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Abstract: The realistic prediction of material damping is crucial in the design and dynamic simulation
of many components in mechanical engineering. Material damping in metals occurs mainly due
to the thermoelastic effect. This paper presents a new approach for implementing thermoelastic
damping into finite element simulations, which provides an alternative to computationally intensive,
fully coupled thermoelastic simulations. A significantly better agreement between simulation results
and experimental data was achieved, when compared with the empirical damping values found
in the literature. The method is based on the calculation of the generated heat within a vibration
cycle. The temperature distribution is determined by the mechanical eigenmodes and the energy
converted into heat, and thus dissipated, is calculated. This algorithm leads to modal damping
coefficients that can then be used in subsequent analyses of dynamically excited oscillations. The
results were validated with experimental data obtained from vibration tests. In order to measure
material damping only, a test setup excluding friction and environmental influences was developed.
Furthermore, comparisons with fully coupled thermoelastic simulations were performed. It was clear
that the new approach achieved results comparable to those of a computationally expensive, coupled
simulation with regard to the loss factors and frequency response analyses.

Keywords: thermoelastic damping; finite element simulation; modal damping; dynamic simulation;
experimental damping measurement

1. Introduction

The simulation of dynamic processes is essential in almost every engineering discipline,
including structural and mechanical engineering, aerospace engineering and micro- and
nanotechnology. Besides the stiffness and mass of a structure, the accurate modeling of
damping behavior is highly important to predict amplitudes and frequencies correctly, to
avoid resonance phenomena, etc. Nevertheless, the estimation of damping parameters
is challenging. Several mathematical models have been established to consider energy
dissipation, e.g., viscous damping or Rayleigh damping. Although these assumptions
are sufficient in many applications, they can lead to inaccurate predictions. Therefore, in
practice, it is often necessary to perform experimental vibration analyses in addition to the
computational development process. To avoid this effort, there is a need for precise and
fast usable damping models.

One reason behind the difficulty in modeling energy dissipation realistically lies in the
diversity of sources. In the considered structures, three main causes can be distinguished.
Within the material, energy is dissipated through physical processes (material damping).
At the levels of bearings, suspensions and connecting joints, dissipating friction occurs
(joint damping). Furthermore, mechanical vibrations are attenuated by the interaction with
the environment (air or radiation damping).

This paper focuses on material damping. In recent years, material damping has become
increasingly important in developing and improving advanced materials and structures.
High intrinsic energy dissipation guarantees favorable vibration and acoustic behavior.
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Examples are carbon-fiber-reinforced composites, e.g., those presented by Xu et al. [1]
or Attard et al. [2], and sandwich panels, as described by Ledi [3]. Special honeycomb
sandwich panels are outlined, e.g., by Arunkumar et al. [4] and Sadiq et al. [5]. There are
several factors influencing the material damping discussed in the literature, for example
the orientation of the fibers in fiber-reinforced composites (see [6–8]) or the manufacturing.
Wesolowski et al. studied the material damping in laminated composite structures in
comparison with conventional materials [9]. We present a simplified and convenient
method for the simulation of material damping of homogeneous materials in the framework
of finite element modeling. The main physical effect causing energy dissipation within the
material is thermoelastic relaxation. Depending on the microstructure and the environment,
other sources of damping can be dislocations, friction on grain boundaries, electromagnetic
effects, etc.

In a thermoelastic solid there is a coupling effect between the elastic strain field and
the temperature field. Therefore, mechanical vibrations cause temperature variations. In
compressed areas, the temperature increases and, for areas in tension, it decreases. The
resulting gradient affects irreversible heat fluxes followed by an increase in entropy and a
transformation of mechanical energy into heat.

The temperature gradient equalizes within a characteristic relaxation time, τi. It is
the reciprocal of the thermal peak frequency, i.e., the eigensolution of the heat conduction
equation.

τi =
1

ωi
(1)

The amount of thermoelastic damping corresponds to the mechanical eigenfrequency
of the structure. The highest loss factor is achieved if the relaxation time approximately
coincides with the reciprocal of the natural frequency (see Figure 1). In this case, the period
length is exactly sufficient to bring the system back to equilibrium by heat flows.

