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Abstract: This paper describes the nitric acid dissolution process of natural minerals such as ten-
nantite, chalcopyrite and sphalerite, with the addition of Fe (III) ions and FeS2. These minerals are
typical for the ores of the Ural deposits. The effect of temperature, nitric acid concentration, time,
additions of Fe (III) ions and FeS2 was studied. The highest dissolution degree of sulfide minerals
(more than 90%) was observed at a nitric acid concentration of 6 mol/dm3, an experiment time
of 60 min, a temperature of 80 ◦C, a concentration of Fe (III) ions of 16.5 g/dm3, and an addition
of FeS2 to the total mass minerals at 1.2:1 ratio. The most significant factors in the break-down of
minerals were the nitric acid concentration, the concentration of Fe (III) ions and the amount of FeS2.
Simultaneous addition of Fe (III) ions and FeS2 had the greatest effect on the leaching process. It was
also established that FeS2 can be an alternative catalytic surface for copper sulfide minerals during
nitric acid leaching. This helps to reduce the influence of the passivation layer of elemental sulfur
due to the galvanic linkage formed between the minerals, which was confirmed by SEM-EDX.

Keywords: chalcopyrite; tennantite; sphalerite; pyrite; nitric acid leaching; optimization; catalytic
surface

1. Introduction

Copper is a non-ferrous metal that is in high demand on the market. It is produced
from monometallic sulfide ores using traditional technologies. The reserves of such raw
materials are limited. Therefore, polymetallic ores are given a lot of attention. The ores of
Russian deposits are characterized by variety of copper minerals forms and close mutual
intergrowth of non-ferrous metal sulfides and iron sulfides. This complicates the production
of concentrates with the required extraction of main metals.

Pyrite copper-zinc ores of the Ural region consist of basic sulfides: chalcopyrite (CuFeS2),
covellite (CuS), chalcocite (Cu2S), bornite (Cu5FeS4), sphalerite (ZnS). Currently, they are
often associated with minerals of fahlore ores—tennantite (Cu12As4S13) and tetrahedrite
(Cu12Sb4S13) [1]. The presence of arsenic in copper concentrates prevents their processing us-
ing traditional technologies. During pyrometallurgical processes, arsenic dust is formed [2–13].
It presents a significant danger to humans and the environment [14–16]. Antimony negatively
affects the quality of copper, reducing its thermal and electrical conductivity.

There have been many studies about this process using various approaches, such
as acid leaching [17–20], ammonia leaching [21], alkaline methods [22–24], autoclave
oxidation [25–27] and bioleaching [28]. They have not achieved industrial implementation
for various reasons [29].

The development of an effective method for processing copper polymetallic raw materials
with a significant content of fahlore ore minerals is urgent. Nitric acid leaching [30–32] makes
it possible to achieve the most complete break-down of sulfides and the transfer of valuable
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metals into solution for their subsequent selective extraction. This method makes it possible
to obtain stable and safe commercial products containing arsenic [33–36] and antimony as
components [37].

Minerals of fahlore ores are refractory. The complete dissolution of these minerals and
their dissociation products can account for a much larger amount of oxidizer compared
to the more widespread copper minerals. This is due to the stepwise dissociation of
tennantite and tetrahedrite [38,39]. In this regard, it is advisable to consider the addition
of special chemical agents, for example, FeS2 and Fe (III) cations. They reduce the nitric
acid consumption and accelerate the process. Previously published studies describe the
interaction of chalcopyrite, enargite, arsenopyrite and other sulfides with pyrite [40–43]
and iron (III) [44–49] in various oxidizing environments. They demonstrate the positive
effect of these additives.

The present paper discusses the optimal conditions of nitric acid leaching of natural
tennantite, chalcopyrite, and sphalerite in the presence of Fe (III) ions and FeS2.

