
����������
�������

Citation: Shalimov, A.; Tashkinov, M.

Numerical Analysis of the

Mechanical Response of Two-Phase

Nanocomposites Consisting of

Nanoporous Gold and Polymer.

Materials 2022, 15, 1574. https://

doi.org/10.3390/ma15041574

Academic Editor: Anna

Georgievna Knyazeva

Received: 20 January 2022

Accepted: 14 February 2022

Published: 19 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Numerical Analysis of the Mechanical Response of Two-Phase
Nanocomposites Consisting of Nanoporous Gold and Polymer
Aleksandr Shalimov and Mikhail Tashkinov *

Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University,
614990 Perm, Russia; shalimov96@pstu.ru
* Correspondence: m.tashkinov@pstu.ru

Abstract: In this work, representative volume elements (RVEs) of composites, consisting of nanoporous
gold and polymer, were investigated. Gold is of great interest as a special case of nanoporous metals
as it deforms to large plastic strains when compressed, whereas normally nanomaterials allow only
small deformations. The nanocomposite is modeled as a nanoporous monocrystal filled with a
polymer. Different models of the phase behavior of nanoporous metal composites with the addition
of a polymer component were studied. Three models of the mechanical behavior of gold were im-
plemented: elasticity, elastic-plasticity, and the model of fracture with the degradation of properties.
Three types of polymers were considered: polypyrrole (PPy), epoxy resin, and polyaniline (PANI),
for which elasticity and elastic-plasticity models were implemented. The effect of the morphol-
ogy of the nanocomposite on their mechanical response was numerically investigated using finite
element analysis.

Keywords: bicontinuous structures; representative volume element; finite element method; nanostructures;
nanoporous gold; polypyrrole; epoxy resin; polyaniline; nanocomposite; numerical models

1. Introduction

Nanoporous materials are known as a type of three-dimensional porous solid with
a characteristic nanoscale size. They have a morphology similar to macroscopic solid
foams, but have smaller pore diameters and ligaments, as well as a high specific surface
area. The interest in such a class of materials is also related to the possibility of creating
nanocomposites on its basis by filling the empty space with another material in order to
realize the necessary properties. The structure of nanoporous metals and composites based
on them can be represented as a model of bicontinuous media, in which the components
form interpenetrating scaffolds.

Nanoscale heterogeneous materials and, in particular, nanoporous materials and
composites made of them are attracting growing attention of researchers due to their
unique properties [1,2]. These materials have a specific coherent nanoscale structure
with a continuous porous phase and can be created, for example, from different metals
such as silver [3], platinum [4,5], copper [6], nickel [7], palladium [5,8,9], titanium [10],
aluminium [11], and gold [4,5]. Recent studies have investigated the use of such metals as
functional materials for catalysis, actuators, and probing [12,13].

Nanoporous gold has a bicontinuous network of nanoscale pores and solid liga-
ments [14]. Numerous experimental studies have shown that, in addition to relative
density, the strength of nanoporous gold is strongly dependent on the average radius of
the ligaments [15], while the macroscopic strength increases with the decreasing ligament
size [16,17].

The prediction of the macroscopic properties and local response of the nanoporous
material is complicated due to the inherent complex internal composition. For this purpose,
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mathematical modelling methods are applied to investigate the representative volume ele-
ments (RVEs) of the materials. To generate artificial samples of materials with a morphology
similar to that observed experimentally, several methods were proposed [18–20].

Molecular dynamics studies were performed to quantify the evolution of the dislo-
cations and configurations in a porous monocrystalline metal [21]. Modeling shows that
nanovoids are important sources of dislocations. In uniaxial compression, dislocation
shear loops originate on the pore surface. Plastic deformation occurs due to dislocation
separations from the pore surfaces and the distribution of the dislocations in the ligaments,
and the interaction of the dislocations at their contact with neighboring pores. As the voids
begin to shrink, the density of the dislocations increases rapidly [22]. The results have
shown that the dominant deformation mechanism of nanoporous metals is the bending of
bonds at the joints of the structure, which is consistent with the experimental results in the
compression.