Figure 1. Dependency of the loss factor on the excitation cycle frequency ω.

Research on thermoelastic coupling has a long history and goes back to the work
of Duhamel in 1837 [10], as described in [11]. In 1956, Biot provided a mathematical
formulation of thermoelastic materials and solution techniques [12]. These theories were
extended and refined in the following years and established in standard books, e.g., by
Parkus [13] or Nowacki [14]. Over several years, intensive research has emphasized the
development of simplified analytical calculations of thermoelastic damping.

In 1937, Zener [15–17] published a series of seminal articles concerning energy dissipa-
tion in thin bending beams with one-dimensional heat conduction. The author developed
a well-established formula to calculate the loss factor η.

η =
α2ET0

ρCp

ωωi

ω2ω2
i

(2)
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The first fraction describes the material-dependent damping potential, the so-called
relaxation strength, where α = the thermal expansion coefficient, E = Young’s modulus,
T0 = the temperature of the solid, Cp = the heat capacity under constant pressure and
ρ = density. The second fraction of the formula is frequency-dependent with the current
circular frequency, ω. Zener developed the expression for thermoelastic damping contain-
ing an infinite series of the thermal frequencies, ωi, and the corresponding thermal modes.
He showed that, in thin beams, only the first thermal frequency is relevant and simplified
the model to the above-mentioned formula. The thermal peak frequency ωi is calculated
using Cp, the thermal conductivity, λ, the density, ρ, and the thickness of the beam, h.

1
ωi

= τi =

(
h
π

)2 Cpρ

λ
(3)

Zener showed that the restriction to the first thermal mode is sufficient in the case of
thin bending beams.

Some years later, Chadwick [18,19] and Alblas [20,21] extended Zener’s approach
and applied it to general three-dimensional solids. In a more recent publication, Lifshitz
et al. [22] revised the thermoelastic beam theory and refined the solution by also using
higher thermal eigensolutions. Their formula has been used as basis in several further
studies (e.g., [23–25]).

In general, two approaches for calculating thermoelastic damping can be distinguished,
namely, dissipated mechanical energy as the imaginary solution of thermoelastically cou-
pled elastic equation or as generated entropy due to temperature gradients (see Section 2.1).
In this paper, we focus on the entropy method. Concerning this topic, Kinra et al. [26]
and Bishop et al. [27,28] derived a calculation based on the second law of thermodynam-
ics. Duwel et al. [29] formulated a strongly (two-way) coupled and a weakly (one-way)
coupled approach to calculate thermoelastic dissipation in microresonators and presented
experimental results. Chandorkar et al. [30] emphasized the superposition of mechan-
ical and thermal modes to consider thermoelastic relaxation. Hao et al. [31] extended
the approach to anisotropic materials and embedded the calculation in a finite element
algorithm. Tai et al. [32,33] developed simplified concepts for beams and plates based on
the entropy theory.

Most of the cited literature refers to micro- and nanoresonators, since thermoelastic
damping is often the dominant loss mechanism in microstructures [34]. In macrostructures,
thermoelastic damping can be a significant loss mechanism, especially in thin-walled
structures. For example, Cagnoli [35] showed this in experiments and calculations on
thin circular disks. Concerning nonlinear damping models, the recent publications by
Huang et al. [36], as well as Amabili [37], should be mentioned.

Even if other damping mechanisms, especially joint damping, take a decisive role in
complex structures, the calculation of material damping is an important component for the
realistic prediction of the dynamical behavior.

The described analytical approaches allow exact calculations of thermoelastic damping
to be conducted, but are not suitable for complex geometries. Serra et al. [38] developed a
finite element formulation for thermoelastically coupled problems. The authors applied the
underlying theory on shell and solid elements that are characterized by coupled damping
and stiffness matrices and considered thermoelastic damping. These elements showed a
good agreement with the experimental data in statistical analyses and dynamic simulations
requiring direct time-integration methods. The significant disadvantage, in this case, is the
enormous computational effort for fully coupled thermoelastic simulations.

