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Abstract: We present a novel method for the determination of the lateral dimensions of thin rectangu-
lar flakes, as they exist randomly dispersed in flake composites. Knowledge of flake size and shape is
essential for the correct prediction of the mechanical, electrical, thermal and barrier properties of flake
composites. The required information is the distribution function of lengths of the lines representing
the intersection of flakes with a sectioning plane, as seen in cross-sections of composite samples
used in optical or electron microscopy or obtained using tomographic imaging techniques. The key
observation is that the major peak of the distribution function coincides with the short dimension
S of the flake while a secondary peak corresponds to its long dimension W. These observations
are explained using Monte-Carlo simulations, as well as deterministic, geometry-based modeling
and probability analysis. Since the strength of the secondary peak diminishes with increasing flake
aspect ratio r = W/S, we develop two additional methods for the determination of W. The first
finds W from the maximum intersection length; this procedure is justified by computing the relevant
probability fields through Monte-Carlo simulations. The second method finds r from the average
intersection length and is valid in the range 1 < r < 15. The performance of these techniques is
tested and found to be very good using blind experiments in numerically sectioned specimens.

Keywords: flake composites; composites characterization; microstructure; flake alignment; flake
dimensions

1. Introduction

The problem of obtaining the dimensions of filler particles in composite materials
from information contained in two-dimensional cross-sections, typically obtained for and
used in optical, confocal, scanning-electron and transmission microscopy or in tomographic
imaging, is a long-standing problem in composites science. The reason for this is self-
evident, since knowledge of the size, shape and orientation of the reinforcing particles
is a basic requirement for any reasonable estimation of the properties of the resulting
composites. This problem has been handled in sufficient detail in the case of fibrous
composites, in two-dimensional (2D) cross-sections of which the fibers appear as circles
or ellipses, depending on their orientation with respect to the sectioning plane [1–7]. In
contrast, this problem has not been addressed at all in the case of composites in which
the reinforcing particles have a thin, planar shape (flake composites), even though these
materials find significant applications in diverse fields (packaging films and containers,
fire resistant materials, anti-corrosion paints, as anti-oxidants and UV-protection agents
in polymers etc.) [8–10]. For example, use of metallic flakes in conductive composites and
electromagnetic interference (EMI) shielding applications, hinges on correct estimation on
the in-situ lateral dimensions of the flakes, as they directly impact the percolation threshold
of the material [11–14]. Use of flake composites as barrier materials relies on their large
surface area-to-volume ratio, which increases dramatically the tortuosity of the medium
and the length of the diffusion path of the penetrant molecules, with a corresponding
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decrease in the effective diffusion coefficient. We have recently demonstrated [15,16] that,
in the particular case of flakes of rectangular shape, the barrier efficiency of the resulting
composite is a very strong function of the planar flake aspect ratio. Specifically, we have
shown that, when the Barrier Improvement Factor (BIF∼1/Deff), where Deff is the effective
diffusion coefficient of the penetrant molecules in the composite, is expressed as a quadratic
polynomial of (αφ), namely BIF = 1 + C1αφ + C2(αφ)2, where α is an aspect ratio based
on the thickness of flake, and φ is the flake volume fraction. The coefficients C1 and
C2 depend on the lateral aspect ratio r, namely, C1 ∼1/r and C2 ∼1/r2. The inverse
quadratic dependence of C2 on r implies that the effectiveness of rectangular flakes as
barrier materials diminishes rapidly as their aspect ratio increases. Information about the
lateral dimensions of flakes is only rarely available in processed composites, even though
substantial information exists regarding the shape of as-synthesized flakes, especially those
produced by liquid phase exfoliation. Meunier et al. [17] have demonstrated that the
lateral dimensions of graphene nanoflakes can be controlled in a thermal plasma reactor.
Lin et al. [18] have presented detailed characterization of graphene flakes using microscopy
(TEM and optical) as well as AFM and Raman micro-spectroscopy; the lateral dimensions,
in terms of the Feret diameter, were shown to be in the range of 1 µm. Jiang et al. [19]
have presented pictures of SnSe rectangular flakes with lateral dimensions 50 µm × 30 µm
and thickness at the atomic level. Zeng et al [20] have shown pictures of polygonal
MoS2 sheets with lateral dimensions ∼150 µm in aqueous solution. Peng et al. [21] have
shown TEM images of polygonal flakes of 2D Titanium Carbide with lateral dimensions
1–6 µm. Mag-Isa et al. [22] have presented images of as-produced graphene and MoS2
flakes with lateral dimensions around 100 and 50 µm, respectively. Length distributions
were also reported. The need to properly quantify the shape of flake-like 2D materials in a
statistically meaningful sense and beyond the use of the Feret diameter has been addressed
by Santos et al. [23] and has been identified as a strong prerequisite for the standardization
of feedstock in the evolving 2D materials industry. In the case of flakes as they exist in
processed composites or coatings, the in-situ size and shape of the flakes can be different of
those of the starting material, due to attrition.

Flakes in composite parts are typically imaged by sectioning the composite and
observing either a fracture surface or a polished cross section using optical, or scan-
ning/transmission electron microscopy [24–27]. In such cross-sections, 2D rectangular
flakes will appear as lines, as shown schematically in Figure 1. While this approach can
yield the flake dimensions for perfectly aligned flakes, as in this case the intersections
of the flakes with a perpendicular sectioning plane will appear as lines of equal length
(Figure 1a,b), this procedure clearly breaks down when the flake orientations deviate from
perfect alignment. This is shown in Figure 1c,d, in which it is clear that when the flakes
assume random in-plane orientations, the cross-section consists of line segments having a
distribution of lengths. It is currently not possible to back-calculate the lateral dimensions
of flakes from images of cross sections such as shown in Figure 1d.

The purpose of this paper is to overcome this shortcoming and to present the develop-
ment and testing of a procedure which allows the extraction of these parameters (S, r), from
the statistics of the length distribution seen in cross-sections of composites (e.g., Figure 1).
The assumptions underlying this work are:

(i) Flakes are of rectangular shape and of uniform size;
(ii) Flakes are parallel to each other;
(iii) Flakes have random in-plane orientations in the interval [−π/2,+π/2].