2. Materials and Methods
2.1. Materials

A mixture of natural sulfide minerals tennantite (Uchalinsky deposit, Sverdlovsk
region, Russia), chalcopyrite (Vorontsovsky deposit, North Ural region, Russia), sphalerite
(Karabashsky deposit, South Ural region, Russia) was used as the main raw material. The
ratio of chalcopyrite, tennantite and sphalerite in the mixture had a ratio of 1:0.36:0.17
by weight. This ratio of minerals is typical for the industrial Cu-As concentrate of the
Uchalinsky deposit. The FeS2 additive was a natural pyrite mineral (Berezovsky deposit,
Sverdlovsk region, Russia). The X-ray diffraction pattern is shown in Figure 1d. The
chemical composition of natural minerals is shown in Table 1. All minerals were crushed
and sieved. A fraction including 80% of particles with a 20–40 µm size was taken. The
granulometric composition of the fraction is shown in Figure 2. Other reagents were
analytical grade.
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Table 1. The chemical composition of natural minerals, wt. %.

Element/Mineral S Fe Cu As Zn Total

Cu12As4S13 26.8 - 51.7 21.5 - 100.0
CuFeS2 36.8 29.8 33.2 - - 100.0

ZnS 29.9 - - - 70.1 100.0
FeS2 44.53 55.47 - - - 100.0

Materials 2022, 15, x FOR PEER REVIEW 3 of 17 
 

 

  

(с) (d) 

Figure 1. X-ray diffraction pattern of the phase composition: (a) tennantite; (b) chalcopyrite; (c) 
sphalerite; (d) pyrite. 

 
Figure 2. The granulometric composition of sulfide mineral mixture. 

Figure 3 shows scanning electron microscopy (SEM) images of an initial mineral mix-
ture. The chemical composition in certain points, obtained using EDX analysis (Figure 3b), 
is presented in Table 2. Points 1, 3 and 4 stoichiometrically correspond to chalcopyrite. 
Point 2 corresponds to tennantite. 

  

(a) (b) 

Figure 3. SEM images of the initial mixture (a) and some points of determination of the composition (b). 

Figure 2. The granulometric composition of sulfide mineral mixture.

Figure 3 shows scanning electron microscopy (SEM) images of an initial mineral mix-
ture. The chemical composition in certain points, obtained using EDX analysis (Figure 3b),
is presented in Table 2. Points 1, 3 and 4 stoichiometrically correspond to chalcopyrite.
Point 2 corresponds to tennantite.

Concentrate from the Uchalinsky deposit was used as an industrial copper–arsenic
raw material. The particle size of this material was 95% of the −0.074 fraction. The
chemical composition is shown in Table 3. The X-ray diffraction pattern of the copper–
arsenic concentrate is shown in Figure 4a. Based on the results of the X-ray analysis, the
main species of the industrial copper–arsenic raw material were determined: FeS2—40%,
CuFeS2—30%, Cu12As4S13—14%, ZnS—7%, PbS—2%, SiO2—2%.
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Table 2. Results of energy dispersive spectrometry of a mineral mixture, wt. %.

Element S Fe Cu As Total

Point 001 32.6 30.4 34.8 1.2 100.0
Point 002 27.1 2.1 51.2 19.6 100.0
Point 003 31.8 29.2 37.2 1.8 100.0
Point 004 36.5 31.6 29.0 2.9 100.0

Table 3. The chemical composition of Uchalinsky deposit concentrate.

Content, %

S Fe Cu Zn As Pb Si Al Other

39.4 27.9 18.0 4.8 2.9 2.1 0.8 0.5 3.6
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concentrate of the Berezovsky deposit.

In studies with an industrial concentrate, pyrite from the Berezovsky deposit was
used. The chemical composition of pyrite concentrate is presented in Table 4. The X-ray
diffraction pattern of pyrite concentrate is shown in Figure 4b.
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Table 4. The chemical composition of pyrite concentrate.

