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Abstract: The dynamic stiffness matrix (DSM) method, an analytical method that provides exact
solutions, has been used for the first time for the free vibration analysis of a functionally graded
(FG) rotor bearing system subjected to temperature gradients and to investigate its application to FG
rotors. The material gradation occurs based on the power law between the inner metal core and the
outer ceramic rich layer of the FG rotor. The temperature gradation follows the Fourier law of heat
conduction which leads to non-linear temperature distribution (NLTD) in the radial direction of the
FG rotor. The development of the DSM formulations for Timoshenko FG rotor elements using the
governing equations derived from translational and rotational equilibrium conditions is the novelty
of the present work. The DSM of the FG rotor elements, rigid disk and linear isotropic bearings are
assembled to obtain the global dynamic stiffness matrix of the FG rotor bearing system. The natural
whirl frequencies are computed from the global DSM using the Wittrick–William algorithm as a root
searching technique. The natural and whirl frequencies are validated with the results available in the
literature and the exactness of the DSM method has been exemplified.

Keywords: dynamic stiffness matrix; rotor bearing system; free vibration; functionally graded
materials; non-linear temperature distribution; Wittrick–William algorithm

1. Introduction

The DSM method is an analytical method that assumes exact shape functions, unlike
other numerical methods, such as the finite element method, which assumes the polynomial
shape functions, to obtain the solution for a continuous vibration problem. Thus, it retains
the accuracy and exactness of the solutions obtained for a given problem. In this context,
the application of the DSM method in the domain of vibration of continuous systems has
been widely investigated and reported in the literature. Chen [1] developed a general
dynamic stiffness matrix for the transverse vibrations of beams based on Timoshenko
beam theory. Curti et al. [2] performed a dynamic analysis of homogenous rotor bearing
system using the DSM method based on Rayleigh beam theory, whereas Curti et al. [3]
carried out the analysis based on Timoshenko beam theory. Banerjee [4] developed the
dynamic stiffness (DS) matrix for structural elements, such as beams from the governing
differential equations obtained by applying various techniques, such as D’Alembert’s
principle, Hamiltonian principle Newton laws and so on. Few other works on the dynamic
stiffness matrix approach are available in refs [5,6].

The frequencies are obtained from the dynamic stiffness matrix by computing the
roots of the matrix determinant. However, the determinant of the dynamic stiffness matrix
is usually a highly irregular transcendental function of the frequency passing through zeros
and varying between infinities. This results in a highly non-linear Eigen-value problem
which is difficult to solve using normal root searching techniques. In such cases, the
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Wittrick–William algorithm is the most efficient root searching technique, which gives
the number of natural frequencies under a given trial frequency. The intervals in which
the natural frequencies are located can be easily estimated from the algorithm, and the
frequencies between these obtained intervals can be computed without much difficulty
using a simple bisection method. The method to compute the natural frequencies using the
Wittrick–William algorithm has been explained in detail in refs [7–9].

Functionally graded materials (FGMs) are the advanced type of inhomogeneous
composite materials made up of metals, ceramics and polymers in which the smooth
variation of material properties can be observed in the desired direction with the variation
of material composition. The disadvantages of traditional inhomogeneous composites, such
as de-lamination, de-bonding and low temperature withstanding ability which arise due to
the sudden variation of the material composition, are eliminated in the FGMs. The smooth
variation of material properties in the FGMs increases the temperature withstanding ability
and mechanical performance of the composite material. Therefore, traditional composites
are replaced by FGMs in a wide range of engineering applications, such as aerospace,
mechanical, biomedical, manufacturing, and so on. Based on this context, it is crucial to
study the static and dynamic behavior of FGMs.

The various works based on the dynamic behavior of (FG) beams using analytical and
numerical approaches have been detailed in the literature. Aydogdu& Taskin [10] analyzed
the free vibration behavior of simply supported FG beams using various classical beam
theories and higher order shear deformation theories. Xiang & Yang [11], using differential
quadrature method derived from Lagrange interpolation polynomials, carried out free and
forced vibration analysis of variable thickness laminated FG Timoshenko beam under heat
conduction. Alshorbagy et al. [12] performed the free vibration analysis of the FG Euler
Bernoulli beam using the finite element method. Şimşek & Reddy [13] used the modified
couple stress theory to study the bending and free vibration of FG microbeams. Celebi
and Tutuncu [14], using the exact plane elasticity approach, carried out a natural frequency
analysis of FG beams to obtain exact natural frequencies.