In the following sections we first present results of numerical sectioning experiments
in realistic three-dimensional (3D) Representative Volume Elements (RVEs), in which the
statistical features of the distribution of the intersection lengths are revealed. Following
this, we develop geometry-based models for the statistics of the intersection lengths; these,
implemented in a Monte-Carlo environment, shed light into the mechanism(s) causing
the characteristic distributions seen in computationally sectioned samples. Using these
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results we develop and test methodologies for determining the flake aspect ratio from the
maximum intersection length, and also from the average intersection length.

(a) (b)

(c) (d)
Figure 1. Typical 3D RVEs including flakes oriented parallel to the X-Z plane, showing the sectioning
plane and the resulting intersections. From left to right: (a) A flake composite with unidirectional
flakes of aspect ratio r = 4, (b) The intersecting plane shows a collection of parallel lines of equal
length, (c) a similar composite in which the flakes assume random in-plane orientations, and (d) the
corresponding image of the intersecting plane where the intersections now appear as parallel lines of
a variety of lengths. In this illustration, the RVE contains 500 flakes and there are ∼40 intersections.

2. Geometry Generation and Numerical Sectioning

3D RVEs are generated using an in-house Random Sequential Addition (RSA) algo-
rithm. The RSA process is implemented as described in a previous work [28] with the flakes
allowed to assume random in-plane orientations. A fail-safe mechanism is implemented
by which the calculation stops if a specified number of attempts (O(109)) is exceeded. For
numerical sectioning, as shown in the schematic in Figure 2, a plane (B) normal to the plane
of the flakes is placed at some location within the RVE; plane B is described in vector form
as the set of points p for which (p− p0) · n = 0 where n is the unit normal vector and p0 is a
point on the plane. The distance (h) between each flake center and the plane B is computed.
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For each flake satisfying h < D/2, where D is the length of the flake diagonal, the four
line segments between the corner points of the flake (

←−−−→
P1 − P2,

←−−−→
P2 − P3,

←−−−→
P3 − P4,

←−−−→
P4 − P1) that

describe the flake boundaries are checked for possible intersection with plane B.

(a)

(b)
Figure 2. Schematic illustrating the calculation of the intersection length (H) in a sectioning experi-
ment. (a) A unit cell with the sectioning plane (B). The unit vector n located at point p0 is shown. (b)
Intersection of plane (B) with a flake, defined by the four points P1–P4 and having a short side (S),
long side (W) and aspect ratio r = W/S. The flake intersects plane (B) at points I1 and I2.

For each line segment forming the perimeter of the rectangle, the direction vector
−→
d =

−−→
PkPm is computed and each such line is described as the set of points X for which

X = Pk + t ·
−→
d , t ∈ R. Line-plane intersections are determined by substitution of the line

equation to the plane equation and solving for t, namely:

((Pk + t ·
−→
d )− p0) · n = 0 (1)

t =
(p0 − Pk) · n
−→
d · n

(2)
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In the case where the denominator in Equation (2) is zero, then, if the numerator is
also 0 the line is coplanar with the plane B, while if the numerator is not 0 the line is parallel
to plane B. Both such cases are of no interest in this work. Obviously, if one flake boundary
segment intersects plane B then there will be another flake segment that will also intersect
plane B; therefore the intersection points, if they exist, will always appear in pairs (I1 and
I2). The two intersection points (I1, I2), with coordinates (x, y, z)1 and (x, y, z)2 respectively,
are found from Equation (3) and are used to calculate the length H of the intersection
segment (Figure 2).

In = Pk + t ·
−→
d (3)

Typical distributions of the intersection lengths are shown in Figure 3, for three values
of r. Each such histogram shows three distinct areas; the first lies to the left of the first peak,
which invariably occurs at the point at which the intersection length H equals the flake
width S. This corresponds to intersection segments of length H < S. The second area lies
between the first and the second peak (which corresponds to H = W), as it can be easily
seen in Figure 3a,b and less clearly in Figure 3c. The third area corresponds to H > W with
H approaching the length of the flake diagonal-–this is the longest intersection length that
might occur. In the limiting case of r = 1 the two peaks at S and W coincide.

(a)

(b)
Figure 3. Cont.
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(c)
Figure 3. Distribution of intersection lengths for various flake aspect ratios (r = S/W). Each geometry
contains 50,000 flakes. The intersection lengths (horizontal axis) have been normalized by dividing
with width S of the flakes. (a) When r = 1 the two peaks are merged resulting in a maximum at
H = S. (b) for r > 1 there is a second maximum at r. (c) when r>>1 the second maximum becomes
smaller and eventually diminishes as r increases.

Figure 3 shows that the main peak in the histogram of the intersection lengths coincides
with the small dimension of the flake (S), while the second peak coincides with the long
dimension (W) of the flake. This result has been reproduced in thousands of simulations, in
RVEs containing from ∼103 to ∼107 flakes and for flake aspect rations ranging from 1 to 40.
As r increases, the second peak becomes smaller and eventually disappears. This appears to
limit the usefulness of this observation to flakes of small (<5) aspect ratio. However, we will
show that by correlating the maximum intersection length, max(H) and/or the average
intersection length Hav to the flake aspect ratio, we will offer a method for determining
the long dimension of the flake at higher values of r. This will be discussed in following
sections.