We present an approach that allows the calculation of thermoelastic damping to
be performed based on the stress and strain distribution in the mode shapes. Using an
entropy method, modal damping coefficients were determined and applied in finite element
simulations of dynamically excited components in the time and frequency domain. This
allowed us to consider material damping in time-efficient simulations. Furthermore, the
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damping coefficients of specific mode shapes were measured in physical experiments to
verify the simulated results.

2. Materials and Methods
2.1. Simulation

Since Zener’s first publications in the 1930s [15,17], there have been two main ap-
proaches to interpreting thermoelastic damping, explained as follows:

• Dissipated mechanical energy: The calculation of thermoelastic damping is based
on the phase lag between stresses and corresponding strains. The thermoelastically
coupled differential equations of elasticity and heat conduction have to be solved in
the complex domain. The loss factor is equal to the ratio of the imaginary and real
parts of the solution.

• Entropy approach: The amount of dissipated energy is equal to the heat generated
during the elastic vibration. The energy transferred into heat can be calculated by
analyzing the heat flows in the structure causing an increase in entropy. The loss factor
is obtained from the quotient of dissipated energy to total strain energy. This approach
is used in the present paper. The general procedure of the calculation is shown in the
flowchart in Figure 2.

Modal Analysis (only structural)

Calculation of to-
tal strain energy ES

Simulate temperature field
using thermoelastically
coupled heat Equation
κ∆θ = cV θ̇ + T0βε̇kk

Calculate lost energy in
one vibration cycle us-
ing temperature field

Q =
2π

ω

〈 ∫
V

κ∇θ∇θ
T0

dV
〉

Total loss factor for eigenmode
η = 1

2π
Q
ES

Use modal damping
for subsequent analyses

ζm = η
2

Figure 2. Flow chart for numerical solution procedure.

The amount of generated heat during one vibration cycle is determined starting from
the rate of entropy of a solid with volume, V.

Ṡ =
∫
V

−∇q
T

dV = −
∫
V

∇
(q

T

)
dV +

∫
V

q∇ 1
T

dV (4)

where S denotes the entropy, q is the vector of heat flux and T is the absolute temperature
of the solid. Following the derivation in [39], the equation can be transformed using the
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divergence theorem. If the terms are converted into a surface integral, the first integral
becomes zero. The vibration is defined to be adiabatic, i.e., there is no heat flux over the
boundaries of the solid.

Ṡ =
∫
V

q∇ 1
T

dV (5)

The absolute temperature, T, is defined as the sum of the reference temperature, T0,
and the temperature increment, θ. The expression 1/T is replaced by its Taylor expansion in
the vicinity of the reference temperature. Under the assumption of very small temperature
variations in the present thermoelastic problems, the first term produces a zero integral.

Ṡ =
∫
V

q∇
(

1
T0
− θ

T2
0

)
dV ≈

∫
V

−q∇ θ

T0
dV (6)

The same assumption allows us to calculate the rate of produced heat using the
reference temperature. Using Fourier’s law

q = −κ∇θ (7)

to substitute q, the following formula is obtained:

Q̇ =
∫
V

κ∇θ
∇θ

T0
dV (8)

with the thermal conductivity κ. Considering one vibration cycle from t = 0 to t = T,

Q =
2π

ω

〈 ∫
V

κ∇θ
∇θ

T0
dV
〉

(9)

where 〈 f (x)〉 = 1
T

T∫
0

f (t) dt denotes the time average of the function. The thermoelastic

loss factor, η, is defined as the ratio of generated thermal energy, Q, to total strain energy,
ES.

η =
1

2π

Q
ES

(10)

The loss factor of a component modeled with three-dimensional solid elements is
obtained in a procedure combining several numerical solution steps. A loss factor is
calculated for each eigenmode in order to apply modal damping in subsequent analyses.
For this purpose, a purely structural natural frequency analysis is run first. From the
eigensolutions, the (normalized) strain distributions are calculated.