The finite element method (FEM) is also used as a tool to investigate the mechanical
properties of nanoporous media. FEM simulates the stiffness characteristics of porous
solids with different configurations and relative densities [23–25]. Numerical modeling and
analysis of the kinematics of the final deformation of ligaments, surface elasticity, and the
initial stress effects of the porous medium have been performed [26,27]. To implement FEM
modeling, mechanical properties (e.g., Young’s modulus, Poisson’s ratio, and yield strength)
of the ligaments must be obtained by experiments or from other computational models of
a smaller scale. In addition to three-dimensional finite elements, a series of works [14,28]
have used beam finite elements bicontinuous media with interpenetrating phases.

The behavior of nanoporous gold has also been compared with the classical Gibson−Ashby
scaling ratios for foams using finite element models [29,30]. According to published work in the
field, when calculating the elastic properties numerically, both approaches produce results for
yield values that exceed the Gibson−Ashby scaling relationship prediction for metal foams, and
thus confirm the influence of other microstructural features besides porosity.

In the experiments with macroscopic stretching, nanoporous materials immediately
show fragility. So far, the only way to prevent this is to create composites by introducing a
polymer into the voids [31]. It has recently been shown that such a material can withstand
significant deformation at a four-point bend [32]. The simulation of the mechanical be-
havior of nanocomposites based on foams is less common in the literature. A nanoporous
metal polymer composite was modeled in [33] using a simplified two-dimensional RVE,
investigating the plastic reaction and microstructure influence. The effective elastic proper-
ties of a realistic three-dimensional representative volume of such a nanocomposite were
subsequently investigated [34,35].

At present, there are practically no hierarchical three-dimensional models of two-
component nanoscale composites with a random structure that allow for reliable prediction
of the deformation behavior of such structures depending on the physical factors and the
stochastic nature of the structure morphology. Thus, modeling the behavior of whole RVE
(on the scale of hundreds of nanometers) is essential in order to account for the mutual
influence of the morphological structural elements.

The computational effort that would be required for the atomistic modeling of realistic
RVE of nanoporous materials and nanoscale composites is often excessive. Consequently,
continuum mechanics models numerically realized using the finite element method are
used to study the dependence of the mechanical behavior on the morphology structure. In
this case, the properties and constants required for the models can be obtained either from
experimental studies or from molecular dynamics models. On the basis of finite element
modeling, it is possible to investigate the influence of material morphological features
on the mechanical behavior relatively quickly and efficiently. In particular, the processes
of crack nucleation, crack propagation, and the final fracture of nanocomposites on the
nanoscale can be studied.
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2. Materials and Methods
2.1. Geometry Models

For the mechanics of heterogeneous media, an important task is to create three-
dimensional models reflecting the morphological structure of real objects. The creation of
geometric models of bicontinuous media simulating experimentally obtained images of the
internal structure of nanoporous metals and nanocomposites, consisting of nanoporous
metals and polymers, was performed based on space separation using the surface equation,
which is given by setting the level for a random Gaussian field represented as a Fourier
series [18–20]:

f (x) =
1√
N

∑N
i=1 ci· cos

(
2π

a
ki·x + ϕi

)
, (1)

where x is the position of the radius vector, a is the size of RVE, N is the number of
harmonics, ϕi is the wave phases that are evenly distributed on the interval [0, 2π), and
ki is the wave directions. The coefficient ci is randomly selected. Different phases of
a representative volume are determined by assigning points of space according to the
following conditions: the point belongs to phase 1 if f (x) < ξ and phase 2 if f (x) ≥ ξ,
where the parameter ξ defines the separation surface.