Content, %

S Fe O2 Si Other

25.8 23.9 23.8 16.4 10.1

2.2. Apparatuses

Laboratory experiments on nitric acid leaching were carried out on a setup consisting
of a borosilicate glass reactor with a jacket Lenz Minni-60 and a volume of 0.5 dm3 (Lenz
Laborglas GmbH & Co. Wertheim, Germany). The reactor was thermostated using a Huber
CC-205B circulating thermostat (HuberKältemaschinenbau AG, Offenburg, Germany).
Stirring was carried out using a CatR-100C overhead stirrer (IngenieurbüroCAT, Ballrechten-
Dottingen, Germany) at a speed of 350 rpm for efficient mixing of components.

2.3. Experiments

The equilibrium composition and the values of the change in the Gibbs energy were cal-
culated using HSC Chemistry Software v. 9.9 (Metso Outotec Finland Oy, Tampere, Finland).

To obtain the optimal parameters of nitric acid leaching, mathematical planning of the
experiment was used. StatGraphics 16 was used to construct a second-order orthogonal
matrix with five variable parameters: the temperature was 65–95 ◦C, the nitric acid concen-
tration was 3–8 mol/dm3, the concentration of Fe (III) ions was 5–20 g/dm3, the mass ratio
FeS2 to the mixture of sulfides was (0.5–2:1), the time was 15–60 min.

Before the experiment, the solution was heated to a certain temperature. Then, portions
of the minerals were added. During the experiment, samples were taken at certain points of
time with an automatic dispenser Sartorius Proline (MinebeaIntecAachen GmbH & Co. KG,
Aachen, Germany). The final leaching pulp was filtered on a Buchner funnel. The solution
was sent for the ICP-MS analysis. The leaching cake was washed with distilled water, and
dried at 80 ◦C until a constant weight. The dried cake was ground on a Pulverisette 6
classic line planetary mill (Fritsch GmbH & Co. KG, Welden Germany), pressed onto a
substrate using a hydraulic Vaneox 40t Automatic (Fluxana GmbH & Co. KG., Bedburg-
Hau, Germany), and sent for X-ray fluorescence analysis.

2.4. Analysis

Chemical analysis of the initial minerals and the solid products was performed us-
ing the ARL Advant’X 4200 wave dispersive spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Phase analysis was carried out on the XRD 7000 Maxima diffractome-
ter (Shimadzu Corp., Tokyo, Japan).

Chemical analysis of the solutions was determined by inductively coupled plasma
mass-spectrometry (ICP-MS) using the Elan 9000 instrument (Perkin Elmer Inc., Waltham,
MA, USA).

Scanning electron microscopy (SEM) was performed using the JSM-6390LV microscope
(JEOL Ltd., Tokyo, Japan) equipped with a module for energy-dispersive X-ray spectroscopy
analysis (EDX).

2.5. Calculation Method

The dissolution degree of sulfide minerals was calculated using the following procedure:
The mass of dissolved tennantite (mCu12As4S13) was calculated using Formula (1).

mCu12As4S13 =
(CAs1 × V)× MCu12As4S13

MAs
(1)

where CAs1 is the concentration of arsenic in the leaching solution, determined using ICP-
MS, [g/dm3]; V is the volume of the leaching solution [dm3]; MCu12As4S13 is the molar mass
of tennantite, [g/mol]; MAs is the molar mass of arsenic in tennantite, [g/mol].
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The mass of copper (mCu) in tennantite that passed into the leaching solution was
calculated using Formula (2).

mCu =
mCu12As4S13 × MCu1

MCu12As4S13
(2)

where mCu12As4S13 is the mass of dissolved tennantite, [g]; MCu12As4S13 is molar mass of
tennantite, [g/mol]; MCu1 is the molar mass of copper in tennantite, [g/mol]

Based on the mass of copper that went into the leaching solution from tennantite, the
total mass of dissolved chalcopyrite (mCuFeS2) was calculated using Formula (3).

mCuFeS2 =

(
mCu(total) − mCu1

)
× MCuFeS2

2 × MCu
(3)

where mCu(total) is the total mass of copper that went into the leaching solution from
chalcopyrite and tennantite, [g]; mCu1 is the mass of copper that went into the leaching
solution from tennantite, [g]; MCuFeS2 is the molar mass of chalcopyrite, [g/mol]; MCu is
the molar mass of copper in chalcopyrite, [g/mol].