The coupling of elastic strain field and temperature field is mathematically described
by the thermoelastically coupled heat equation, e.g., as derived by Biot in 1956 [12].

κ∆θ = cV θ̇ + T0βε̇kk (11)

where β = 3
αK
cV

is defined as the thermoelastic coupling constant with the elastic bulk

modulus K and the thermal expansion coefficient α. It describes the relation between an
adiabatic volume change and the temperature variation in a solid.

In the coupled heat equation, the mechanical volumetric strains, εkk, act as a source
term. Equation (11) is solved numerically in the time domain to obtain the temperature
variations in the solid over one vibration cycle.

For the solution, the software package FEniCS was used. Therefore, the problem was im-
plemented in a finite element environment, based on the weak form of the coupled differential
problem. The time derivatives were discretized by a finite difference algorithm [40].
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θ̇ =
θn+1 − θn

∆t
(12)

ε̇kk =
εn+1

kk − εn
kk

∆t
(13)

The temperature is calculated using the thermoelastically coupled heat equation. Once
the temperature has been determined, the loss factor can be calculated using Equations (9)
and (10). In the approach described, a weak thermoelastic coupling is used, i.e., the elastic
strain field influences the temperature distribution, but not vice versa.

The calculated loss factor, η, is specific for an eigenmode. In the mode-based subse-
quent analyses, they can be used as modal damping values, ζm.

ζm =
η

2
(14)

2.2. Material

In the experimental studies, two types of specimens were considered. First, a simple
plate geometry was investigated to validate the general procedure and verify the simulation
results. In a second step, the method was extended to a more complex three-dimensional
geometry. This was designed in the style of a simplified gearbox case. Both components
are shown in Figure 3.

(a)

(b)

Figure 3. Experimental setup and positions of suspension ( ), measurement points ( ) and excitation
points ( —measurement and excitation) on the first three eigenmodes of the rectangular aluminum
plate (a) and the box component (b).

In order to ensure comparability, both bodies were made of the same aluminum alloy
(AlMg4.5Mn0.7). The material parameters are listed in Table 1.
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Table 1. Material parameters of the used aluminum alloy.

Parameter Value Unit

Young’s modulus E 7× 1010 N/m2

Poisson’s ratio ν 0.34
density ρ 2660 kg/m3

thermal conductivity λ 140 W/mK
heat capacity Cp 904 J/K

thermal expansion coefficient α 2.31× 10−5 K−1

2.3. Experimental Studies

The experiments aimed to measure the material damping. Therefore, other sources of
energy dissipation had to be eliminated. To avoid air damping effects, the experimental
setup was located within a vacuum chamber. With the available device, a pressure of
approximately 5 mbar was achieved. All the processes during the experiments had to be
controllable from the outside.

Furthermore, the impact of joint damping, which occurs as friction on bearings, suspen-
sions and joints, had to be eliminated. Friction arises due to relative movements; therefore,
the displacement at bearings should be inhibited. In the experiment, the specimens were
suspended on very thin elastic strings that were placed in the zero lines of the mode shapes
to simulate a free bearing. Therefore, a new experimental setup had to be taken for each
eigenmode. Two examples for bearing and excitation points are shown in Figure 3. For
a better understanding of the shown eigenmodes, video simulations are included in the
Supplementary Material Videos S1 and S2.

The excitation was also designed in such way to avoid additional damping sources.
Therefore, the specimens were excited with an automatic impulse hammer, which guaran-
teed a minimum of contact. The hammer was installed within the vacuum chamber and
controlled from the outside.

As a result, the velocity of a single point was measured. The recording of the data was
also performed in a contactless manner using a laser Doppler vibrometer.

The velocity over time was measured and analyzed with an algorithm based on
LabView software. By applying an exponential curve fit on the decay function, the damp-
ing coefficient, ζ, was determined. This measure could be transformed easily into other
damping characteristics, e.g., the loss factor, η.