The approach was adapted to fit the internal structure of specific materials, such as
nanoporous gold, as well as nanoporous gold-based polymer composites, by modifying
the number of harmonics and wave parameters responsible for the stochasticity and regu-
larity of the structures. For this purpose, images of material samples published in [14,36],
obtained by scanning electron microscopy methods, were examined.

An example of a two-dimensional processed image of the nanoscale structure of
nanoporous metals is shown in Figure 1. The original image was an electron photograph
from [36] of the nanoporous gold obtained with a low-voltage field emission scanning
electron microscope at 100,000 magnification and 5 kV voltage. Several image filters were
applied in order to obtain a binarized two-component composition that is suitable for the
morphological statistical analysis. A thresholding filter was used for filtering the parts
of the image that were in the background (Figure 1a). In particular, it replaced values
close to zero by zero using threshold specification. As the metallic phase was supposed
to be continuous, morphological analysis was required to seek for disconnected parts (see
Figure 1b, separated parts are highlighted). The thresholding parameter was then tuned to
minimize the number of separated regions (0.6 in the considered case). Finally, analytical
binarized region was formed for further morphological analysis.
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tion as the discretized region. The red scale bar in the lower left corner represents 100 nm. 

An algorithm has been created and implemented in Wolfram Mathematica that al-
lows for analyzing two-dimensional experimentally obtained black-and-white images of 

Figure 1. Some steps of the proposed image processing method: (a) threshold processing and mor-
phological binarization of image; (b) morphologically connected components; (c) final representation
as the discretized region. The red scale bar in the lower left corner represents 100 nm.

An algorithm has been created and implemented in Wolfram Mathematica that allows
for analyzing two-dimensional experimentally obtained black-and-white images of the
structure of nanoporous materials using the tools of mathematical morphology. The goal
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of this algorithm was to find the parameters that are required to construct equivalent
three-dimensional RVEs of nanoscale structures. Physical and statistical morphological
characteristics were used as comparison parameters in order to find correspondence be-
tween two-dimensional images and three-dimensional models [37–41]. The volume fraction
and the perimeter of the interface between the two phases (the surface area of the interface
in the three-dimensional case) were used as the physical characteristics, and the correlation
functions were used as the statistical ones. In the general case, the n-th order correlation
function is defined via a random indicator function, as follows:

K(n)
α (

→
r 1, . . . ,

→
r n) =

〈∫
V1

∫
V2

. . .
∫
Vn

(
λα

(→
r 1

)
− p

)(
λα

(→
r 2

)
− p

)
. . .
(

λα

(→
r n

)
− p

)
dV1dV2 . . . dVn

〉
, (2)

where λα

(→
r
)

is the random indicator function for aphase α, which can take two values:

1 if a radius-vector
→
r points at the phase α, and 0 otherwise; p is the volume fraction of

the phase α. The correlation functions depend only on the distance between the radius
vectors

∣∣∣→r i −
→
r n

∣∣∣. In this work, the second-order correlation functions were used for the
comparison of 2D images and 3D RVEs. Using this comparative algorithm, geometric
models of three-dimensional RVEs of bicontinuous heterogeneous media, reflecting the
structure of the samples on the images, have been iteratively obtained. The set of parameters
included the volume fraction of phases (was controlled by changing the level parameter
ξ for a random Gaussian field), regularity of structures (wave parameters and number of
harmonics N in the Fourier series), size of internal structural components (scale parameters
in the Fourier series), and size of RVE. These parameters were calibrated according to the
proposed algorithm by iterative comparison and optimization of the physical and statistical
descriptors until the required tolerance was reached.

Using the proposed image processing method, three-dimensional RVEs of nanoporous
metals with dimensions of 200 nm × 200 nm × 200 nm in size containing random combi-
nations of ligaments were created. The structures with the following polymer inclusion
volume fractions were investigated: p = 0.664, p = 0.665, p = 0.678, p = 0.680, p = 0.696.
Examples are shown in Figure 2.
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Figure 2. Three-dimensional RVEs of porous two-phase random structure of nanoporous metals
obtained from a two-dimensional image using the proposed restoration algorithm (scale in nm).

