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Abstract: Blast furnace slag (BFS), steel slag (SS), and flue gas desulfurized gypsum (FGDG) were used
to prepare metallurgical slag-based binder (MSB), which was afterwards mixed with high-antimony-
containing mine tailings to form green mining fill samples (MBTs) for Sb solidification/stabilization
(S/S). Results showed that all MBT samples met the requirement for mining backfills. In particular, the
unconfined compressive strength of MBTs increased with the curing time, exceeding that of ordinary
Portland cement (OPC). Moreover, MBTs exhibited the better antimony solidifying properties, and
their immobilization efficiency could reach 99%, as compared to that of OPC. KSb(OH)6 was used to
prepare pure MSB paste for solidifying mechanism analysis. Characteristics of metallurgical slag-
based binder (MSB) solidified/stabilized antimony (Sb) were investigated via X-ray diffraction (XRD),
field emission scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier
transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). According to
the results, the main hydration products of MSB were C-S-H gel and ettringite. Among them, C-S-H
gel had an obvious adsorption and physical sealing effect on Sb, and the incorporation of Sb would
reduce the degree of C-S-H gel polymerization. Besides, ettringite was found to exert little impact on
the solidification and stabilization of Sb. However, due to the complex composition of MSB, it was
hard to conclude whether Sb entered the ettringite lattice.

Keywords: metallurgical slag; solidification/stabilization; antimony; steel slag; mine tailings

1. Introduction

In 2018, China produced 12.11 billion tons of tailings, accounting for 35.11% of the
total production of bulk industrial solid waste. The tailings after mineral processing are
usually discarded as solid waste in tailings ponds without any treatment, carrying potential
heavy metal pollution risks [1]. Antimony is a toxic metalloid in the group VA of the fifth
period of the periodic table. Antimony used in the lead-zinc tailings is mainly stibnite
(Sb2S3) [2], and many studies reported that the migration and transformation of antimony
is mainly Sb(OH)6

− [3,4]. In this respect, a series of reactions such as oxidation and leaching
occurs under the combined action of oxygen, water, and microorganisms, making Sb2S3
soluble SbO3

− and hydrolyze to Sb(OH)6
−, and then attached to the surface of various

solid particles in the tailings in the form of adsorption [3,5]. This part of antimony usually
has high activity, and without proper pretreatment managed, it can cause serious or even
catastrophic consequences.
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For waste with increased heavy metal concentrations, a feasible management approach
may be to landfill the waste [6,7]. At present, the use of cement as a binder for landfill is
already a mature technology. Ordinary Portland cement (OPC) is traditionally used for
landfill solidification/stabilization (S/S) and has long-term stability [8–11]. For example,
there are research reports where Portland cement, fly ash, clay, gypsum, and blast furnace
slag were used as solidification/stabilization materials to limit the leaching potential of
antimony [12]. According to their results, the leaching rate of antimony-containing waste
residue was low and fulfilled the landfill standard, and gypsum was successfully used in
immobilizing the antimony. Cornelis investigated the leaching characteristic of antimony
by mixing Portland cement with KSb(OH)6 [13]. They found that various hydration
minerals of cement had limited effects on antimony, such as AFm minerals and C-S-H
gel. Unfortunately, they did not do a mineralogical analysis to verify the solidifying
mechanism of antimony. However, the production of cement is accompanied by the large
CO2 emission, yielding the high cost and limiting the use of the final product [8]. To
reduce carbon emissions and to make it possible to absorb a large amount of metallurgical
solid waste, blast furnace slag (BFS), steel slag (SS), and flue gas desulfurized gypsum
(FGDG) were proposed as cementing binders [14–16]. In the hydration process, BFS
provides potentially active silicon–oxygen and aluminum–oxygen tetraheda, SS is a source
of alkaline substances, and FGDG ensures sulfate ions [17,18]. This enables one to form
ettringite with low solubility and amorphous C-S-H gels, which enhance the physical
and mechanical properties of the cured material to stabilize Sb [13]. At present, most
research aimed at evaluating the environmental friendliness of S/S materials and the
leaching characteristics of heavy metals using different leaching methods [4,19]. According
to our previous research, the metallurgical slag-cementing binders effectively limits the
leaching concentration of As and Sb, and the dominant leaching mechanism for Sb is
diffusion [14,15,20]. In addition, in our previous research, the solidification mechanism of
As was confirmed [21,22]. Arsenic atom can replace the aluminum atom or silicon arsenate
with lower solubility, and arsenic can be adsorbed and encapsulated by C-S-H gel [23].
However, as far as we know, there are no relative studies to elucidate the solidifying
mechanism of high Sb concentration tailings with metallurgical-slag-based binders from
the perspective of mineralogy.