Few works are reported in the literature on the natural frequency analysis of FG
rotor bearing systems using the FEM based on Timoshenko beam theory (TBT) which
includes the effects of translation and rotary inertia, gyroscopic moments and transverse
shear deformation. The free vibration analysis of the FG rotor bearing system having
hysteresis and viscous damping effects has been carried out in refs [15,16] using FEM. The
free vibration behavior of thermally loaded FG rotor-bearing systems having defects, such
as transverse crack [17], porosities [18] and corrosion defect [19] have been investigated,
and the influence of these defects on the natural and whirl frequencies has been studied in
detail in the literature.

Due to the superiority of theDSM method in terms of exactness and accuracy of
the solutions obtained, compared to that of approximate/numerical methods, several
works based on natural frequency analysis of FG beams using DSM formulation havebeen
detailed in the literature. Based on the general approach presented by Banerjee [4] to
develop the DSM formulation, Su et al. [20] developed the DSM formulation to analyze the
free vibration behavior of the FG beams. Further extensions of the work are also reported in
the literature by Su& Banerjee [21] and Banerjee &Ananthapuvirajah [22], which includes
the analysis of mode shapes of the FG beams. The Wittrick–William algorithm has been
used as a root searching technique to calculate the free vibration frequencies from the
global dynamic stiffness matrix in the above-listed works based on the free vibration of
FG beams. Hao et al. [23] used the Monte Carlo based simulation to study the parametric
random vibration of axially moving laminated shape memory alloy. Akgöz and Civalek [24]
investigated the static bending and buckling behavior of the size dependent micro-beams
based on shear deformation and modified strain gradient theory. Akbas et al. [25] discussed
the dynamic responses of fiberreinforced composite Timoshenko beam obtained using
the Ritz method. The systems analyzed in the above works can be re-modeled using FG
rotors/beams, and the DSM formulations can be developed based on the approach used in
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this study to investigate the advantages and disadvantages of replacing the materials used
in these systems with FGMs.

Even though significant works have been reported on the use of the DSM method to
investigate the free vibration analysis of FG beams, not enough attention has been paid
to its applicability to vibration behavior rotor systems. A couple of works [2,3] have been
reported on the formulation of the DSM method to calculate the natural frequencies of
homogeneous rotor bearing systems without any thermal loading. However, to the best of
the author’s knowledge, there are no works reported in the literature on the formulation
and applicability of the DSM method to compute the free vibration frequencies of FG rotor
systems subjected to thermal gradients. Therefore the present work mainly focuses on the
application of the DSM method on free vibrations of the functionally graded rotor-bearing
system.The DSM formulation has been developed based on TBT for the free vibration
analysis of the FG rotor bearing system subjected to a non-linear temperature gradient. The
natural and whirl frequencies of the FG rotor bearing system havebeen computed using
the Wittrick–William algorithm as a root searching technique.

2. Material Modeling

The FG rotor is composed of metal and ceramic which can be classified under metal-
ceramic FGMs. The material gradation of the FG rotor occurs between the inner metal-rich
core and the outer ceramic-rich layer in the radial direction, as shown in Figure 1 based on
power law. The volume fraction of ceramic is varied in the radial direction based on power
law as:

Vc(r) =
[

r− Ri
Ro − Ri

]k
(1)

The relationship between the volume fractions of the metal and ceramic constituents
at any given layer of the FG rotor can be written as:

Vm(r) + Vc(r) = 1 (2)

According to the rule of mixtures of composite materials, effective material properties
P of a given layer of the FG rotor can be expressed as:

P(r, T) = Pm(T)Vm(r) + Pc(T)Vc(r) (3)

Solving the above three equations, effective material property for any given layer of
the FG rotor can be obtained as:

P(r, T) = Pm(T) + (Pc(T)− Pm(T))
[

r− Ri
Ro − Ri

]k
(4)

The FG rotor is subjected to a temperature gradient that follows one-dimensional
steady-state Fourier heat conduction equation, without heat generation, expressed below.

d
dr

[
K(r)

dT
dr

]
= 0 (5)

The boundary conditions T =Ti at r = Ri and T = To at r = Ro have been applied, and
non-linear temperature distribution as a function of the radial distance from the centerof
the rotor has been obtained by Lanhe [26], expressed as a polynomial series of seven terms
given below.