The mass of dissolved sphalerite (mZnS) was calculated using Formula (4).

mZnS =
(CZn × V)× MZnS

MZn
(4)

where CZn is the concentration of zinc in the leaching solution, determined using ICP-
MS, [g/dm3]; V is the volume of the leaching solution [dm3]; MZnS is the molar mass of
sphalerite, [g/mol]; MZn is the molar mass of zinc present in sphalerite, [g/mol].

The dissolution degree of tennantite, chalcopyrite, and sphalerite was calculated using
Formula (5).

αMeS =
mMeS

mMeS(initial)
× 100 (5)

where mMeS is the mass of the dissolved mineral, [g]; mMeS(initial) is the initial mass of the
mineral in the mixture, [g].

3. Results and Discussion
3.1. Thermodynamics of Nitric Acid Dissolution of a Mixture of Minerals

To establish the possibility of interaction of sulfide minerals with a nitric acid solution
in the presence of Fe (III) ions, the values of the change in the Gibbs energy (∆G, kJ/mol)
were calculated for Equations (6)–(17). The calculation was carried out at an average
temperature of 80 ◦C.

CuFeS2 + 16HNO3 = FeSO4 + CuSO4 + 16NO2+ 8H2O; ∆G0
353 = −1187.2 kJ/mol, (6)

CuFeS2 + 10HNO3 =Fe(NO3)3 + Cu(NO3)2 +2S0 + 5NO2 + 5H2O; ∆G0
353 = −438.198 kJ/mol, (7)

CuFeS2 + 22HNO3= Fe(NO3)3 + Cu(NO3)2 + 2H2SO4 + 17NO2+ 9H2O; ∆G0
353 = −1262.5kJ/mol, (8)

FeS2 + 18HNO3 = Fe(NO3)3 + 2H2SO4 + 15NO2 + 7H2O; ∆G0
353 = −1085.4 kJ/mol, (9)

3FeS2 + 14HNO3 = 3FeSO4 + 3H2SO4 + 14NO + 4H2O; ∆G0
353 = −2763.5 kJ/mol, (10)

Cu12As4S13 + 64HNO3 = 12Cu(NO3)2 + 4H3AsO4 + 13H2SO4 + 40NO + 13H2O; ∆G0
353 = −1866.5 kJ/mol, (11)

Cu12As4S13 + 38HNO3 = 12Cu(NO3)2 + 4H3AsO4 + 13S0 + 14NO + 13H2O; ∆G0
353 = −762.7 kJ/mol, (12)

Cu12As4S13 + 40HNO3 = 12CuSO4 + 4H3AsO4 + H2SO4 + 40NO + 13H2O; ∆G0
353= −3647.0 kJ/mol, (13)

ZnS + 8HNO3 = ZnSO4 + H2SO4 + 8NO2 + 4H2O; ∆G0
353= −640.9 kJ/mol, (14)
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CuFeS2 + 2Fe2(SO4)3 = CuSO4 + 5FeSO4 + 2S0; ∆G0
353 = −65.31 kJ/mol, (15)

ZnS + Fe2(SO4)3 = ZnSO4 + 2FeSO4 + S0; ∆G0
353 = −56.86 kJ/mol (16)

Cu12As4S13 + 13.5Fe2(SO4)3 + 6H2O = 12CuSO4 + 27FeSO4 + 14.5S0 + 4H3AsO3; ∆G0
353 = −28.93 kJ/mol (17)

Based on the results presented above, it can be concluded that the thermodynamic
probability of Equations (6)–(17) is quite high.