In this study, high-Sb-containing mine tailings (Sb-MT) were immobilized using the
total solid waste S/S materials (MSB). The leaching tests were carried out according to HJ
557-2010 Chinese standard to evaluate the immobilization efficiency of antimony and the
antimony leaching trend. For better understanding of the immobilization mechanisms of
antimony-containing tailings using metallurgical slag-cementing agent, their microscopic
characterization was performed via Fourier transform infrared spectroscopy (FT-IR), X-ray
photoelectron spectroscopy (XPS), and scanning electron microscopy paired with energy
dispersive spectrometer (SEM-EDS).

2. Materials and Experimental Procedures
2.1. Materials

In this study, the materials included BFS, SS, FGDG, high Sb-containing mine tailings
(Sb-MT), and ordinary Portland cement PO 42.5 (OPC). Sb-MT samples were purchased
from a lead–zinc ore dressing plant in Hechi Nandan, Guangxi province, China. The BFS,
SS, and FGDG were provided by Jintaicheng Environmental Resources Co., Ltd., Xingtai,
China. The chemical compositions and Blaine fineness values of these materials are given
in Table 1. The leaching concentration of antimony in the raw materials was analyzed via
inductively coupled plasma atomic emission spectroscopy (ICP-AES). No heavy metals
were detected except Sb-MT, with a leaching Sb content of 0.524 mg/L. The XRD pattern of
Sb-MT, BFS, SS, and FGDG are shown in Figure 1, revealing the presence of quartz, calcite,
and fluorite as the primary phases in the Sb-MT. BFS was mainly in the glassy state, being
composed of SiO2, CaO, and Al2O3. The primary phases of SS were SiO2, CaO, Fe2O3, and
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Al2O3, as well as β–C2S, C3S, C3A, and RO phases. The major composition of the FGDG
was CaSO4·2H2O.

Table 1. Raw material chemical components, physical properties, concentrations, and leaching
concentration of Sb.

Materials Sb-MT BFS SS FGDG

Chemical composition MgO 0.99 8.94 6.00 1.04
Oxide (wt. %) Al2O3 4.45 15.43 6.24 0.78

SiO2 40.34 24.76 18.16 2.03
SO3 17.31 0.83 0.29 44.97
CaO 15.15 46.16 42.58 45.31

Fe2O3 17.52 2.52 17.66 0.48
Blaine fineness (m2/Kg) - 400 400 360

pH 7.35 11.92 12.28 7.85
Leaching Sb concentration (µg/L) 524 ND ND ND
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Figure 1. X-ray diffraction (XRD) patterns of raw materials: (a) blast furnace slag (BFS); (b) steel slag
(SS); (c) flue gas desulfurized gypsum (FGDG); (d) high Sb-containing mine tailings (Sb-MT).

2.2. Mixture Proportion of Mining Fill Samples

The relative weight percentages of the cementitious materials correspond to those
from Ref. [22] and are given in Table 2. OPC was used as cementitious material for the
control group treatment. Slump tests were completed according to GB/T 2419-2005 Chinese
standard. The slumps of MBT and OPC were both 300 mm, respectively, indicating their
good workability.



Materials 2022, 15, 1780 4 of 11

Table 2. Proportions of total solid waste S/S materials (MSB) components, including equivalent
binder-tailings ratio and solid concentration of green mining fill (MBT) samples.

Notation
MSB (Mass Fraction/wt. %) Binders/Tailings (w/w) Solid Concentration a

(wt. %)BFS SS FGDG

MBT 60 30 10 1
4 86OPC b 100(OPC)

a Solid concentration = (binders + tailings)/(binders + tailings + water). b OPC used as a cementitious material for
the control group.

2.3. Experimental Procedures

The MBT pastes were poured into 50 × 50 × 50 mm3 steel molds, and then cured in a
curing chamber (at the relative humidity of approximately 90% and 40 ◦C, mimicking the
conditions of underground mine storage in Guangxi) [22]. The unconfined compressive
strength (UCS) of the specimens was assessed as according to GB/T17671-1999 standard at
curing times of 3 d, 7 d, 28 d, and 90 d.