3. Results
3.1. Rectangular Plate

Figure 4 provides the correlation among the magnitude of displacement of the plate
structure u, the hydrostatic stress distribution σkk and the generated heat Q in a specific
mode shape. Since the eigenmodes are normalized vectors, the amplitudes were not
significant and all quantities were scaled to 1 in the figure. The vibration of the plate
follows a sine curve over time and the results are shown at time t = T/4, i.e., at the time step
of maximum deflection, maximum stress level and maximum thermoelastic heat generation.
Furthermore, Figure 4g–i display a cut on the mid-plane level of the plate because the heat
flowed in the thickness direction. Therefore, the highest amount of energy was dissipated
in the mid-level. The heat flow at the surface was negligible.

From the figure, it is apparent that the generated heat (and therefore the dissipated
energy) correlated directly with the spatial distribution of the hydrostatic stress. The
thermoelastic coupling only affected those parts of the stress or strain tensor that were
associated with a volume change. Locations with a high hydrostatic stress level show large
heat production.

Figure 5 presents the experimental data and the simulation of the loss factors. For
comparison, the analytical calculation according to Zener for a specimen thickness of 3 mm
is shown. The experiments were conducted on four individual plates that were identical in



Materials 2022, 15, 1706 8 of 17

construction and four measurement points on each plate were used. The results present
an average of the results per eigenfrequency. The standard deviation is shown as bars;
however, in the case of the simple plate, the value was too small to be visible.

(a) f1 = 162.4 Hz (b) f2 = 176.4 Hz (c) f3 = 376.4 Hz

(d) (e) (f)

(g) (h) (i)

Figure 4. (a–c) Mode shapes of the rectangular aluminum plate 300 mm × 200 mm × 3 mm,
deflection normalized to 1. (d–f) Distribution of hydrostatic pressure at the surface of the plate,
σkk = σxx + σyy + σzz. (g–i) Spatial distribution of the dissipated energy, Q, in the first three eigen-
modes of the plate at time T/4. A cut at mid-plane level of the plate is displayed. The values
were normalized to 1 with respect to the maximum in each mode since they were based on relative
displacements and temperature fields.

Comparing the two data series, it can be seen that the loss factors measured experi-
mentally were slightly higher than the simulated data. This discrepancy may be explained
by the experimental challenges. Every disruptive factor in the experimental setup caused
an increase in damping. Due to the very low magnitude of the loss factors measured in
this study, the experiments were very sensitive to inaccuracies. The available vacuum
chamber reached only a rough vacuum of ≈5 mbar. The remaining air resistance led to a
small increase in the damping coefficient. Furthermore, the suspension was due to practical
reasons realized at the edge of the plate. Therefore, it did not always matched exactly the
zero line of the mode shape. This also affected the measured damping due to joint friction.
Overall, the results of the simulations match those of the experiments well. Especially, the
relative differences between the mode shapes could be represented very well.

As mentioned above, Serra et al. [38] developed a fully coupled finite element formu-
lation considering thermoelastic loss. This theory was implemented in the FE-Software
package ANSYS as SOLID226, SOLID227 or PLANE223 elements. These element types are
available for full transient (time–domain) and full harmonic (frequency–domain) analyses.

Both components studied in the present contribution were simulated with these
elements to compare the fully coupled approach with the simplified method presented here.
The plate was discretized with SOLID226 elements (20-node hexahedrons) with an element
size of 2 mm and 4 layers of elements in the thickness direction. A full harmonic analysis
was performed with a point load applied sinusoidally at the corner point of the plate in
the out-of-plane direction. No further boundary conditions were defined to simulate a free
suspension.
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Figure 5. Comparison of experimental data, simulated damping coefficients and analytically calcu-
lated values with equation according to Zener [15].

The results of each frequency step include a real and an imaginary part of the solution.
In order to calculate the loss factor, the complex data for the total strain energy were
extracted per element and summed up over the whole structure. The loss factor is defined
as the quotient of imaginary and real strain energy.