T(r) = Ti + ∆T

∑5
j=0

{
(−1)j

jk+1

(
Koi
Ki

)j( r−Ri
Ro−Ri

)jk+1
}

(−1)j

jk+1

(
Koi
Ki

)j

 (6)



Materials 2022, 15, 1540 4 of 16

Here, Koi = Ko − Ki and ∆T = To − Ti. The material properties of the metal and
ceramic in the FG rotor subjected to temperature gradient vary as a function of mate-
rial temperature. The material property as a function of material temperature can be
expressed as:

P(T) = P0

(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
(7)

where P−1, P0, P1, P2 and P3 are the temperature coefficients and are unique for a given ma-
terial property of a given material. The temperature coefficients for the material properties
of various materials have been listed by Reddy & Chin [27].
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Figure 1. Material gradation in conical cut section of FG rotor cross-section.

3. Methodology

The step-by-step methodology followed in the present study to develop the DSM
formulation for the FG rotor and to conduct the free vibration analysis of the FG rotor
bearing system is shown in Figure 2 in the form of a flow chart.To begin with, the expres-
sions for various loads acting on the differential element of the FG rotor at the deformed
equilibrium state have been considered, and the governing differential equations of motion
for the FG rotor element have been derived by applying the conditions of equilibrium. The
exact shape functions have been assumed to obtain the exact solution for the governing
differential equations, and the dynamic stiffness matrix has been developed for the FG
rotor element. The dynamic stiffness matrices of the FG rotor system, such as rotor, disc
and bearings are assembled together to obtain the global dynamic stiffness matrix of the
FG rotor bearing system. The Wittrick–William algorithm has been employed as a root
searching technique to compute the natural and whirl frequencies from the global dynamic
stiffness matrix.
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Figure 2. DSM Methodology flow chart for free vibration analysis of FG rotor bearing system.

4. DSM Formulation for FG Rotor Element

The general coordinate system (x,y,s) and the nodal degrees of freedom of the FG rotor
element are represented in Figure 3. The loads acting on the differential FG rotor element
in (x,s) and (y,s) planes at equilibrium are represented in Figures 4 and 5, respectively. The
expressions for these various loads acting on (x,s) and (y,s) planes are defined based on
Timoshenko beam theory which considers the effects of translation and rotation inertia,
bending and gyroscopic moment, and transverse shear. The corresponding translational
and rotational equilibrium conditions in both planes have been derived.
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Figure 4. Sign conventions for loads acting on the differential rotor element in (x, s) plane.
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The expressions for various loads acting on the plane, represented in Figure 4, are

listed below.

qx = −
x

ρ(r, T)dA× d2u
dt2 (8)

Qy = −
x

ρ(r, T)
r2

2
dA×

d2θy

dt2 +
x

ρ(r, T)r2dA×ω
dθx

dt
(9)

Tx =
x

κ(r, T)G(r, T)dA×
(

du
ds
− θy

)
(10)

My =
x

E(r, T)
r2

2
dA×

dθy

ds
(11)

From Equations (8)–(11), the translational and rotational equilibrium conditions of the
plane are obtained in Equations (12) and (13), respectively.

x
κ(r, T)G(r, T)dA×

(
d2u
ds2 −

dθy

ds

)
=

x
ρ(r, T)dA× d2u

dt2 (12)

x
E(r, T)

r2

2
dA×

dθy

ds
=

 −
s

κ(r, T)G(r, T)dA×
(

du
dz − θy

)
+

s
ρ(r, T) r2

2 dA× d2θy
dt2 −

s
ρ(r, T)r2dA×ω dθx

dt

 (13)

