assumption of the constant ambient temperature
significantly affects the surface cooling conditions of the slab, and as a result, the greater
impact is noticeable in the temperature development at the top surface of the slab. Com-
paring the temperature in the centre of the slab, the thinner slab (2 m) is more sensitive
to the ambient temperature (Figure 18). The influence of the ambient temperature on the
temperature development at the bottom is negligible, and therefore, the graphs for this
point were omitted.

Figure 18. The effect of the ambient temperature on the temperature developments in the slabs with
thicknesses of (a) 2 m and (b) 4 m.
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Figure 19. The effect of the different sizes of FE at the thickness of the slabs on the developments of
stress σxx in the slabs with thicknesses of (a) 2 m and (b) 4 m.

Analysing the stress development, the substantial discrepancies between stresses
are visible at the top surfaces (Figure 19). The maximum tensile stresses matching to the
maximum values obtained from the FEA including real changes of the ambient temperature
are visible for the model assuming the maximum ambient temperature (28.8 ◦C). This is
an important observation for the reliable FE predicting cracking risk in the slab. However,
in this case, the inversion of the stress occurs significantly later than in the case with the
actual ambient temperature. Although the calculations with the assumed average outside
temperature (18 ◦C) gave the temperature distribution similar to the precise model with
actual ambient temperature, the stresses obtained under this assumption fit into the lower
values of the precise model with the actual ambient temperature. Considering the centre of
the 2 m thick slab, stresses differ slightly while in the 4 m thick slab they are practically
the same. Hence, regarding the cracking risk, depending mainly on the maximum tensile
stresses in the heating phase, it can be concluded that forecast daily temperature changes
(day/night) should be considered in the FE analysis because of the significant impact on
the results.

5.5. Effect of the Soil Properties

Figure 20 shows the contours of the temperature (Figure 20a) and stress (Figure 20b)
in the heating phase, obtained for the summer season of the slab casting. Based on the
presented figures, the assignment of the constant initial temperature of the soil in the FE
model does not affect the distributions of temperature and stresses in the slabs. The same
lack of significance was obtained for the case of the slab casting in winter conditions. Thus,
the performed study shows that the assumption of a constant initial temperature of the
subsoil does not reduce the accuracy of the FE analysis of the slab behaviour.

However, the influence of soil stiffness turned out to be significant. It is noticeable in
Figure 21 that the stresses at the top and bottom parts of the slab are higher in the model
considering the soil of the higher stiffness. At the same time, the change of soil stiffness has
a negligible impact on stresses in the centre of the slab. Hence, the stiffness of the subsoil
significantly affects the stress values and special attention should be paid to its properties
introduced to the FE model.
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Figure 20. The effect of the initial soil temperature on the distributions of (a) temperature and
(b) stress σxx.

Figure 21. The effect of the soil stiffness on the development of stress σxx.

5.6. Importance of Shrinkage

Considering the 28-day concrete curing, the stresses from the model involving both
temperature and shrinkage are essentially identical to the stresses obtained from the model
omitting shrinkage. It suggests that neglecting the shrinkage deformations at the early
age period of concrete curing in the massive slab might be justified. A deeper analysis of
this issue and the extension of the computation time to 365 days showed the differences
between the corresponding developments of strains and stresses after 90 days. After that
time, the effect of the shrinkage deformations on the induced total strains is noticeable at
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the top of the slab and successively progresses towards the centre of the slab (Figure 22).
No influence of the shrinkage at the bottom of the slab is observed.

Figure 22. The influence of the shrinkage on the induced strains εxx.

5.7. Effect of Material Model

In this section, the developments of the thermal stresses based on two material models,
the viscoelastic material model without cracking consideration (used in Sections 5.1–5.6)
and the material model with crack consideration, were compared.

Comparing the results of a 2 m thick slab obtained from the model without and with
cracking, no significant discrepancies between the stress developments in the crucial points
(top, centre, bottom) were noticed, and thus, the presentation of the graphs was omitted.
Although the development of stresses in these three points did not suggest the cracking,
the careful analysis of the results from the crack-based model indicated the occurrence
of cracks in the cross-section located at 3.45 m from the symmetry plane of the slab. The
cracks include the elements of the top and lateral surfaces of the slab with their widths
reaching 0.01 mm. More details with the patterns of cracking are given in [32].

The differences between the applied material models are clearly visible in the results
of a 4 m slab (Figure 23a). First of all, the results from the crack-based model are available
only until the 3rd day of analysis (corresponding to the 112th step). After that time,
the calculations were terminated due to convergence failure. It can be noticed that the
application of the material model considering cracking led to obtaining the lower values of
stresses, especially at the top part of the slab. Furthermore, a dramatic drop in the stresses
at the end of the analysis is observed, which indicates the occurrence of a macrocrack
affecting the whole cross-section. Thus, the chosen material model has a crucial impact on
predictions of concrete behaviour and possible cracking. The application of the crack-based
material model gives more precise information about the potential cracking location and
its range. Nevertheless, due to the more complex procedure of calculation, a quite common
problem occurs to meet the convergence criterion. In this context, the application of the
material without cracking model is more “user-friendly” as the time of analysis is shorter,
and the convergence criterion is less daunting to acquire.