3. Theoretical Model for the Sectioning Process

In the following we derive expressions for the length H of the line segment forming
the intersection between a flake and plane B. While the problem of determining H can be
handled with ease by computational geometry, as shown in the previous section, in this
segment we will develop explicit expressions for H in terms of the orientation (θ) of the
sectioning plane and its distance L from the center of the flake; both L and θ are random
variables and thus, while deterministic in form, the relevant model will be subsequently
evaluated in a Monte-Carlo context. In the process we will offer an explanation for the
observations of Figure 3 and also, derive correlations between max(H) and/or Hav and
the flake aspect ratio. The basic geometrical features of the problem are shown in Figure 4.
The angle between the diagonal and the long side of the rectangle is φ = atan(1/r). The
intersection between the rectangle and the intersecting plane is indicated as line (c). If L is
the distance from the center of the flake to this line, then line (c) will be tangent to a circle
of radius L centered at the center of the rectangle. The angle formed between the diagonal
of the rectangle and the tangent drawn from a corner of the rectangle to a circle of radius
L, centered at the center of the rectangle, is α = asin(2L/D) where D = S

√
1 + r2 is the

length of the diagonal of the flake.
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Figure 4. Basic geometrical features of the problem. The intersection between the cutting plane and
the plane of the flake (line (c) in the schematic) will be tangent to a circle of radius L, centered at
the center of the flake. The counter-clockwise angle formed between the long axis of the rectangle
and line c is π/2 + θ. Thus, θ = 0 corresponds to line (c) being perpendicular to the long axis of the
rectangle, while, when θ = π/2, line (c) is parallel to the long axis of the rectangle.

Obviously, a necessary condition for intersection between line (c) and the rectangle
is that L < D/2. This condition is necessary but not sufficient as the orientation of the
cutting plane (the slope of line (c)) must also be suitable. Depending on the distance (L)
from the center of the rectangle, not all possible angles (θ) will result in an intersection with
the rectangle. With reference to Figure 5 we distinguish three regions:

(i) L < S/2 (Figure 5a).
In this case it is obvious that all lines tangent to the circle with radius (L) will intersect
the rectangle; therefore, for L < S/2 there will be an intersecting line for all θ, 0 <
θ < π. We define as angles θ1 to θ4 the angles formed (counter-clockwise) between the
long axis of the rectangle and the arc points 1–4, at which a tangent will pass through a
corner of the rectangle, as shown in Figure 5a. It can be shown that θ1 = π/2 − α − φ,
θ2 = π − φ − acos(2L/D), θ3 = π/2 − α + φ, θ4 = π/2 + α + φ. It then follows
that the intersection length can be calculated as:

(a) 0 < θ < θ1

H =
S

cos(θ)
(4)

(b) θ1 < θ < θ2

H =

(
D− 2L

cos(φ− θ)

)
cos(φ− θ)

sin(2θ)
(5)

(c) θ2 < θ < θ3

H =
W

sin(θ)
(6)

(d) θ3 < θ < θ4

H =

(
D +

2L
cos(φ + θ)

)
cos(φ + θ)

sin(2θ)
(7)

(e) θ4 < θ < π

H =
−S

cos(θ)
(8)

Equations (4), (6) and (8) represent the case when the cutting plane intersects two
opposite sides of the rectangle, while Equations (5) and (7) represent the case when
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it intersects adjacent sides. Only Equations (5)–(7) are expected to produce long
intersections, while Equations (4) and (8) might generate intersections with lengths
comparable to S.

(ii) S/2 < L < W/2 (Figure 5b).
In this case, not all tangent lines to the circle of radius (L) will intersect the rectangle.
From Figure 5b it is clear that no intersection will occur if θ2 < θ < θ3. For all
other values of θ the cutting plane will intersect the rectangle. It can be shown that
θ1 = π/2 − α − φ, θ2 = φ + acos(2L/D), θ3 = π − θ2, θ4 = π/2 + α + φ. In
this case the intersection lengths are calculated as:

(a) for 0 < θ < θ1 use Equation (4);
(b) for θ1 < θ < θ2 use Equation (5);
(c) for θ3 < θ < θ4 use Equation (7);
(d) for θ4 < θ < π use Equation (8);
(e) for all other angles H = 0.

(iii) W/2 < L < D/2 (Figure 5c).
The situation is similar to (ii) and the arcs at which no intersecting lines can be
drawn are θ2 < θ < θ3, 0 < θ < θ1, and θ4 < θ < π. θ1 = π/2 − α − φ,
θ2 = φ + acos(2L/D), θ3 = π − θ2, θ4 = π/2 + α + φ. The intersection lengths
are

(a) for θ1 < θ < θ2 use Equation (5);
(b) for θ3 < θ < θ4 use Equation (7);
(c) for all other angles H = 0.

From the above it is evident that in reproducing the sectioning experiment that has led
to the histograms of Figure 3, the distance L and the orientation θ of the intersecting line are
not independent. This is demonstrated in Figure 6 in which the angle θ is plotted against
the distance L, for all cases that have resulted in an intersection. It is seen that at distances
L < S/2, all angles between the cutting plane and the flake will result in an intersection.
This range shrinks as the distance of the flake center from the cutting plane increases, and
at L > W/2, only a very narrow set of θ will yield intersections.

(a)
Figure 5. Cont.



Materials 2022, 15, 1560 9 of 22

(b)

(c)
Figure 5. Schematic illustrating the steps outlined in (i) to (iii) above. Broken lines indicate the
tangents to the circle of radius (L) originating from the corners of the rectangle, as shown. In cases
(b,c), only planes with orientations corresponding to θ1 < θ < θ2 and θ3 < θ < θ4 will intersect
the rectangle. The angle θ is counter-clockwise, formed between the long axis of the rectangle and the
radius of the circle at θ, 0 < θ < π.
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(a)

(b)
Figure 6. Correlation between the (normalized) distance of the center of the flake from the intersecting
line (L/S, horizontal axis) and the orientation of the flake (θ in rad, vertical axis), for situations that
have resulted in intersection. Each point in the graphs represents one intersection between the
flake and the cutting plane. Shown are results for a total of N = 5000 random combinations of (L,
0 < L < D/2) (a) and (θ, 0 < θ < π) (b) that have resulted in ∼4400 intersections.

4. Results and Discussion
4.1. General Observations

The frequency histograms for the intersection lengths can be computed from
Equations (4)–(8). Figure 7 shows representative results for r = 1, 3, 7, obtained by per-
forming 106 sets of calculations at each value of r, in which the distance L of the intersecting
line and its orientation angle θ are taken as random variables uniformly distributed in the
relevant intervals. The histograms generated from these calculations are identical with the
results of the numerical sectioning experiments shown in Figure 3.
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Figure 7. Frequency of intersection lengths for three cases, r = 1, r = 3, and r = 7. N = 106

pairs of (L, θ). In all cases, the strongest peak occurs exactly at the location corresponding to the
length of the short side of the flake (H/S = 1 in all cases). The secondary peak appears at the
location corresponding to the long dimension of the flake (H/S = r). This second peak progressively
diminishes as r increases, and for r > 5 it is practically undetectable. 100 bins were used for the
generation of the histograms.