In (y, s) plane:
The expressions for various loads acting on the plane, represented in Figure 5, are

listed below.

qy = −
x

ρ(r, T)dA× d2v
dt2 (14)

Qx = −
x

ρ(r, T)
r2

2
dA× d2θx

dt2 −
x

ρ(r, T)r2dA×ω
dθy

dt
(15)

Ty = −
x

κ(r, T)G(r, T)dA×
(

dv
ds

+ θx

)
(16)

Mx = −
x

E(r, T)
r2

2
dA× dθx

ds
(17)
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From the Equations (14)–(17), the translational and rotational equilibrium conditions
of the plane are obtained as given below, respectively.

x
κ(r, T)G(r, T)dA×

(
d2v
ds2 +

dθx

ds

)
=

x
ρ(r, T)dA× d2v

dt2 (18)

x
E(r, T)

r2

2
dA× dθx

ds
=

 s
κ(r, T)G(r, T)×

(
dv
dz − θx

)
+

s
ρ(r, T) r2

2 dA× d2θx
dt2 +

s
ρ(r, T)r2dA×ω

dθy
dt

 (19)

4.1. Governing Differential Equations of Motion

The variables θx and θy are eliminated from the equilibrium condition equations of
the planes (x,s) and (y,s) given in Equations (12), (13), (18)and (19), respectively. The
resultant equations are combined by introducing a complex variable z = x + iy, to obtain the
governing equation for the Timoshenko FG rotor element in terms of total deflection z as:

x
E(r, T)

r2

2
dA

d4z
ds4 +


s

ρ(r, T) r2

2 dA
s

ρ(r,T)dAs
κ(r,T)G(r,T)

d4z
dt4 +

s
ρ(r, T)dA d4z

dt4−

(
s

ρ(r, T) r2

2 dA +
s

ρ(r,T)dAs
κ(r,T)G(r,T)

s
E(r, T) r2

2 dA) d4z
ds2dt2

+iω
s

ρ(r, T) r2

2 dA( d3z
ds2dt −

s
ρ(r,T)dAs

κ(r,T)G(r,T)
d3z
dt3 )

 = 0 (20)

The variables x and y are eliminated from the equilibrium condition equations of the
planes (x,s) and (y,s) given in Equations (12), (13), (18) and (19), respectively. The resultant
equations are combined by introducing a complex variable θ = θy − iθx, to obtain the
governing equation for the Timoshenko FG rotor element in terms of bending slope θ as:

x
E(r, T)

r2

2
dA

d4θ

ds4 +


s

ρ(r, T) r2

2 dA
s

ρ(r,T)dAs
κ(r,T)G(r,T)

d4θ
dt4 +

s
ρ(r, T)dA d4θ

dt4−

(
s

ρ(r, T) r2

2 dA +
s

ρ(r,T)dAs
κ(r,T)G(r,T)

s
E(r, T) r2

2 dA) d4θ
ds2dt2

+iω
s

ρ(r, T) r2

2 dA( d3θ
ds2dt −

s
ρ(r,T)dAs

κ(r,T)G(r,T)
d3z
dt3 )

 = 0 (21)

The structure and the coefficients of the governing equations of Timoshenko FG rotor
element in terms of total deflection, z and bending slope, θ given in Equations (20) and (21)
are the same.

4.2. Solution Procedure for the Governing Differential Equations

The solution for the total deflection, z and the bending slope, θ in the Equations (20)
and (21) for the harmonic motion of the Timoshenko FG rotor element can be assumed as
z(s, t) = Z(s)eiλt and θ(s, t) = Θ(s)eiλt where Z(s) and Θ(s) are the position-dependent
amplitudes of motion. Substituting the assumed harmonic solutions in the corresponding
equations, the Equations (20) and (21) can be rewritten as:

x
E(r, T)

r2

2
dA

d4Z
ds4 + F

d2Z
ds2 + HZ = 0 (22)

x
E(r, T)

r2

2
dA

d4Θ

ds4 + F
d2Θ

ds2 + HΘ = 0 (23)

where,

F =

[(x
ρ(r, T)

r2

2
dA +

s
ρ(r, T)dAs

κ(r, T)G(r, T)

x
E(r, T)

r2

2
dA
)