For the most accurate prediction of the sulfide minerals mixture behavior in the process
under study, the graphs of the equilibrium distribution were plotted for their dissolution in
nitric acid (Figure 5a) and in a Fe2(SO4)3 solution (Figure 5b).
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Pyrite and sphalerite begin to dissolve first when the amount of nitric acid reaches
1 mol (Figure 5a). Chalcopyrite begins to dissolve when the amount of nitric acid reaches
7 mol. For tennantite, this process starts at 9.5 mol of nitric acid. The sequence of sulfide
mineral dissolution in a Fe2(SO4)3 solution is similar (Figure 5b).

Therefore, tennantite and chalcopyrite are thermodynamically most resistant under
these conditions.

3.2. Determination of Optimal Parameters of Nitric Acid Leaching

It was established that for the dissolution of sulfide minerals by more than 90%, a nitric
acid concentration of 12 mol/dm3 is necessary (Figure 6). High concentrations of nitric
acid significantly increase its consumption and increase the cost of the process. Therefore,
it is advisable to use additional oxidants and catalysts, such as Fe2(SO4)3 and FeS2. This
reduces the required concentration and consumption of nitric acid, while maintaining a
high degree of sulfide dissolution (not less than 90%).

To determine the influence of FeS2 and Fe (III) ions, the experiments were carried
out. The parameters of the experiments were as follows: the concentration of nitric acid
was 6 mol/dm3, the time was 60 min, the temperature was 80 ◦C, the concentration of Fe
(III) ions was 5 g/dm3. FeS2 was added in mass ratio of 1:1 (to the total mass of sulfide
minerals). According to thermodynamic studies, tennantite is the most resistant mineral
of the mixture. Therefore, it was chosen as a demonstration of the experimental results
(Figure 7).
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Figure 7. The dependence of the dissolution degree of tennantite in a nitric acid solution on the time
with the addition of Fe (III) ions and FeS2 (A); with the addition of Fe (III) ions (B); with the addition
of FeS2 (C); and without additives (D).

In the experiment with the simultaneous addition of FeS2 and Fe (III) ions, the ten-
nantite dissolution degree increased by 24.5% in 60 min, compared with the experiment
without additives. This indicates positive effect of FeS2 and Fe (III) ions on the process. The
combined use of these additives had the greatest positive effect on the process, compared
with their separate use. This effect is possibly explained by the simultaneous catalytic
action of FeS2 and the oxidative action of Fe (III) ions on the passivating layer of elemental
sulfur. The passivating layer forms during the dissolution of minerals.

To obtain optimal parameters of nitric acid leaching, experiment mathematical plan-
ning was used [50,51]. StatGraphics software was used to construct a second-order or-
thogonal matrix with five variable parameters: the temperature was 65–95 ◦C, the acid
concentration was 3–8 mol/dm3, the concentration of Fe (III) ions was 5–20 g/dm3, the
mass ratio FeS2 to the mass of the sulfides mixture was (0.5–2:1), the time was 15–60 min,
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the liquid-to-solid ratio (L:S) was 6:1. The results of the variance analysis are presented in
Table 5.

Table 5. The results of the variance analysis.

Source Sum of Squares Df Mean Square F-Ratio p-Value

Cu12As4S13

A: Temperature 1896.92 1 1896.92 8.61 0.021
B: Acid concentration 4238.39 1 4238.39 19.25 0.003
C: Fe(III) 2279.08 1 2279.08 10.35 0.014
D: FeS2 5471.07 1 5471.07 24.84 0.001
E: Time 1506.64 1 1506.64 6.84 0.034

CuFeS2

A: Temperature 1617.19 1 1617.19 9.01 0.0199
B: Acid concentration 4099.75 1 4099.75 22.83 0.0020
C: Fe(III) 1945.73 1 1945.73 10.84 0.0133
D: FeS2 6176.19 1 6176.19 34.39 0.0006
E: Time 1683.8 1 1683.8 9.38 0.0183

ZnS

A: Temperature 568.548 1 568.548 5.31 0.5486
B: Acid concentration 3537.47 1 3537.47 33.04 0.0007
C: Fe(III) 2880.17 1 2880.17 26.90 0.0013
D: FeS2 4405.57 1 4405.57 41.15 0.0004
E: Time 645.106 1 645.106 6.03 0.5938

Figure 8 shows the Pareto diagrams describing the effect of studied parameters on the
dissolution process of tennantite, chalcopyrite, and sphalerite.
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Considering the data presented in Table 5, it can be concluded that all variable parame-
ters are highly statistically significant for nitric acid leaching of tennantite and chalcopyrite.
For sphalerite, the statistically significant parameters are the amount of FeS2, Fe (III) ions,
and the concentration of nitric acid. The results, presented in Figure 8, confirm these data.
FeS2 has the greatest influence on the process.