Examples of the second-order correlation functions are presented in Figure 3 for the
structures with different volume fractions.
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To create finite element models of the derived RVEs, the algorithm that discretized the
region with four-point tetrahedral elements was developed using the extended capabilities
of the Wolfram Mathematica software. The surface of a geometric region was discretized
into triangles with a fixed maximum value of the longitudinal dimension. This two-
dimensional sampling was then used as the basis for the creation of a tetrahedral mesh.
The size of the mesh elements was controlled, as well as the occurrence of possible mesh
defects, such as extremely small components, singular vertices, and faces of tetrahedrons
with a near-zero area.

Figure 4 shows an example of the generated finite-element model of a two-phase
bicontinuous structure. White represents the gold phase, green is the filler (polymer)
phase. The SIMULIA Abaqus software was used for the finite element modelling. The
characteristics of this numerical realization: number of elements in the inclusion phase
1,237,405, number of elements in matrix phase 939,689, total elements 2,177,094, number of
nodes 482,076, and the maximum element size ratio is 0.06 for the side size of RVE.
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2.2. Material Models

Various mechanical models of the of the components of the studied nanocomposites
were investigated. Thus, for RVEs of the nanocomposite material, calculations were per-
formed in which the gold phase was considered elastic, elastoplastic, and elastoplastic
with possible damage accumulation. Several types of the polymeric phase were considered
as a filler, which was modelled as an elastic and elastoplastic material. The physical and
mechanical properties of the phases were obtained from experimental works [17,42,43],
and they were also confirmed by some numerical studies based on molecular dynamics
methods [33,44,45]. The properties of the constituents for the gold-polymer nanocomposites
are presented in Table 1 and Figure 5.

Table 1. Material parameters for gold matrix and polymer filler.

Parameter Symbol Value Ref.

Gold
Young’s module E 48,000 MPa [33,46]
Poisson’s ratio ν 0.44 [33,46]

Elastic limit σy 96 MPa [33]
Ultimate strength σs 190 MPa [47]

Stress−strain curve - - [33]
Polypyrrole (PPy)
Young’s module E 600 MPa [31]
Poisson’s ratio ν 0.3 [31]

Elastic limit σy 15 MPa [48]
Stress−strain curve - - [48]

Epoxy resin
Young’s module E 1038 MPa [33,49]
Poisson’s ratio ν 0.35 [33,49]

Elastic limit σy 28 MPa [33,49]
Stress−strain curve - - [33,49]
Polyaniline (PANI)

Young’s module E 1910 MPa [50]
Poisson’s ratio ν 0.38 [51]

Elastic limit σy 76 MPa [50]
Stress−strain curve - - [50]
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A special custom UMAT subroutine for SIMULIA Abaqus was used to implement the
model of fracture with the degradation of properties. This model was introduced for the
gold phase, the stiffness tensor of which additionally contained the internal state variables
D (see Figure 3). These variables are so-called degradation coefficients and characterize the
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occurrence of structural failure. At the initial moment of time, all coefficients are equal to
zero, thus the material model does not differ from the usual one.

S(D) =



1
E − ν

E − ν
E 0 0 0

1
E(1−D)

− ν
E 0 0 0

1
E 0 0 0

1
µ 0 0

sym. 1
µ 0

1
µ


, (3)

However, when the degradation criterion is fulfilled, the coefficients become equal to
some constant (in a range from 0 to 1), and lowered the values of the components of the
stiffness tensor. In this work, the degradation coefficient D = 0.9 was chosen; it affected
only the S22 component of the compliance tensor when the criterion for maximum principal
stresses was fulfilled by principal stress along the vertical axis, i.e., σ2 ≥ σs, where σs is the
critical stress value. The field of degradation criterion fulfillment varied from 0 to 0.9. The
value of the field “0.9” shows the places where elastic properties were reduced. These can
be used to qualitatively estimate the areas of possible failure. Similar approaches using
custom subroutines have been actively implemented recently, for example in [52,53].