The explanation for the fact that the highest frequency occurs at H/S = 1 can be
found in the mechanism outlined in Figure 5 and presented in mathematical form in
Equations (4)–(8). Consider a histogram with bin length (δ) and an intersection length Hn
corresponding to the n-th bin, such that 1+ nδ < Hn/S < 1+(n+ 1)δ. From Equation (4),
it then is

1 + nδ <
1

cos(θ)
< 1 + (n + 1)δ (9)

or equivalently

θn = acos
(

1
1 + nδ

)
< θ < acos

(
1

1 + (n + 1)δ

)
= θn+1 (10)

The probability of having an intersection with length Hn, is proportional to the proba-
bility of finding an angle θ in the interval [θn, θn+1]. This probability is

P
[

nδ <
Hn − S

S

]
∼ θn+1 − θn

π
=

1
π

(
acos

(
1

1 + (n + 1)δ

)
− acos

(
1

1 + nδ

)) (11)

It can be easily verified that the probability expressed by Equation (11) is a decreasing
function of n—-the distance from the length H = S—and that it takes its maximum value
at n = 0, corresponding to H = S. Figure 8 shows the magnitude and frequency of
intersection lengths H as function of the distance L. It is evident that planes intersecting
a flake at small distances L < S/2 from its center give rise to long intersection lengths
(lower right part of data points). On the other side, planes intersecting a flake at large
distances from its center, give rise to shorter cuts, since they will intersect predominantly
the two opposite short sides of the rectangle. Intersecting lines with H∼S correspond to
planes intersecting at a very wide range of distances from the center of the rectangle; this
multitude of intersections results in the histogram peak shown earlier in Figures 3 and 7.
Intersecting the two opposite short sides, which will result in long segments, corresponds
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to planes intersecting at small distances from the center; this is less probable for more
slender flakes, resulting in the secondary peak diminishing with increasing r (compare
concentration of points at H/S = 3 and H/S = 7 in Figure 8). This matter will be discussed
further in following section.

(a)

(b)
Figure 8. Correlation between length of intersections (H) and distance (L) of the intersecting line from
the center of the flake—both normalized with S. Results obtained using the model of Equations (4)–(6)
for a total of 2000 random combinations of (L) and (θ), which have resulted in 1642 (for r = 3) (a) and
1428 (for r = 7) (b) intersections. Each intersection corresponds to one point on the chart.

4.2. Determination of the Flake Aspect Ratio from the Maximum Intersection Length

The maximum possible intersection length is equal to the flake diagonal, or max(H) ≤
D, where H is the vector of intersection lengths. Given a sufficiently large sample size, it is
conceivable that some intersection segments will satisfy H > (1− h)D, where h is a user-
defined accuracy threshold. Calculating W from D2 = W2 + S2 and using D ∼max(H),
can yield a quick conservative estimate of W and thus of r. While this approach appears, at
first glance, to be highly empirical and uncertain, we show in this section that it produces
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estimates of the flake aspect ratio that are very close to the actual ones. Furthermore,
by examining the related probabilities using Monte-Carlo simulations, based both, on
numerical sectioning experiments and the model of Equations (4)–(8), we show that for a
modest tolerance, e.g., h ∼0.02, this will be achieved with sample sizes M no larger than
∼103 and for certain flake aspect ratios with M as small as ∼102. The following Figure 9
illustrates the performance of this method for various sample sizes and some indicative
flake aspect ratios.

(a)

(b)
Figure 9. (a) Estimated flake aspect ratio r = W/S as function of sample size (M), defined as the
number of flake intersections (lines) appearing in a cross-section. In each case, the short dimension
of the flake (S) is determined from the first peak in the H-histogram (e.g., Figure 3), and the long
dimension is determined from the diagonal D ∼max(H) as W = (

√
D2 − S2). (b) Summary of

relative error as function of sample size (M) for a range of r.

The probability of achieving max(H) > (1 − h)D was also computed by numer-
ical sectioning experiments. These are compared to those obtained from the model of
Equations (4)–(8) in Figure 10.
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Figure 10. Comparison of the probability of having H > (1− h)D, as obtained from the model of
Equations (4)–(8) (circles) and as obtained from numerical sectioning experiments in RVEs containing
∼107 flakes (crosses).

Further insight into this approach can be gained by examining Equations (4)–(8), and
the distribution of H they generate, in a Monte-Carlo context. For long intersections to
occur, it is clear that it must be L < S/2. From Equations (4)–(8) it is also clear that only
intersecting the two opposite short sides of the rectangle (Equation (6), corresponding
to θ2 < θ < θ3) or two adjacent sides (Equations (5) and (7), for θ1 < θ < θ2 and
θ3 < θ < θ4 respectively) has any chance of generating long intersection lengths.

Figure 11 shows the probabilities of achieving H > (1− h)D for various values of
h, as function of r, for each of the mechanisms outlined above. These probabilities are
determined by Monte-Carlo simulations based on the model of Equations (4)–(8). For a
number of random combinations of (L,θ), the total number of intersections achieved is M.
The probability P1[H > (1− h)D] through the mechanism described by Equation (6) is
N1/M, where N1 is the number of intersections caused by lines satisfying L < S/2 and
θ2 < θ < θ3. The probability P2 corresponding to the mechanism described by Equation (5)
and Equation (7) (in this case, L < S/2 and θ1 < θ < θ2 or θ3 < θ < θ4) is N2/M. The
total probability of having H > (1− h)D is PT [H > (1− h)D] = (N1 + N2)/M. It is clear
from Figure 9 that the mechanism described by Equation (6) is the most probable means of
obtaining long intersection lengths. This probability is the highest for intermediate flake
aspect ratios. The value of r corresponding to the maximum probability can be shown
to depend on the desired tolerance and it is rc = (1− h)/(

√
h(2− h)). For r > rc and

also for r < rc the probability drops as a power function of r. For r < rc, the probability
approaches an asymptotic value at r = 1; this value depends on h. These probabilities give
some insight on the sample size M that might be required to achieve max(H)≥(1− h)D;
assuming that M∼P−1

T , M can range from∼102 to∼104, depending on the desired accuracy
and the anticipated flake aspect ratio.