Diagrams of the dependence of the dissolution tennantite, chalcopyrite, and sphalerite
on the amount of FeS2 and Fe (III) ions at constant values of the concentration of nitric acid
(6 mol/dm3), time (60 min) and temperature (80 ◦C) are shown in Figure 9.
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The resulting regression Equations (18)–(20) contain the following variables: A—
temperature, B—nitric acid concentration, C—concentration of Fe (III) ions, D—amount of
FeS2, E—time. The adequacy of the selected full quadratic model and regression equations
is confirmed by the obtained values of multiple correlation coefficients equal to 0.93 for
tennantite, 0.93 for chalcopyrite, and 0.95 for sphalerite.

Cu12As4S13 = −76.52 − 1.4 * A + 8.43 * B + 7.57 * C + 46.72 * D + 1.9 * E + 0.02 * A2 − 0.004 * A * B

− 0.02 * A * C − 0.06 * A * D − 0.004 * A * E − 0.005 * B2 − 0.14 * B * C − 0.05 * B * D

− 0.013 * B * E − 0.1 * C2 − 0.7 * C * D + 0.0003 * C * E − 6.49 * D2 − 0.08 * D * E − 0.009 * E2

(18)

CuFeS2 = −161.17 + 0.26 * A + 18.56 * B + 5.1 * C + 51.81 * D + 2.41 * E + 0.008 * A2 − 0.0526667 * A * B

− 0.02 * A * C − 0.19 * A * D − 0.005 * A * E − 0.39 * B2 − 0.13 * B * C − 1.84 * B * D − 0.012 * B * E − 0.04 * C2

− 0.41 * C * D− 0.01 * C * E − 3.1858 * D2 − 0.04 * D * E − 0.01 * E2

(19)
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ZnS = −290.24 + 3.57 * A + 25.76 * B + 2.08 * C + 29.78 * D + 3.66 * E − 0.01 * A2 − 0.08 * A * B − 0.005 * A * C

− 0.19 * A * D − 0.01 * A * E − 0.83*B2 − 0.08 * B * C − 1.09 * B * D − 0.06 * B * E + 0.03 * C2 − 0.62 * C * D

− 0.014 * C * E + 5.19 * D2 − 0.176148 * D * E − 0.02 * E2

(20)

Therefore, in order to achieve the maximum dissolution degree of tennatite, chal-
copyrite, and sphalerite (90% and more), it is necessary to adhere to the values of the Fe
(III) concentration, 16.5 mol/dm3, weight ratio of FeS2 to the mixture of minerals, 1.2:1,
concentration of nitric acid, 6 mol/dm3, leaching time, 60 min, and temperature, 80 ◦C.

3.3. Comparison of Nitric Acid Leaching of a Natural Mineral Mixture and Industrial
Cu-As Concentrate

The optimal parameters of nitric acid leaching of a natural minerals mixture established
above were applied to the industrial concentrate of the Uchalinsky deposit. A comparison
of the results is shown in Figure 10.
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Figure 10. Dependences of the dissolution degree of individual sulfide minerals that are in a mixture
with other minerals (a), and contained in industrial Cu-As concentrate (b), in nitric acid on time.