2.3. Boundary Conditions

The RVEs were subjected to tensile and compressive loads applied through loading
plates. Those support loading plates were bonded to the top and bottom surfaces of the
RVEs with frictionless contact conditions specified (Figure 6). The properties of support
loading plates were much more rigid than the constituents of the RVEs. The load was
applied in displacements of u = 2 nm along the vertical axis. The ideal contact was
assumed between the phases.
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However, when the degradation criterion is fulfilled, the coefficients become equal 
to some constant (in a range from 0 to 1), and lowered the values of the components of the 
stiffness tensor. In this work, the degradation coefficient 𝐷𝐷 = 0.9 was chosen; it affected 
only the 𝑆𝑆22 component of the compliance tensor when the criterion for maximum prin-
cipal stresses was fulfilled by principal stress along the vertical axis, i.e., 𝜎𝜎2 ≥ 𝜎𝜎𝑠𝑠, where 
𝜎𝜎𝑠𝑠 is the critical stress value. The field of degradation criterion fulfillment varied from 0 
to 0.9. The value of the field “0.9” shows the places where elastic properties were reduced. 
These can be used to qualitatively estimate the areas of possible failure. Similar ap-
proaches using custom subroutines have been actively implemented recently, for example 
in [52,53]. 

2.3. Boundary Conditions 
The RVEs were subjected to tensile and compressive loads applied through loading 

plates. Those support loading plates were bonded to the top and bottom surfaces of the 
RVEs with frictionless contact conditions specified (Figure 6). The properties of support 
loading plates were much more rigid than the constituents of the RVEs. The load was 
applied in displacements of 𝑢𝑢 = 2 nm along the vertical axis. The ideal contact was as-
sumed between the phases. 

 
Figure 6. Scheme of the specimen loading.

3. Results

The deformation diagrams obtained for the variation of constituent properties were
built for the RVEs created with different volume fractions and internal morphologies.
The distributions of stress and strain fields in the RVEs as an effective media and in
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their individual components were investigated. The processes of the formation of stress
concentrators for different models of mechanical behavior of the phases were studied.

The following results for the numerical models of nanocomposites can be divided into
subgroups according to the following criteria: by gold phase material model, by polymer
phase material mechanical model, by the polymer phase material itself, by geometry model,
by volume fraction of nanocomposite inclusions, and by loading model. In this paragraph,
force−displacement plots will be demonstrated for two geometry models with volume
fractions of 0.680 and 0.664.

This paragraph is divided into two subparagraphs. The first subparagraph is devoted
to numerical models where the polymer phase is an elastic material. The second one
is devoted to numerical models where the polymer phase is an elastoplastic material.
Each subparagraph will describe all three polymeric materials: polypyrrole (PPy), epoxy
resin, and polyaniline (PANI).

3.1. Nanoporous Gold with Elastic Polymer

Figure 7 shows the force−displacement curves for tension loading of numerical models
with the same polymer volume fraction of 0.680 for all three polymer materials, as well
as with different gold material models (elastic formulation, elastoplastic formulation, and
elastoplastic formulation with property degradation procedure). The higher the stiffness of
the nanocomposite polymer, the higher the curve in the graph. The more compliant the
gold phase material, the lower the curve on the graph.
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Figure 7. Tensile force−displacement curve for numerical models of the same polymer inclusion
volume fraction at different gold material models.

Figure 8 shows the tension force−displacement curves for numerical models with
elastoplastic gold material models, but different polymer inclusion volume fractions of
0.680 and 0.664 for all three polymer materials. For simple cases, the higher the volume
fraction of the more compliant phase, the more compliant the entire composite is. In
Figure 8, this condition is not satisfied: the curves of the nanocomposite with a polymer
inclusion volume fraction of 0.680 are higher than the nanocomposite with a volume
fraction of 0.664. This allows for concluding that not only the volume fraction but also
the morphology of the nanocomposite inclusions makes a difference: even for RVEs with
the approximately same volume fraction, the results can differ due to the randomness of
morphological composition.
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Figure 8. Tensile force−displacement curve for numerical models of elastoplastic gold material
models at different polymer inclusion volume fractions.