To summarize, up to this point we have shown that the length of the short side of the
rectangle can be found from the histogram of the intersection lengths. When r < 5, the
length of the long side of the rectangle can also be inferred from the secondary peak in the
histogram; since the strength of the secondary peak diminishes rapidly with increasing r
another method is required to determine the flake aspect ratio from the same set of data
when r > 5. Such a method, that works well for larger sample sizes, is setting D ∼max(H),
where H is the vector of intersection lengths, and calculating r from D/S =

√
1 + r2. This

will always underestimate the actual flake aspect ratio. An alternative method is presented
in the following subsection.
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(a)

(b)
Figure 11. Monte-Carlo generated probabilities of obtaining H > (1− h)D. (a) One single scan for
1 < r < 30, with M = 2× 106 at each level of h, h = 0.01–0.05. (b) Results of 18 sets of simulations at
each value of h (h = 0.01n, n = 1, 2, ..., 5), scanning the range 1 < r < 30, for smaller sample size,
showing the statistical variability of the related probabilities. The straight line passing through the
points in the upper-right part of the graph has a slope of −1.90.

4.3. Determination of Flake Aspect Ratio from the Average of the Intersection Lengths

Once the distribution of intersection lengths is known, the average intersection length
Hav can be easily calculated, Hav = (1/M)∑ Hm, where M is the sample size. We will call
Hav “sample average”, to distinguish from the ensemble average 〈H〉 introduced below.
Hav can also be expressed in integral form from Equations (4)–(8), by averaging over
all admissible (L) and (θ); since the limits of the required integrations (angles θ1–θ4) are
functions of the random variable L, the result of this operation is cumbersome and can only
be carried out numerically. In this subsection we adopt a direct Monte-Carlo approach in
evaluating Hav from Equations (4)–(8) as well as from numerical sectioning experiments.
Through this it can be shown that Hav is a function of r only. Figure 12 shows values of
the Hav obtained using numerical sectioning experiments as well as predictions based on
Equations (4)–(8). The agreement between the two methods is excellent. Both sets of data
are very well represented by the following model
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Hav

S
=

πr
2(1 + r)

(12)

For very slender flakes, Equation (12) predicts that (Hav/S) approaches asymptotically
the value of π/2.

Figure 12. Computed (points) values of the average intersection length Hav, normalized by S, for
various values of the flake aspect ratio, 1 < r < 30. The line shows the predictions of Equation (12).
Both, predictions based on numerical sectioning of 3D RVEs (o) and model predictions based on
Equations (4)–(8) (+) were obtained on samples having M ∼106 flake intersections.

Through Equation (12) the flake aspect ratio can be found from the average intersection
length. In practice, given some uncertainty in the measured value of Hav and the asymptotic
behavior of Hav at large r, the estimation accuracy of Equation (12) will be highest for small
to moderate values of r, typically r < 12; the accuracy of such estimates deteriorates
rapidly for higher aspect ratios, as can be deduced from the value of the derivative ∂r/∂Hav.
It can be readily shown that ∆r/r = (1 + r)(∆Hav/Hav) , where ∆r is the uncertainty in the
estimation of r, given an uncertainty ∆Hav in the measurement of Hav.

Figure 12 and the resulting Equation (12) have been obtained using very large samples,
M ∼106. In practice, a sample obtained by sectioning a composite component may or
may not contain this many flake images, depending on the dimensions of the sample and
the number-density of the flakes in the part. Figure 13 shows the average intersection
lengths Hav computed from samples having from M ∼102 to M ∼106 flake segments. The
ensemble average 〈H〉/S is defined as (〈H〉/S = (1/K)∑ Hav,k where K is the number of
samples and Hav,k is the average intersection length of the k-th sample, k = 1, 2, ..., K. It is
evident that while ensemble averages deviate very little as M varies over several orders
of magnitude, their standard deviation is substantial at small sample sizes. It therefore
appears that the method developed and proposed herein is best suited for large area
samples, typically analyzed by large-area automated microscopy [29–34]. If single-frame
images are to be analyzed, repeated sampling is necessary in order to obtain a reliable value
for 〈H〉 and thus a reliable value of r. The ensemble-averaged values 〈H〉/S, for K = 20 in
each case and obtained from samples having on average 84, 211, 425, 852, 4270, 8545, 42,708,
and 85,396 flake cross sections, are 1.0376, 1.0449, 1.0484, 1.0498, 1.0475, 1.0471, 1.0474, and
1.047, respectively. The value obtained from Equation (12) is 1.0470.
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(a)

(b)
Figure 13. Effect of sample size M (horizontal axis) on (a) the predicted Hav and (b) the normalized
standard deviation for ensemble-averaging over 20 samples in each case (σ/〈H〉). Each point in (a)
represents one sample.

4.4. Comparison between Predictions and Results of Numerical Experiments

In the preceding subsections we presented methodologies that allow for calculation of
the dimensions of rectangular flakes from knowledge of the statistics of the intersection
lengths. The short dimension S of the flakes is obtained from the position of the major peak
in the H frequency histogram (e.g., Figures 3 and 7). The accuracy of this measurement
depends entirely on the number of bins used in the histogram. There are three ways to
evaluate the flake aspect ratio r. For r < 5, it can be computed from the second peak in
the intersection length histogram. For 1 < r < 12 it can also be found from the average
intersection length (Equation (12)). A conservative estimate of r can also be obtained from
the maximum intersection length (typically for M > 103).