λ2 − 2ωλ
x

ρ(r, T)
r2

2
dA
]

H =

[x
ρ(r, T)

r2

2
dA

s
ρ(r, T)dAs

κ(r, T)G(r, T)
λ2
(

λ2 − 2ωλ
)
− λ2

x
ρ(r, T)dA

]
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The solution for Equations (22) and (23) can be assumed as:

Z(s) = e
√

τ s/l (24)

Θ(s) = e
√

τ s/l (25)

Substituting the Equations (24) and (25) in Equations (22) and (23), respectively, the
resultant characteristic equations can be obtained as:

τ2 + 2Vτ −W = 0 (26)

where,

V =
1
2

Fl2
/x

E(r, T)
r2

2
dA

W = −Hl4
/x

E(r, T)
r2

2
dA

The two roots of the quadratic characteristic Equation (26) are:

τ1 = −V +
√

V2 + Wτ2 = −V −
√

V2 + W

Considering the condition W > 0, the roots τ1 and τ2 can be written as:

τ1 = α2, τ2 = −β2 =>
√

τ1 = ±α,
√

τ2 = ±iβ (27)

From Equation (27), the solution for amplitude functions Z(s) and Θ(s) can be ex-
pressed as:

Z(s) = C1 cosh
(αs

l

)
+ C2sinh

(αs
l

)
+ C3 cos

(
βs
l

)
+ C4 sin

(
βs
l

)
(28)

Θ(s) = C5 cosh
(αs

l

)
+ C6sinh

(αs
l

)
+ C7 cos

(
βs
l

)
+ C8 sin

(
βs
l

)
(29)

where, Ci(i = 1, 2, . . . , 8) are the constants of integration.
The two sets of integration constants (C1 to C4) and (C5 to C8) in Equations (28) and

(29), respectively are related to each other due to the coupling between the lateral deflection
and the bending slope in both (x,s) and (y,s) planes given by the coupled equilibrium
Equations (12), (13), (17)and (18), respectively. The relationship between the two sets of
integration constants has been derived.

The either of the translational or rotational equilibrium equations of (x,s) and (y,s)
planes canbe combined together and rewritten in terms of the amplitude functions Z(s)
and Θ(s) to derive the relationship between the two sets of integration constants. The
translational equilibrium Equations (12) and (17) of (x,s) and (y,s) planes, respectively, have
been considered and the following resultant equation by applying the procedure mentioned
before has been obtained.

x
κ(r, T)G(r, T)dA×

(
d2Z(s)

ds2 − dΘ(s)
ds

)
= λ2Z(s)

x
ρ(r, T)dA (30)

Substituting the Equations (24) and (25) in Equation (30) above, the following relation-
ship between the two sets of integration constant has been derived,

C6 = aC1, C5 = aC2, C7 = −bC4, C8 = bC3

where,

a =

(
l
α

)[
λ2 s ρ(r, T)dAs
κ(r, T)G(r, T)dA

+
(α

l

)2
]
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b =

(
l
β

)[
λ2 s ρ(r, T)dAs
κ(r, T)G(r, T)dA

−
(

β

l

)2
]

4.3. Dynamic Stiffness Matrix Coefficients

The boundary conditions of the Timoshenko FG rotor element at its ends which
includes the generalized loads and displacements are represented in Figure 6.
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The relationship between the loads and displacements of the rotor element has been
written in matrix form as:

[Ke]·{De} = {Fe}
K11 K12
K21 K22

K13 K14
K23 K24

K31 K32
K41 K42

K33 K34
K43 K44




Z(0)
Θ(0)
Z(l)
Θ(l)

 =


T(0)
−M(0)
−T(l)
M(l)

 (31)

Here, K is the dynamic stiffness matrix and Kij (i, j = 1, 2, 3, 4) are the dynamic stiffness
matrix coefficients of FG rotor elements. The Equations (10) and (16) are combined to
obtain the expression for T(s), and the Equations (11) and (17) are combined to obtain the
expression for M(s) in terms of amplitude functions as:

T(s) = −
x

κ(r, T)G(r, T)dA×
(

dZ
ds

+ Θ

)
(32)