Figure 9 shows the tension force−displacement curves for numerical models with
the same polymer inclusion volume fraction of 0.680 for all three polymer materials, as
well as with different loading conditions (tension/compression). From the curves, it can be
concluded that the structure will collapse at lower strain values under compression loading
than when subjected to tension.
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Figure 9. Force−displacement curve for numerical models of elastoplastic gold material models with
the procedure of degradation of elastic properties at the same polymer inclusions volume fraction
and different loading models.

Figures 10–12 show the Mises stress fields (Pa) in the RVE of a nanocomposite with
a polymer inclusion volume fraction of 0.680 at the same moment of loading. Figure 10
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shows the Mises stress field in the elastic case of the gold phase. Figure 11 represents
the stress field in the elastoplastic case of the gold phase. Figure 12 shows stress field in
elastoplastic case of the gold phase with the property degradation procedure.

Materials 2022, 15, 1574 10 of 18 
 

 

 
Figure 9. Force−displacement curve for numerical models of elastoplastic gold material models 
with the procedure of degradation of elastic properties at the same polymer inclusions volume 
fraction and different loading models. 

Figures 10–12 show the Mises stress fields (Pa) in the RVE of a nanocomposite with 
a polymer inclusion volume fraction of 0.680 at the same moment of loading. Figure 10 
shows the Mises stress field in the elastic case of the gold phase. Figure 11 represents the 
stress field in the elastoplastic case of the gold phase. Figure 12 shows stress field in elas-
toplastic case of the gold phase with the property degradation procedure. 

 
Figure 10. Tensile Mises stress fields (Pa) of the bicontinuous structure with a polymer inclusions 
volume fraction 𝑝𝑝 = 0.680, which has the elastic properties of the gold phase and elastic properties 
of the polymer. 

Figure 10. Tensile Mises stress fields (Pa) of the bicontinuous structure with a polymer inclusions
volume fraction p = 0.680, which has the elastic properties of the gold phase and elastic properties of
the polymer.
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Figure 11. Tensile Mises stress fields (Pa) of the bicontinuous structure with a polymer inclusions
volume fraction p = 0.680 with elastoplastic properties of the gold phase and elastic properties of
the polymer.
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Figure 12. Tensile Mises stress fields (Pa) of the bicontinuous structure with polymer inclusions
volume fraction p = 0.680 with elastic properties of the polymer and elastoplastic properties of the
gold phase with the procedure of degradation of elastic properties.

Figure 13 shows the field of the criterion of degradation of properties (dimensionless
unit) for a nanocomposite with a polymer phase volume fraction of 0.680 at the elastoplastic
formulation of the gold phase with the property degradation procedure. The value of the
field “0.9” indicates the regions where the criterion is fulfilled.
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and 0.664 for all three polymer materials. When analyzing Figure 15, a similar conclusion 

Figure 13. The tensile degradation criterion field of the nanocomposite with a polymer inclusions
volume fraction p = 0.680 with elastic properties of the polymer and elastoplastic properties of the
gold phase with the procedure of the degradation of elastic properties.

3.2. Nanoporous Gold with Elastoplastic Polymer

Figure 14 shows the force−displacement curves in tension for numerical models with
the same polymer volume fraction of 0.664 for all three polymer materials, as well as
with different gold material models (elastic formulation, elastoplastic formulation, and
elastoplastic formulation with a property degradation procedure).
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Figure 14. Tensile force−displacement curve for numerical models of the same polymer inclusion
volume fraction at different gold material models.