In the following, we carry out “blind” numerical experiments, in which the H-
histogram and the sample Hav and ensemble averages 〈H〉, as obtained from numerical
sectioning, are given, and the flake dimensions S and W = Sr are computed and compared
to the dimensions of the flakes in the systems from which the H-statistics were obtained.
Based on the procedure outlined above, we obtain estimates of r (rest in Table 1). We will
focus on the performance of the approach based on Equation (12) for 1 < r < 15.
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Table 1. Comparison between actual (ractual) and back-calculated rest values of the flake aspect ratio,
as obtained from measurement of Hav. The estimate of S is influenced solely by the number of bins
used in the histogram of intersection lengths (100 bins were used in this example) and is 1 in all
cases. (1) ensemble-average of K = 10 samples; (2) ∆〈H〉 is the 95% confidence interval according to
Student’s distribution and is ±2.262(σH/

√
K); (3) estimates of r (rest); (4) ∆r is the 95% confidence

interval of the calculated values of r according to Student’s distribution.

Sactual ractual M 〈H〉 (1) σH ∆〈H〉 (2) rest
(3) ∆r (4)

1 1 130 0.7772 0.03429 0.025857 0.979 0.06451

1250 0.7866 0.00765 0.005773 1.003 0.01475

12,500 0.7851 0.00324 0.002443 0.999 0.00622

128,000 0.7849 0.00071 0.000533 0.999 0.00135

1 2 125 1.0331 0.04439 0.033471 1.922 0.18200

1230 1.0474 0.01480 0.011162 2.002 0.06405

12,350 1.0481 0.00487 0.003671 2.006 0.02112

127,000 1.0471 0.00106 0.000804 2.000 0.00461

1 3 120 1.2179 0.04845 0.036532 3.453 0.46120

1180 1.1691 0.00857 0.00646 2.912 0.06293

12,080 1.1763 0.00542 0.004087 2.983 0.04128

121,000 1.1780 0.00222 0.001675 3.000 0.01707

1 4 115 1.2419 0.04515 0.034041 3.779 0.49493

1130 1.2663 0.03251 0.024512 4.161 0.41566

11,500 1.2548 0.00430 0.003242 3.973 0.05105

116,000 1.2558 0.00241 0.001818 3.989 0.02882

1 5 110 1.2936 0.06103 0.046016 4.671 0.94229

1120 1.3063 0.02227 0.016791 4.943 0.37765

11,500 1.3097 0.00739 0.005576 5.021 0.12870

116,000 1.3090 0.00249 0.001876 5.003 0.04305

1 6 105 1.3531 0.08089 0.060993 6.222 202.580

1070 1.3516 0.01873 0.014119 6.171 0.46234

11,000 1.3468 0.01087 0.008198 6.017 0.25705

110,000 1.3459 0.00195 0.001473 5.989 0.04581

1 8 105 1.3905 0.10717 0.080805 7.723 391.494

1060 1.4032 0.03815 0.028768 8.383 161.267

10,550 1.3974 0.00511 0.003852 8.067 0.20164

105,000 1.3963 0.00251 0.001892 8.012 0.09783

1 12 105 1.4375 0.09517 0.071758 10.80 636.127

1070 1.4553 0.03430 0.025864 12.62 30.565

11,000 1.4511 0.01171 0.008827 12.14 0.97103

103,000 1.4503 0.00304 0.00229 12.06 0.24868

1 15 1030 1.4571 0.02617 0.019735 12.83 240.496

10,600 1.4790 0.00762 0.005747 16.16 107.709

101,000 1.4742 0.00548 0.004137 15.29 0.69910



Materials 2022, 15, 1560 19 of 22

Numerical samples (3D RVEs) were generated by setting the value of flake number-
density N/∆V and flake width S and aspect ratio r. These are shown as Sactual and ractual in
Table 1. The thus generated geometries are then rendered blind, and numerical sectioning
experiments are carried out to obtain the H statistics—histogram, Hav for each sample and
〈H〉 for an ensemble of K = 10 samples in each case. In Figure 14 the process is illustrated.
It is obvious that for avoiding counting the same flake twice between cutting planes the
distance between the cutting planes must be > 2 W.

(a)

(b)
Figure 14. Schematic showing a numerical sectioning experiment. (a) 3D RVE containing flakes with
their planes parallel to the X-Z plane and having random orientations in the X-Y plane. Also shown
are the sectioning planes. (b) The sectioning planes showing only the flake intersections as lines of
variable length. The number of the sections defines the ensemble size (here K = 4). The number of
intersections (lines) in each frame, defines the sample size (here M ∼50 for clarity).

Table 1 illustrates the performance of the method based on Equation (12) for flakes
of various aspect ratios and for cross sections containing from M ∼102 to M ∼105 flake
images. In each case 10 samples were obtained by sectioning at 10 different locations in
each composite RVE and the 95% confidence intervals shown in Table 1 are computed as
±t(σH/

√
K), with t = 2.262 obtained from the Student’s distribution at K− 1 = 9 degrees

of freedom and σH being the standard deviation of 〈H〉 computed from 10 samples.
The accuracy of the predictions can be improved by increasing the ensemble size K,

and for small sample sizes (M ∼102) this is necessary at higher r. The following parity
graph, Figure 15 illustrates further the performance of the method. It is seen that for a fairly
modest ensemble size (K = 10), the estimated flake aspect ratio is very close to the actual
up to r = 8, even with very small sample sizes (M ∼102). It is clear that for M > 103 the
estimated flake aspect ratio agrees with the actual one for flakes having aspect ratios up to
r = 12.
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Figure 15. Parity graph between actual flake aspect ratio (horizontal axis) and estimated r from
Equation (12) using ensemble-averaged values of Hav—obtained for K = 10—and various sample
sizes (102 < M < 105).

5. Conclusions

We have presented a novel method for determining the size and aspect ratio r of
rectangular flakes from the statistics of the length distributions seen in cross-sections of
composite samples, such as those used in optical or electron microscopy, or obtained using
tomographic imaging techniques.

Results of numerical sectioning experiments in realistic 3D RVEs containing up to
∼106 flakes have shown that the primary peak of the length histogram corresponds to the
short size of the rectangle while a secondary peak, evident at r < 5, corresponds to the long
dimension of the rectangle. These observations have been explained using Monte-Carlo
simulations, as well as deterministic, geometry-based modeling and probability analysis.
Therefore, for 1 < r < 5, the histogram of the intersection lengths allows us to derive the
two principal dimensions of the flake. The accuracy of this measurement depends on the
number of bins used in the histogram.