Toxicity characteristic leaching tests were conducted via the horizontal vibration
method using MBT and OPC at curing times of 3 d, 7 d, 28 d, and 90 d [21].

MSBs were prepared using a 300 mg/L KSb(OH)6 solution to investigate the hydration
and curing mechanisms. All the samples were crushed and terminated with pure ethyl
alcohol after 3 d, 7 d, and 28 d, respectively.

X-ray diffraction (XRD) was identified the pastes of the hydration products. XRD
analysis was performed on an Ultima IV X-ray diffractometer (Rigaku Mechatronics Co.,
Ltd, Akishima-shi, Tokyo, Janpan) with a copper Kα radiation source (λ = 1.5406 Å)
operating at 30 mA and 50 kV. The scan step was 0.02◦, and the scan 2θ was from 5◦ to 70◦.

The microstructure of hydrated pastes was observed via field emission scanning
electron microscope (SUPRA 55,Carl Zeiss, Oberkochen, Germany). The working voltage
was 10 kV, at a vacuum level lower than 9.9 × 10−6 mbar. The chemical compositions of
hydration products were analyzed using an energy dispersive X-ray spectrometer (EDX,
Carl Zeiss, Oberkochen, Germany) coupled with FE-SEM.

Structural and chemical bond characterization was performed via Fourier trans-
form infrared spectroscopy (FT-IR). The FT-IR spectra of the samples were recorded in
350–4000 cm−1 using a NICOLET470 infrared spectrometer(ThermoFisher, Maltham, Mas-
sachusettsUS), at a sensitivity of 4 cm−1.

The chemical states of the elements were used X-ray photoelectron spectroscopy (XPS).
The measurements were done at room temperature under a vacuum of 7 × 10−9 mbar by
means of an XPS system (AXIS ULTRADLD, kratos Analytical Ltd., Kyoto, Japan) using
a nonmonochromatic Al Kα radiation source (1486.6 eV). The scanned surface area was
700 µm × 300 µm. During the XPS experiments, the C1s signal of adventitious hydrocar-
bons (284.8 eV) serves as the reference line.

3. Results
3.1. UCS Test Results

Figure 2 displays the unconfined compressive strengths of MBT and OPC with increas-
ing curing time. In both cases, the UCS values were above 1 MPa, meaning that the samples
satisfied the requirements for mining backfills. Meanwhile, the unconfined compressive
strength of MBT was higher than that of OPC, indicating that metallurgical slag-cementing
agent had good mechanical performance and broad application prospects.

3.2. Toxicity Characteristic Leaching Test (HJ 557-2010)

Figure 3 depicts the pH levels of the leachate and the leached Sb, as well as the
immobilization efficiency of MBT and OPC samples, after 3 d, 7 d, 28 d, and 90 d of curing.
In all samples, the leaching of Sb was higher than 5 µ/L (the Sb limit for the underground
class III water according to GB/T 14848-2017 standard). The release of Sb increased with



Materials 2022, 15, 1780 5 of 11

increasing curing time in the MBT and OPC specimens, and antimony shows high release
after 28 days of curing. But the leaching of Sb in MBT sample was lower than that in OPC
over the whole curing time range. Even if the leaching of Sb increased with curing time,
a huge improvement between 3 d, 7 d, 28 d, and 90 d of immobilization could be seen.
Besides, the immobilization efficiency for Sb after three and seven days of curing was up to
99%, and after 90 days, it was more than 90%. Based on the leaching results, it could be
confirmed that MBT had the better curing performance of Sb. The higher UCS of MBT was
attributed to the formation of more hydration products, which yielded a denser structure
and thus reduced the release of Sb from tailings [24].
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3.3. Microscopic Analysis

Figure 4 depicts the FE-SEM and EDS results for MBT and OPC after 28 days of aging.
In both cases, the main hydration products were ettringite and C-S-H gel [25]. Compared
with OPC, MBT exhibited a higher amount of C-S-H gel after 28 days of hydration, while
OPC was rich in ettringite. In this respect, the above discussed high compressive strength
of MBT (Figure 1) was attributed to the fact that ettringite acted as a skeleton and C-S-H
gel served as a filler, making the structure of MBT denser. However, ettringite crystals
in OPC were larger than in MBT. As a result, OPC had a less dense structure than MBT.
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Moreover, the EDS data (Figure 5) revealed that C-S-H gel was the main host mineral of Sb.
Since C-S-H gel has a very high specific surface energy [22], its adsorption and physical
encapsulation might be the main reason for why the fixing performance of antimony with
MBT was better than that with OPC.
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3.4. XRD Results