η =
|Im(ES)|
|Re(ES)|

(15)

Figure 6 provides the results obtained from the ANSYS analysis in comparison to the
loss factors calculated with the simplified approach. It is apparent from the diagram that
the simplified energy approach produced only sample points at the resonant frequencies,
whereas the outcome of the fully coupled harmonic response analysis was one loss factor
per frequency step. If the excitation frequency in the simulation matches exactly the
eigenfrequency of the plate, there is a pole in the curve. Therefore, the absolute height of
the peaks depends on the frequency discretization and is not representative. The calculated
loss factors followed the course of the graph satisfactorily. Both the magnitude and the
differences in the mode-dependent damping factors could be represented accurately.

Figure 6. Comparison of the damping coefficients of the modal-based entropy approach with the
fully coupled thermoelastic ANSYS simulation for the rectangular plate.
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3.2. Complex Three-Dimensional Geometry

Figure 7 shows the correlation of the magnitude of displacement, u (a–c), the hydro-
static stress, σkk (d–f), and the generated heat, Q (g–i), in a specific mode shape for the
complex geometry. The eigenmodes 2, 5 and 7 were chosen as examples. Just as in Figure 4,
all data were scaled to 1. The heat conduction, Q (or, equivalently, the dissipated energy),
was plotted at t = T/4. The points of maximal heat generation did not occur on the faces of
the box but at the corners and edges, where the stress peaks were located. This is shown
graphically in the detail plot under (j). If high stresses and strains occurred locally due
to geometry reasons, there was a large difference in stress in respect to neighboring areas.
This was followed by a temperature gradient with short paths of heat conduction, which
led to locally high energy dissipation.

(a) f2 = 767.2 Hz (b) f5 = 1687.5 Hz (c) f7 = 2261.6 Hz

(d) (e) (f)

(g) (h) (i)

(j)

Figure 7. (a–c) Mode shapes 2, 5 and 7 of the box component; displacement magnitude normalized
to 1. (d–f) Distribution of hydrostatic pressure σkk = σxx + σyy + σzz. (g–i) Spatial distribution of the
dissipated energy, Q, at time T/4. The values were normalized to 1 with respect to the maximum in
each mode since they were based on relative displacements and temperature fields. (j) Detailed view
of locations with high energy dissipation.

Figure 8 compares the experimental values of the damping coefficients ζ with the
simulated data obtained using the entropy method. The experiments were performed on
two identical components and two measurement points were used for each eigenmode. The
values shown are averaged measurement results. The standard deviation is represented
by bars. The damping coefficient of the first eigenmode had a higher value than the
following one. The other coefficients remained on the same level, with a slightly decreasing
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trend. This course was consistent with both calculated and measured values. Normally,
the experimentally measured values are always slightly higher than the calculated ones
(except in the second eigenmode). This is mainly due to the systematic problems in the
experimental implementation, as already explained in Section 3.1. For practical reasons, all
samples were suspended in the holes at the bottom of the case. These locations were not
deformed in all the eigenmodes considered. However, they were not always the exact zero
lines of the system, so there may have been additional effects due to frictional damping. In
addition, high vacuum could not be achieved with the available vacuum chamber. During
the experiments, air pressure of about 5 mbar was always maintained, which led to a slight
air resistance during the oscillation. Taking these facts into account, there was overall good
agreement between simulation and experiment.

Figure 8. Comparison of the experimental data and the damping coefficient determined by the
entropy approach for the box component.

Figure 9 exhibits the damping coefficients calculated by the entropy approach with
the damping coefficient curve extruded from an ANSYS harmonic simulation with dis-
cretization by SOLID227 elements (fully coupled thermoelastic tetrahedron elements). In
the full harmonic simulation, the system response was calculated for each frequency step.
Afterwards, the loss factor was obtained by dividing the imaginary part of the strain energy
by the real part of the strain energy. Therefore, one data point was calculated for each
frequency step. The results of the entropy simulation were determined as discrete damping
coefficients at the resonant frequencies. The curve of the fully coupled simulation had poles
at the resonant frequencies; therefore, an exact comparison is difficult. The damping values
calculated by the entropy approach followed the course of the curve satisfactorily.