Since the strength of the secondary peak diminishes rapidly with increasing r, we
develop two additional methods for the determination of r. The first method assumes
D ∼max(H), where H is the vector of intersection lengths, and calculates r from D/S =√

1 + r2. This procedure is justified by computing the relevant probability fields using
Monte-Carlo simulations, and estimates of the required sample sizes are derived, based
on the required accuracy. While requiring large samples for flakes of large aspect ratio,
this is the only method suitable for flakes with r > 15. A second method for determining
r, in the range 1 < r < 12, is based on a correlation we derive between the flake aspect
ratio and the average length Hav of the flake cross-sections; this method is accurate even for
moderate sample sizes (∼103) for small r, requires larger sample sizes as r increases and
becomes impractical for r > 15.

Author Contributions: Conceptualization & methodology, T.D.P. and A.T.; Investigation & analysis,
T.D.P., A.T. and Y.W.; Writing—original draft preparation, T.D.P. and A.T.; writing—review and
editing, T.D.P., A.T. and Y.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.



Materials 2022, 15, 1560 21 of 22

Acknowledgments: The authors would like to acknowledge the support of the Greek Research and
& Technology Network (GRNET) for the computational time granted in the National HPC facility
ARIS. Website: https://hpc.grnet.gr/ (accessed on 18 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
AFM Atomic Force Microscopy
BIF Barrier Improvement Factor
EMI Electromagnetic Interference
RSA Random Sequential Addition
RVE Representative Volume Element
TEM Transmission Electron Microscopes

References
1. Clarke, A.; Davidson, N.; Archenhold, G. Mesostructural characterisation of aligned fibre composites. In Flow-Induced Alignment

in Composite Materials; Elsevier: Amsterdam, The Netherlands, 1997; pp. 230–292.
2. Da Costa, J.P.; Oprean, S.; Baylou, P.; Germain, C. Stereological estimation of orientation distribution of generalized cylinders

from a unique 2D slice. Microsc. Microanal. 2013, 19, 1678–1687. [CrossRef]
3. Clarke, A.; Eberhardt, C. The representation of reinforcing fibres in composites as 3D space curves. Compos. Sci. Technol. 1999,

59, 1227–1237. [CrossRef]
4. Eberhardt, C.; Clarke, A.; Vincent, M.; Giroud, T.; Flouret, S. Fibre-orientation measurements in short-glass-fibre composites—II:

A quantitative error estimate of the 2d image analysis technique. Compos. Sci. Technol. 2001, 61, 1961–1974. [CrossRef]
5. Bale, H.; Blacklock, M.; Begley, M.R.; Marshall, D.B.; Cox, B.N.; Ritchie, R.O. Characterizing three-dimensional textile ceramic

composites using synchrotron X-ray micro-computed-tomography. J. Am. Ceram. Soc. 2012, 95, 392–402. [CrossRef]
6. Lee, Y.; Lee, S.; Youn, J.; Chung, K.; Kang, T. Characterization of fiber orientation in short fiber reinforced composites with an

image processing technique. Mater. Res. Innov. 2002, 6, 65–72. [CrossRef]
7. Martín-Herrero, J.; Germain, C. Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon

2007, 45, 1242–1253. [CrossRef]
8. Nyflött, Å.; Meriçer, Ç.; Minelli, M.; Moons, E.; Järnström, L.; Lestelius, M.; Baschetti, M.G. The influence of moisture content on

the polymer structure of polyvinyl alcohol in dispersion barrier coatings and its effect on the mass transport of oxygen. J. Coat.
Technol. Res. 2017, 14, 1345–1355. [CrossRef]

9. Xia, L.; Wu, H.; Guo, S.; Sun, X.; Liang, W. Enhanced sound insulation and mechanical properties of LDPE/mica composites
through multilayered distribution and orientation of the mica. Compos. Part A Appl. Sci. Manuf. 2016, 81, 225–233. [CrossRef]

10. Dasari, A.; Yu, Z.Z.; Cai, G.P.; Mai, Y.W. Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 2013,
38, 1357–1387. [CrossRef]

11. Kortschot, M.; Woodhams, R. Computer simulation of the electrical conductivity of polymer composites containing metallic
fillers. Polym. Compos. 1988, 9, 60–71. [CrossRef]

12. Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci.
Technol. 2016, 123, 17–31. [CrossRef]

13. Kandasubramanian, B.; Gilbert, M. An electroconductive filler for shielding plastics. In Macromolecular Symposia; Wiley Online
Library: Weinheim, Germany, 2005; Volume 221, pp. 185–196.

14. Jiang, G.; Gilbert, M.; Hitt, D.; Wilcox, G.; Balasubramanian, K. Preparation of nickel coated mica as a conductive filler. Compos.
Part A Appl. Sci. Manuf. 2002, 33, 745–751. [CrossRef]

15. Tsiantis, A.; Papathanasiou, T.D. A general scaling for the barrier factor of composites containing thin layered flakes of rectangular,
circular and hexagonal shape. Int. J. Heat Mass Transf. 2020, 157, 119962. [CrossRef]

16. Tsiantis, A.; Wang, Y.; Huang, X.; Papathanasiou, T.D. From flakes to ribbons: The barrier factor of composites containing flakes
of rectangular shape. J. Compos. Mater. 2022, 56, 181–198. [CrossRef]

17. Meunier, J.L.; Mendoza-Gonzalez, N.Y.; Pristavita, R.; Binny, D.; Berk, D. Two-dimensional geometry control of graphene
nanoflakes produced by thermal plasma for catalyst applications. Plasma Chem. Plasma Process. 2014, 34, 505–521. [CrossRef]

18. Lin, L.S.; Bin-Tay, W.; Li, Y.R.; Aslam, Z.; Westwood, A.; Brydson, R. A practical characterisation protocol for liquid-phase
synthesised heterogeneous graphene. Carbon 2020, 167, 307–321. [CrossRef]