XRD patterns of two pastes after different periods of aging are shown in Figure 6.
The main hydration products of pure MSB were ettringite and C-S-H gel, where the peak
(2θ = 26.6◦) intensity associated with ettringite increased over time. However, the signal
from ettringite in MSB-Sb showed an opposite trend, gradually decreasing with aging, just
as the peaks at 2θ close to 10◦ and 26.6◦. In addition, the peak positions of ettringite and
C-S-H gel were slightly offset in MSB-Sb after 28 days of curing. No antimony phase was
found in MSB-Sb. This was because calcium antimony has a highly variable structure, both
crystalline and amorphous. In addition, it might also be because of the low content of
crystalline calcium antimony falling below the detection limit of XRD, which is generally
1–2 wt. % [26].

3.5. FT-IR Results

Figure 7 displays the FT-IR spectra of MSB-Sb and pure MSB pastes after 3 and 28 days
of hydration. In both cases, the spectrograms were rather similar, presenting analogous
absorption bands. The wide bands around 3624 cm−1 and 3427 cm−1 are associated with
the vibration of OH-groups in water, whereas the band at 1656 cm−1 is a well-defined H-O-
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H deformation band from interlayer water [27]. The peak at 1114 cm−1 can be attributed
to a [SO4] stretching mode (v3) [28]. In addition, the bands at 611 cm−1 and 667 cm−1

are related to the symmetric stretching and bending vibration of Al-OH species in the
[Al(OH)6]3− substructure of ettringite. The feature at 977 cm−1 is the antisymmetric
Si-O(Al) stretching vibration which is characteristic of C-S-H gel. The bands at 513 cm−1

and 451 cm−1 are caused by the out-of-plane banding vibration and in-plane bending
vibration of Si-O, respectively [14,29–31]. The only difference between MSB-Sb and MSB
was that the absorption peaks related to C-S-H gel in MSB-Sb shifted to the wavelet
numbers. This indicated that the incorporation of Sb into the cementing material had a
significant effect on the hydration product C-S-H gel, which was manifested by a decrease
in the degree of polymerization of C-S-H [17].
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Figure 6. XRD patterns of pastes after 3 d, 7 d, and 28 d of aging. (a)MSB-Sb; (b) pure MSB. Here,
phase designations are as follows: A: Alite (Ca3SiO5, C3S); B: Belite (Ca2SiO2, C2S); C: C-S-H gel;
E: Ettringite (Ca6Al2(SO4)3(OH)12·26H2O); G: Gypsum (CaSO4·2H2O); R: RO phase.

3.6. XPS Spectra

Table 3 displays the binding energies of main elements in the Sb cured sample and
the blank group after 28 days of curing. As seen from the table, the binding energies of
Ca, O, and Si atoms in the Sb cured sample slightly decreased with respect to those the
reference groups, indicating that the incorporation of Sb exerted a great influence on silicate.
Moreover, the covalent radius of Sb atom (1.39 Å) is larger than those of Al (1.21 Å) and Si
(1.11 Å), making it difficult for Sb to undergo homogeneity substitution with Al and Si in
C-S(A)-H gel [32]. In addition, Sb has a high electronegativity (1.9) [19]. If Sb enters the
silicon (aluminum) oxygen tetrahedron, it will inevitably lead to a decrease in the outer
electron cloud density of other surrounding ions and an increase in the binding energy of
atoms [33]. However, according to Table 3, the binding energy of Al remained unchanged,
while that of Si decreased during aging. Combined with the above SEM and IR results
(Figures 4 and 7), one may conclude that Sb was mainly adsorbed and wrapped in C-S
(A)-H gel.
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Table 3. Changes in binding energies of main elements in Sb cured sample and blank group after
28 days of curing.