In the next step, the calculated damping coefficients were applied in a frequency–
domain simulation based on modal superposition. For this purpose, the discretely de-
termined damping coefficients were used as modal damping ratios. Figure 10 shows a
comparison of a single-point displacement in the modal-based harmonic simulation with
the same displacement component in the full harmonic simulation. For this analysis, a
single load F in the y-direction was applied harmonically at a point in the middle of the
upper edge of the component, as shown in Figure 11. The displacement in the y-direction
was determined at a node denoted by P. The course of the curves and the width of the
peaks agreed satisfactorily. The absolute height of the peaks was not significant because
it depended on the frequency discretization. Only at eigenfrequency 5 at approximately
1687 Hz were there inaccuracies. In this eigenmode, the considered node was close to a
zero line (see Figure 7b), so that the oscillation mode could not be reproduced well in both
simulations. This led to distortions of the results.
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Figure 9. Comparison of the damping coefficients of the modal based entropy approach with the
fully coupled thermoelastic ANSYS simulation for the box component.

Note that only frequencies f > 200 Hz are displayed here. The first natural frequency
occurred at 437 Hz, i.e., the relevant frequency domain was covered. No boundary condi-
tions were applied to the model to ensure comparability with the experiment. Therefore, a
large influence of the rigid body modes occurred at low frequencies in the full harmonic
simulation.

Overall, the excellent agreement of the curves shows that, with the approach presented
here, results equivalent to those of a fully coupled calculation could be achieved with a
significant reduction in computing time.

Figure 10. Comparison of displacement in y-direction of single node. Red curve: fully coupled
simulation with thermoelastic elements SOLID226. Black curve: harmonic simulation based on
modal superposition, use of modal damping coefficients that were calculated with the entropy
approach.
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Figure 11. Excitation point of force F and measurement point P of displacement in frequency–domain
analysis.

4. Discussion

First, the results demonstrate that thermoelastic damping is clearly mode-dependent.
The damping coefficient of the aluminum alloy considered was in the range from 1× 10−5

to 1× 10−4, but the values of the individual mode shapes of a component differed from each
other by a factor of 4 or more. In the literature, one general loss factor or damping coefficient
is often given for a material (see, for example, [41,42]). Usually, it is not sufficient to use
a global damping value for the simulation, as illustrated by Figures 12 and 13. In these
diagrams, the system response of the rectangular aluminum plate in the first eigenmode
to an impulse excitation is shown. Both time and frequency domain data were taken at a
corner point of the plate. Figure 12 shows the time series of the velocity, filtered to the first
natural frequency (band pass filter 160 Hz–170 Hz). The experimental data were compared
with the finite element simulation using a global damping factor of 0.05% (following [41],
where 0.04% was proposed). Furthermore, the results were set against the finite element
simulation using the modal damping determined by the entropy approach presented here.
It was obvious that the assumption of a global damping coefficient led to a decay curve that
deviated strongly from the experimentally measured time course. Figure 13 shows the same
system response in the frequency domain. The amount of damping is represented by the
width of the peaks. The assumed global damping of 0.05% agreed well with the calculated
damping coefficient of the second eigenmode, which is why the curves overlapped well
in this range. A possible explanation for this might be that the second eigenmode was
close to a pure beam bending; therefore, it could be calculated with Zener’s theory. In the
other eigenmodes, especially at the third natural frequency at approximately 376 Hz, the
spectrum showed the deviation in the width of the peaks.

In comparison with the fully coupled simulations, good accuracy was achieved in the
calculation of the loss factors, as could be shown with both components. The comparisons
shown in Figures 6, 9 and 10 demonstrate good agreement. At the moment, it is not possible
to apply the fully coupled element formulations for finite element analyses based on modal
superposition. Therefore, especially for large systems, enormous computation times is
required, since the thermoelastically coupled system of equations must be solved in every
time or frequency step. The calculation of the system response in the frequency range under
harmonic excitation took almost 6 days for the box component (2700 frequency steps). This
procedure is usually not suitable for practical use. The frequency response analysis based
on modal position using modal damping coefficients offers a great advantage in terms of
computing time. Taking all the analytical steps into account, the system response for the
box component could be solved in about 2 h. In addition, for the simpler system of the
plate, the computation time could be reduced by more than half (5000 frequency steps).
The computing times are displayed in Table 2. The bottleneck in the analysis remained
the determination of the modal damping coefficients by the method presented here. This
calculation step was the only one that was performed on a local computer and was not
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parallelized, so there is still potential for improvement in this respect. Furthermore, the
disadvantages of a mode superposition method in finite element simulation must also be
taken into account; the coupling effects of the mode shapes could not be represented and
the accuracy of the solution depended on the number of considered modes.