19. Jiang, J.; Wong, C.P.Y.; Zou, J.; Li, S.; Wang, Q.; Chen, J.; Qi, D.; Wang, H.; Eda, G.; Chua, D.H.; et al. Two-step fabrication of
single-layer rectangular SnSe flakes. 2D Mater. 2017, 4, 021026. [CrossRef]

https://hpc.grnet.gr/
http://doi.org/10.1017/S1431927613013548
http://dx.doi.org/10.1016/S0266-3538(98)00159-6
http://dx.doi.org/10.1016/S0266-3538(01)00106-3
http://dx.doi.org/10.1111/j.1551-2916.2011.04802.x
http://dx.doi.org/10.1007/s10019-002-0180-8
http://dx.doi.org/10.1016/j.carbon.2007.01.021
http://dx.doi.org/10.1007/s11998-017-9937-2
http://dx.doi.org/10.1016/j.compositesa.2015.11.023
http://dx.doi.org/10.1016/j.progpolymsci.2013.06.006
http://dx.doi.org/10.1002/pc.750090109
http://dx.doi.org/10.1016/j.compscitech.2015.11.029
http://dx.doi.org/10.1016/S1359-835X(01)00148-8
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119962
http://dx.doi.org/10.1177/00219983211057282
http://dx.doi.org/10.1007/s11090-014-9524-6
http://dx.doi.org/10.1016/j.carbon.2020.06.008
http://dx.doi.org/10.1088/2053-1583/aa6aec


Materials 2022, 15, 1560 22 of 22

20. Zeng, X.; Hirwa, H.; Ortel, M.; Nerl, H.C.; Nicolosi, V.; Wagner, V. Growth of large sized two-dimensional MoS 2 flakes in aqueous
solution. Nanoscale 2017, 9, 6575–6580. [CrossRef]

21. Peng, Y.Y.; Akuzum, B.; Kurra, N.; Zhao, M.Q.; Alhabeb, M.; Anasori, B.; Kumbur, E.C.; Alshareef, H.N.; Ger, M.D.; Gogotsi,
Y. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 2016,
9, 2847–2854. [CrossRef]

22. Mag-isa, A.E.; Kim, J.H.; Lee, H.J.; Oh, C.S. A systematic exfoliation technique for isolating large and pristine samples of 2D
materials. 2D Mater. 2015, 2, 034017. [CrossRef]

23. Santos, J.C.; Prado, M.C.; Morais, H.L.; Sousa, S.M.; Silva-Pinto, E.; Cançado, L.G.; Neves, B.R. Topological vectors as a
fingerprinting system for 2D-material flake distributions. npj 2D Mater. Appl. 2021, 5, 51. [CrossRef]

24. Decker, J.J.; Meyers, K.P.; Paul, D.R.; Schiraldi, D.A.; Hiltner, A.; Nazarenko, S. Polyethylene-based nanocomposites containing
organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer 2015, 61, 42–54.
[CrossRef]

25. Spencer, M.W.; Hunter, D.; Knesek, B.; Paul, D. Morphology and properties of polypropylene nanocomposites based on a
silanized organoclay. Polymer 2011, 52, 5369–5377. [CrossRef]

26. Zhang, D.; Zhan, Z. Strengthening effect of graphene derivatives in copper matrix composites. J. Alloys Compd. 2016, 654, 226–233.
[CrossRef]

27. Adak, B.; Joshi, M.; Butola, B.S. Polyurethane/clay nanocomposites with improved helium gas barrier and mechanical properties:
Direct versus master-batch melt mixing route. J. Appl. Polym. Sci. 2018, 135, 46422. [CrossRef]

28. Tsiantis, A.; Papathanasiou, T.D. A novel FastRSA algorithm: Statistical properties and evolution of microstructure. Phys. A Stat.
Mech. Its Appl. 2019, 534, 122083. [CrossRef]

29. Lim, I.L.H.; Yang, D. Low-cost precision motion control for industrial digital microscopy. In Proceedings of the IECON 2017—43rd
Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 7281–7287.

30. Merchant, F.A.; Castleman, K.R. Computer-assisted microscopy. In The Essential Guide to Image Processing; Elsevier: Amsterdam,
The Netherlands, 2009; pp. 777–831.

31. Barwick, S.C.; Papathanasiou, T.D. Identification of sample preparation defects in automated topological characterization of
composite materials. J. Reinf. Plast. Compos. 2003, 22, 655–669. [CrossRef]

32. Barwick, S.C.; Papathanasiou, T.D. Identification of fiber misalignment in continuous fiber composites. Polym. Compos. 2003,
24, 475–486. [CrossRef]

33. Davidson, N.; Clarke, A. Extending the dynamic range of fibre length and fibre aspect ratios by automated image analysis. J.
Microsc. 1999, 196, 266–272. [CrossRef]

34. Leroy, M.; Acher, O. Assessment of microscopy moving stage performance down to the 10 nm range using encoded patterns with
automated reading. In Proceedings of the Euspen 18th International Conference & Exhibition, Venise, Italy, 4–8 June 2018.

http://dx.doi.org/10.1039/C7NR00701A
http://dx.doi.org/10.1039/C6EE01717G
http://dx.doi.org/10.1088/2053-1583/2/3/034017
http://dx.doi.org/10.1038/s41699-021-00234-z
http://dx.doi.org/10.1016/j.polymer.2015.01.061
http://dx.doi.org/10.1016/j.polymer.2011.09.034
http://dx.doi.org/10.1016/j.jallcom.2015.09.013
http://dx.doi.org/10.1002/app.46422
http://dx.doi.org/10.1016/j.physa.2019.122083
http://dx.doi.org/10.1177/073168403029356
http://dx.doi.org/10.1002/pc.10046
http://dx.doi.org/10.1046/j.1365-2818.1999.00633.x

	Introduction
	Geometry Generation and Numerical Sectioning
	Theoretical Model for the Sectioning Process
	Results and Discussion
	General Observations
	Determination of the Flake Aspect Ratio from the Maximum Intersection Length
	Determination of Flake Aspect Ratio from the Average of the Intersection Lengths
	Comparison between Predictions and Results of Numerical Experiments

	Conclusions
	References