In the period from 0 to 30 min, sulfide minerals in the mixture dissolve more inten-
sively (FeS2—99.9%; ZnS—94%; CuFeS2—84.8%; Cu12As4S13—75%) than minerals in the
industrial concentrate (FeS2—99.9%; ZnS—89.2%; CuFeS2—75%; Cu12As4S13—66%). This
is due to the minerals in the mixture are not associated with each other. The minerals in
industrial Cu-As concentrate are disseminated with each other, and the access of nitric acid
to them might be partially limited. Despite this, the dissolution degrees of sulfide minerals
in a mixture (FeS2—99.9%; ZnS—96.7%; CuFeS2—94.1%; Cu12As4S13—92.8%) and in an
industrial concentrate (FeS2—99.9%; ZnS—94.5%; CuFeS2—93.2%; Cu12As4S13—91.7%) are
almost identical after 60 min.

3.4. Characteristics of the Received Cakes

SEM images and EDX mapping for cake obtained at a nitric acid concentration of
6 mol/dm3, a time of 60 min, a temperature of 80 ◦C, and Fe (III) ions concentration of
16.5 g/dm3 are shown in Figure 11.
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SEM images and EDX mapping for cake obtained at a nitric acid concentration of 6 
mol/dm3, a time of 60 min, a temperature of 80 ℃, a Fe (III) ions concentration of 16.5 
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Figure 11. SEM images of leaching cake obtained at a nitric acid concentration of 6 mol/dm3, a time
of 60 min, a temperature of 80 ◦C, and Fe (III) ions concentration of 16.5 g/dm3. (a,b) and EDX
mapping for iron (c), copper (d), sulfur (e), and combined (f).

The particles of copper minerals in the nitric acid leaching cake have a nonhomoge-
neous structure. The green zones in Figure 11f correspond to the distribution of elemental
sulfur. The mixture of red and blue zones corresponding to iron and copper refers to
chalcopyrite. The surface of unreacted chalcopyrite particles is abundantly covered with
elemental sulfur. This can reduce the access of reagents to the reaction surface. The content
of sulfur in the cake was 79%. The oxidation of sulfide sulfur in the mixture of miner-
als to elemental condition reached 56%. The degree of breakdown of pyrite was 88%,
tennantite—59%, chalcopyrite—60%, and sphalerite—84%.

SEM images and EDX mapping for cake obtained at a nitric acid concentration of
6 mol/dm3, a time of 60 min, a temperature of 80 ◦C, a Fe (III) ions concentration of
16.5 g/dm3, and a mass ratio of FeS2 to a mixture of sulfide minerals of 1.2:1 are shown
in Figure 12.

According to Figure 12a,b, particles of pyrite and chalcopyrite after nitric acid leaching
form conglomerates. They both have smooth and loose, nonhomogeneous surfaces. The
green zones in Figure 12f correspond to the elemental sulfur distribution. The red zones are
pyrite. The mixture of red and blue zones is chalcopyrite. As in Figure 11, it is noticeable
that elemental sulfur covers the surface of chalcopyrite to a greater extent. Its content is
minimal on the surface of pyrite.

In the experiment under these conditions, the oxidation degree of sulfide sulfur to
elemental sulfur reached 23%, while the cake contained 14%. The degree of break-down of
pyrite was 98%, tennantite—93%, chalcopyrite—94%, and sphalerite—99%.

According to the X-ray diffraction patterns (Figure 13), the leaching cakes contain
elemental sulfur, chalcopyrite, and tennantite.
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Based on the SEM images and EDX mappings presented in Figures 11 and 12, as well
as preliminary experiments presented in Figure 7, it can be concluded that during nitric
acid leaching, the surfaces of copper minerals are passivated by a film of elemental sulfur.
This leads to the limiting of access of nitric acid to the reaction zone. The positive effect of
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FeS2 might be associated with the formation of an electrochemical couple with chalcopyrite
and tennantite. In this case, FeS2 acts as an alternative surface, as shown in Figure 14.
This effect was observed in the studies of joint nitric acid leaching of arsenopyrite and
pyrite [52].
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Electrochemical nitric acid leaching of chalcopyrite and pyrite in galvanic coupling
might be described by the following reaction:

CuFeS2 + FeS2 + NO3
− = Cu2+ + 2Fe2+ + SO4

2− + 4NO2 +3S0 + 8ē (21)

4. Conclusions

In this paper, the study of the nitric acid leaching of a sulfide mineral mixture of pyrite,
tennantite, chalcopyrite, and sphalerite, typical for the ores of the Urals deposits, was
carried out.