Figure 12. Comparison of velocity time series of impulse-excited plate structure: experiment, sim-
ulation with global structural damping and simulation with modal damping. The velocity was
measured/analyzed on a corner point of the plate.

Figure 13. Comparison of velocity frequency spectrum of impulse-excited plate structure: experiment,
simulation with global structural damping and simulation with modal damping. The velocity was
measured/analyzed on a corner point of the plate.

In comparison with the simulated values, the experimental studies deliver always
slightly higher damping coefficients. A possible explanation could be that, in the ther-
moelastic simulation, not all physical effects in the material are captured; therefore, lower
values are calculated. However, it is more likely that the deviations are caused by the
limitations of the experimental setup. In particular, the box component is difficult to install
in the vacuum chamber due to its dimensions and weight. Therefore, for example, in our
study, compromises had to be made in the design of the bearings. Since the suspension
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could not always be realized exactly in the zero line of the eigenmode, slight damping
effects due to friction occurred. In addition, a complete vacuum was not achieved in the
experimental setup, so that a small influence due to air damping could be recorded. The
experimental setup should be improved so that measured values can better compare with
numerically simulated ones.

Table 2. Computing time in CPU hours for a frequency–domain analysis using a direct solution
procedure with fully coupled thermoelastic elements and a mode superposition solution procedure
with modal damping. The modal damping coefficients were determined with the entropy approach
provided in the paper. For the rectangular plate, 5000 frequency steps were analyzed and, for the box
component, 2700 frequency steps were analyzed. All simulations (except for the calculation of the
modal damping coefficients) were run on 16 cores of a compute node with 2 Intel Xeon Processor
E5-2650 v4 CPUs with a base clock of 2.2 GHz and 128 GB RAM.

Plate Box Component

number of elements 9600 el. 291,320 el.

fully coupled simulation SOLID226/227 34.8 2234.6
(≈6 days)

entropy approach SOLID186/187 16.5 35.1
eigenfrequency analysis 1.2 7.5
modal damping coeff. 9.3 17.9
harmonic analysis 6.0 9.7

5. Conclusions

We here present a method to calculate modal thermoelastic damping coefficients for
arbitrary components discretized with solid elements. The analysis is based on an increase
in entropy during mechanical vibrations that leads to energy dissipation. Modal damping
ratios were calculated and used in subsequent finite element simulations based on modal
superposition.

The results were compared with simulations using a thermoelastically fully coupled
element approach. It is shown that similar results were obtained for both the loss factors
and the system response in the frequency spectrum in significantly lower computation
times.

The comparison of the modal damping coefficients with the experimental data showed
good agreement. The physically measured damping values are always slightly higher than
the calculated ones.

In conclusion, the method seems suitable for calculating material damping. However,
in order to make realistic predictions of the damping behavior of structures, other causes
of energy dissipation must also be taken into account. Suitable models for friction and air
damping must be used in the simulations.

In addition, the extension of the method to other materials might prove an important
area for future research. The method was developed and tested on aluminum. As a next
step, anisotropic materials or laminated components could be investigated.

Furthermore, interesting research questions can be derived from the possibility to
locate the areas of high energy dissipation in the simulation. This provides a good starting
point for the optimization of geometries or surfaces.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ma15051706/s1, Video S1: Simulation of mode 1 of the rectangular
aluminum plate. The points of suspension, excitation and measurement are shown. Video S2:
Simulation of mode 2 of the aluminum gearbox case. The points of suspension, excitation and
measurement are shown.
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