Figure 15 shows the tension force−displacement curves for numerical models with
an elastoplastic gold material, but different polymer inclusion volume fractions of 0.680
and 0.664 for all three polymer materials. When analyzing Figure 15, a similar conclusion
can be made as for Figure 8—the curves of the nanocomposite with a polymer volume
fraction of 0.680 are higher than the nanocomposite with a polymer volume fraction of
0.664, indicating the influence of the morphology of the nanocomposite inclusions.
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Figure 16 shows the tension force−displacement curves for numerical models with the
same polymer inclusion volume fraction of 0.664 for all three polymer materials subjected
to different loading conditions (tension/compression). It can be concluded that, due to
the complexity of the geometry, the structure will collapse faster in compression than in
tension. These results for equal RVE models also show the influence of the filler properties
on the mechanical behavior of the material.
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Figure 16. Force−displacement curve for numerical models of elastoplastic gold material models
with the procedure of the degradation of elastic properties at the same polymer inclusions volume
fraction and different loading models.

Figures 17–19 show the Mises stress fields (Pa) in the RVE of a nanocomposite with
a polymer inclusion volume fraction of 0.664 at the same moment of loading. Figure 17
shows the stress field in the elastic case of the gold phase. Figure 18 represents the stress
field in the elastoplastic case of the gold phase. Figure 19 shows the stress field in the
elastoplastic case of the gold phase with the property degradation procedure.
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Figure 17. Tensile Mises stress fields (Pa) of a nanocomposite with a polymer volume frac-
tion p = 0.664, which has the elastic properties of the gold phase and elastoplastic properties of
the polymer.
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Figure 18. Tensile Mises stress fields (Pa) of a nanocomposite with polymer volume fraction p = 0.664
with the elastoplastic properties of the gold phase and the elastoplastic properties of the polymer.
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Figure 19. Tensile Mises stress field (Pa) of a nanocomposite with a polymer volume fraction p = 0.664
with elastoplastic properties of the polymer and elastoplastic properties of the gold phase with the
procedure of the degradation of elastic properties.

Figure 20 shows the field of the criterion of the degradation of properties (dimension-
less unit) of a nanocomposite with a polymer volume fraction of 0.664 with elastoplastic
formulation of gold phase including the property degradation procedure. The value of the
field “0.9” indicates the regions where the criterion was met.
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Figure 20. Tensile degradation criterion field of a bicontinuous structure with a polymer inclusions
volume fraction of p = 0.664 with elastoplastic properties of the polymer and elastoplastic properties
of the gold phase with the procedure of the degradation of elastic properties.

4. Conclusions

Deformation diagrams were numerically calculated for the RVEs of nanocomposites
with different volume fractions and internal morphologies, taking into account the variation
of the phase property mechanical models. The distributions of stress and strain fields in the
RVEs and in its individual components were investigated using finite element numerical
modelling. The processes of the formation of stress concentrators for different models of
the mechanical behavior of the constituents were studied.

The influence of the properties of the filler phase in gold-polymer nanocomposites
on the mechanical behavior of the morphologically authentic RVEs was demonstrated. A
comparative analysis of the constituents’ properties combinations was performed based
on the results of several considered case studies. The effect of the filler volume fraction
was studied. It has been established that the mechanical properties of nanocomposites
are significantly affected by their internal composition (composition, size of ligaments,
etc.). With the growth of filler volume fractions, the maximum achieved stress increases,
and the displacements at failure decrease with increasing the gold volume fraction. The
data obtained show a ligament size-dependent behavior of the two-phase gold-polymer
composite. Composite samples with a smaller ligament size fractured at lower strain
values than the samples with larger ligaments, and also exhibited a broader scatter of
yield strength. Nanocomposites with a polymer component exhibited a close to linear
relationship for the maximum load at failure when increasing the volume fraction of
the gold phase. The obtained relations demonstrate the possibility of using continuum
mechanics methods to model the behavior of nanoscale materials.
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