Elements Ca Al Si O S

Blank group 347.30 74.26 102.10 531.67 168.99
Sb cured sample 347.11 74.26 102.00 531.54 169.21

Changes −0.19 0 −0.10 −0.13 +0.22

4. Discussions

Among the cementitious materials, the BFS with vitreous structure has strong chemical
activity. The vitreous body of the slag is mainly composed of silicon–oxygen tetrahedrons,
and some Al3+ replaces Si4+ to form alumino–oxytetrahedrons with higher activity than
silicon—oxygen tetrahedra, and a small amount of aluminosilicate crystallites with ex-
tremely low crystallinity [34].

Figure 8 displays the hydration reaction of MSB and it can be described as follows:

C2S + H2O→ C-S-H + Ca(OH)2 (1)

C3S + H2O→ C-S-H + Ca(OH)2 (2)

C3A + CaSO4 · 2H2O + H2O→ C6AS3H32 (3)

Ca2++Mg2++Sb(OH)−6 +H2O→ (Ca, Mg)1.13Sb2O6OH0.26 · 0.47H2O (4)

In the early stage of hydration, the amorphous vitreous structure in the blast furnace
slag dissociates and dissolves silicate, aluminate, and Ca2+, Al3+, Mg2+ ions, and reacts to
form C-S(A)-H gel, such as (1) and (2). With the hydration and dissolution of the steel slag,
the hydroxyl groups provide a strong alkaline environment for the system. The gel formed
on the surface of the slag gradually separates, which makes the polymerization degree of
the glass surface of the slag drop rapidly, and thus the remaining glass activity is reacti-
vated, promoting the continuous hydration reaction of the slag While the slag hydration
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continuously consumes hydroxyl groups, the hydration of the steel slag is further promoted.
Desulfurized gypsum provides a large amount of Ca2+ and SO4

2− ions for the system and
enters the reactions with the gel to form ettringite (such as (3)), and the consumption of the
gel promotes the hydration of the above-mentioned slag and steel slag [35]. The coordinated
excitation of blast furnace slag, steel slag, and desulfurized gypsum is conducive to the
mass production of ettringite and C-S-H gel. The C-S-H gel accumulates and encapsulates
the ettringite minerals to form a tight and stable structure [28]. Moreover, the large specific
surface area of C-S-H gel has great potential to adsorb heavy metals. Although the surface
is negatively charged, due to the charge balance, the surface charge is reversed after the
adsorption of calcium ions, allowing antimony anions to be adsorbed [36–39]. In addition,
antimony precipitates can be tightly encapsulated and sealed by C-S-H gel. Ca[Sb(OH)6]2
precipitates tend to be in equilibrium at the lower pH, while precipitates at higher pH
scales are more likely to be romeites (Ca1+xSb2O6OH2−2x) [40], such as (4) [13]. It is dif-
ferent from the incorporation in the ettringite for Sb(OH)6

−, which has a large octahedral
structure. Therefore, the valid immobilization mechanism for Sb(OH)6

− is to be adsorbed
on the ettringite surface rather than incorporated into the structure [31,40]. In this study,
the adsorption of Sb by ettringite was not proved and needs to be further verified in the
synthesis of single mineral ettringite.
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According to the current knowledge, in Hebei and Guangxi provinces, the purchase
price of raw materials SS, BFS, and FGDG is about 10 yuan/t, 120 yuan/t, and 15 yuan/t
respectively, while SS is no charged in many areas. The original price of MSB material
is 10 × 0.3 + 120 × 0.6 + 15 × 0.1 = 76.5 yuan/t, plus 130 yuan of processing fee and 20%
profit of enterprises, and the price of MSB is 247.8 yuan. This is much lower than 450 yuan/t
of cement. In addition, it also avoids CO2 emissions from calcination of limestone during
cement production.

5. Conclusions

The solidified bodies of metallurgical slag and ordinary Portland cement (OPC)-
solidified antimony were compared via compressive strength measurements and hori-
zontal oscillation method, and pure slurry was prepared to elucidate the mineralogical
solidification mechanism of metallurgical slag to antimony. The following conclusions
were drawn:

1. Green mining fill samples (MBT) exhibited higher strength and a more pronounced
antimony fixation effect than those of OPC.

2. No newly formed antimony-containing mineral phase was detected in the metallurgi-
cal slag, but it was mainly surrounded by the adsorbed gel.

3. Even though the heavy metal antimony was found to be able to reduce the degree
of polymerization in the gel, its influence on ettringite and its relationship are not
yet proven.
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