The second analysed issue was the need to consider the reinforcement in the FE
model. Comparing the FE model without cracking, no differences in the obtained results
were observed. In the crack-based model, the conducted comparative analysis indicates
the important influence of reinforcement on the FE calculations (Figure 23b). First of
all, the presence of reinforcement in the FE model improves the convergence conditions.
The calculations were terminated later, after 14 days. Obviously, the reinforcement also
improves the crack resistance of the slab, and this is evident in the results of the FE analysis.
The cracking appears later (Figure 23b), and the widths of cracks are lower (Figure 24).
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Figure 23. The effect of material model and reinforcement on the development of stress σxx in the
slab with the thickness of 4 m: (a) comparison of material models, (b) effect of reinforcement in the
crack-based material model.

Figure 24. Patterns of local cracks distributions and widths in two directions (EcwXX, EcwYY) in
the slab with the thickness of 4 m, corresponding to the 3rd day of analysis: (a) crack-based model
without reinforcement, (b) crack-based model with reinforcement.
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6. Conclusions and Outcomes for Engineering Practice

Due to the rapid growth in the availability and performance of computers, the use of
FE analysis in civil engineering increases and will continue to increase in the foreseeable
future. In this regard, the reliable model-based prediction of structural behaviour paves
the way towards sufficient computational design and reduces the number of expensive
laboratory experiments. The increased computing capabilities incline to model the structure
and processes very precisely, albeit the direct consequence is the rapid growth of the number
of input variables, the size of the model, and the time of FE analysis. Therefore, it is natural
to provide all justified model simplifications which would not endanger the accuracy of
the results.

Keeping in mind a saying attributed to Albert Einstein that ‘everything must be
made as simple as possible, but not one bit simpler’ the study is devoted to the optimal
preparation of the FE model of massive foundation slabs at early ages. In the presented
comparative studies, the most important aspects of the FE model were investigated by
the corresponding modifications of the example of the real foundation slab. Both possible
simplifications of the FE model (which do not affect the final results) and the crucial input
data for the FE model (which are significant for the results) have been discussed. The
results from the presented study, which may be useful for the engineering practice, as
well as may be helpful as a reference for future FE simulations, are briefly summarized
in Table 3.

Table 3. Summary of the results and recommendations for the FEA of massive foundation slabs at
early ages.

Issue Section Results from FEA/Recommendations

Casting process Sections 4.2 and 5.2
The precise reproduction of the casting process and its duration is
recommended, especially in the thicker slabs, although it requires more
laborious preparation of the FE model.

Computational
domain Sections 4.3 and 5.3

The recommended size of the finite elements is 15–20% of the slab thickness
(central part); at the top and bottom surfaces, the height of the finite elements
should be smaller due to the boundary conditions. The recommendation is
valid for the models without cracking.The depth of the cooperating soil can be
reduced to ~10 m.To set the horizontal size of the subsoil, preliminary
calculations are suggested to determine the soil of the possible smallest size,
which does not distort the results of the strains and stresses.

Ambient temperature Sections 4.4 and 5.4

Forecast daily temperature changes (day/night) should be considered in the
FE analysis because of the significant impact on the results. If the calculation
needs to be simplified for any reason or the daily temperature changes are not
available, the assumption of the maximum constant ambient temperature is
preferable to estimate the maximum tensile stress at the top of the slab in the
heating phase.

Properties of soil Sections 4.5 and 5.5

The constant initial soil temperature can be assumed in FE analysis to skip the
step of the analytical or numerical gaining of the input thermal data for the
soil. The stiffness of the subsoil significantly affects the stress values, and this
value should be properly introduced to the FE model.

Shrinkage Sections 4.6 and 5.6 The shrinkage deformations at the early ages of concrete curing in the massive
slab may be neglected. They may be relevant at later ages.

Material model Sections 4.7 and 5.7

A crack-based model is recommended. It is more realistic and gives more
precise information about the cracking risk, cracks locations, and ranges. The
model without cracking gives only the knowledge on the values of the
induced thermal stresses; nevertheless, it is more “user-friendly”, the time of
analysis is shorter, and the convergence criterion is less daunting to acquire.

Reinforcement Sections 4.7 and 5.7

Reinforcement may be neglected in the thermo-mechanical FE modelling
without explicit simulation of cracking.In crack-based models, reinforcement
should be considered. In this case, the reinforcement improves the
convergence conditions and allows for a more realistic assessment of the time
of the crack occurrence and its width.
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