1. The optimal conditions for nitric acid leaching with the addition of Fe (III) ions and
FeS2 are: concentration of nitric acid—6 mol/dm3; time—60 min; temperature—80 ◦C;
concentration of Fe (III) ions—16.5 mol/dm3; mass ratio of amount of FeS2 to a
mixture of minerals—1.2:1. The dissolution degree of sulfide minerals achieved was
more than 90%. Thereby, it was possible to reduce the required concentration of nitric
acid from 12 mol/dm3 to 6 mol/dm3.

2. The most significant factors of the process are: the nitric acid concentration, the
concentration of Fe (III) ions, and the amount of FeS2. The combination of the addition
of Fe (III) ions and FeS2 into the process has the greatest effect. The multiple correlation
coefficients R2 for the obtained regression equations were 0.93 for tennantite, 0.93 for
chalcopyrite, and 0.95 for sphalerite, respectively. This indicates the adequacy of the
chosen model.

3. During nitric acid leaching of a mixture of sulfide minerals, pyrite can act as an alter-
native catalytic surface for sulfide copper minerals. Due to the galvanic couple formed
between the minerals, it is possible to reduce the influence of the passivating layer.
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4. Jarošíková, A.; Ettler, V.; Mihaljevič, M.; Penížek, V.; Matoušek, T.; Culka, A.; Drahota, P. Transformation of arsenic-rich copper
smelter flue dust in contrasting soils: A 2-year field experiment. Environ. Pollut. 2018, 237, 83–92. [CrossRef] [PubMed]

5. Lv, X.-D.; Li, G.; Xin, Y.-T.; Yan, K.; Yi, Y. Selective Leaching of Arsenic from High-Arsenic Dust in the Alkaline System and its
Prediction Model Using Artificial Neural Network. Min. Metall. Explor. 2021, 28, 2133–2144. [CrossRef]

6. Guo, X.-Y.; Yi, Y.; Shi, J.; Tian, Q.-H. Leaching behavior of metals from high-arsenic dust by NaOH-Na2S alkaline leaching. Trans.
Nonferrous Met. Soc. China 2016, 26, 575–580. [CrossRef]

7. Isabaev, S.M.; Kuzgibekova, K.M.; Zikanova, T.A.; Zhinova, E.V. Complex hydrometallurgical processing of lead arsenic-
containing dust from copper production. Tsvetnye Met. 2017, 8, 33–38. [CrossRef]

8. Vircikova, E.; Havlik, M. Removing As from converter dust by a hydrometallurgical method. J. Miner. Met. Mater. Soc. 1999, 51,
20–23. [CrossRef]

9. Montenegro, V.; Sano, H.; Fujisawa, T. Recirculation of high arsenic content copper smelting dust to smelting and converting
processes. Miner. Eng. 2013, 49, 184–189. [CrossRef]

10. Montenegro, V.; Sano, H.; Fujisawa, T. Recirculation of chilean copper smelting dust with high arsenic content to the smelting
process. Mater. Trans. 2008, 49, 2112–2118. [CrossRef]

11. Xue, J.; Long, D.; Zhong, H.; Wang, S.; Liu, L. Comprehensive recovery of arsenic and antimony from arsenic-rich copper smelter
dust. J. Hazard. Mater. 2021, 413, 125365. [CrossRef] [PubMed]

12. Karimov, K.A.; Naboichenko, S.S.; Kritskii, A.V.; Tret’yak, M.A.; Kovyazin, A.A. Oxidation Sulfuric Acid Autoclave Leaching of
Copper Smelting Production Fine Dust. Metallurgist 2019, 62, 1244–1249. [CrossRef]
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