M(s) =
1
2

x
E(r, T)r2dA× dΘ

ds
(33)

The expressions for total deflection, bending slope, shear force and bending moment
at the beam ends can be obtained from the Equations (28), (29), (32) and (33), respectively.
Substituting these expressions in Equation (31), the expressions for the dynamic stiffness
coefficients of the dynamic stiffness matrix can be derived. Looking at the expressions
of dynamic stiffness matrix coefficients, the dynamic stiffness matrix appears to exhibit
the asymmetric structure, the inherent property of the dynamic stiffness matrix being
symmetric in nature. The symmetric structure of the dynamic stiffness matrix can be
obtained by using the following identity:

s
κ(r, T)G(r, T)dA
s

E(r, T)r2dA
= −αβab

2cl2 (34)

In the above equation, c =
(
λ2 s ρ(r, T)dA

)
/(

s
κ(r, T)G(r, T)dA). The expressions

of dynamic stiffness matrix coefficients of the dynamic stiffness matrix can be written as:

K11 = K33 = −
s

E(r, T)r2dA
2D

ab·(aα− bβ)·(cos βsinhα− sin β cosh α)

K22 = K44 =

s
E(r, T)r2dA

2D
(aα− bβ)·(sin β cosh α− cos βsinhα)
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K13 = K31 =

s
E(r, T)r2dA

2D
ab·(aα− bβ)·(asinhα− b sin β)

K24 = K42 = −
s

E(r, T)r2dA
2D

(aα− bβ)·(bsinhα + a sin β)

K12 = K21 = −K34 = −K43 = −
s

E(r, T)r2dA
2D

ab·
[

(aα + bβ)·(cos β cosh α− 1)
+(aβ− bα)· sin βsinhα

]

K23 = K32 = −K41 = −K14 = −
s

E(r, T)r2dA
2D

ab·(aα− bβ)·(cos β− cosh α)

where, D = l·
[
2ab·(cos β cosh α− 1) +

(
a2 − b2)· sin βsinhα

]
.

The 4 × 4 DS matrix of the FG rotor element with dynamic stiffness coefficients
derived above can be used to find the natural frequencies of the FG rotor element for
different boundary conditions. Any number of DS matrices of FG rotor elements of the
same/different element lengths can be assembled to the required rotor length in addition
to the DS matrices of uniform rigid disk and linear isotropic bearings obtained from
Curti et al. [2]. The effect of the gyroscopic moment of disk rotation has been included in
the DS matrix of the uniform rigid disk. The final assembled global DS matrix can be used
to find the natural whirl frequencies of the FG rotor bearing system. The reader may refer
to the assembly procedure detailed in Curti et al. [2] to possess a greater understanding in
regard to the assembly procedure of DS matrices for a rotor bearing system.

5. Wittrick–William Algorithm

The Wittrick–William algorithm has been employed as a root searching technique to
compute the modal frequencies from the global dynamic stiffness matrix. The algorithm
gives the number of natural frequencies below the trial frequency specified by the user.
Thus, the upper bounds and lower bounds for each of the modal frequencies can be
estimated, and the modal frequencies between corresponding bounds can be obtained by
calculating the root of the matrix determinant between the bounds using the bisection
method. The number of modal frequencies J(ω∗) below the trial frequency ω∗ specified by
the user can be obtained as:

J(ω∗) = Jo + Jk = Jo + s
{

K∆(ω∗)
}

(35)

In the equation above, K∆ is the upper triangular matrix obtained through the Gaussian
elimination of global dynamic stiffness matrix K, Jk is the number of negative leading
diagonal elements in K∆(ω∗) known as sign count, which is represented as s

{
K∆(ω∗)

}
and Jo is the number of clamped-clamped frequencies below ω∗ of the structural elements
of the system.

6. Results and Discussions

In the present study, the global dynamic stiffness matrix has been derived for the
FG rotor bearing system in which the FG rotor is subjected to temperature gradients.
The FG rotor consists of a uniform rigid disk at the centerand is supported on linear
isotropic bearings at the ends as shown in Figure 7. A code has been developed in Python
Programming Language (PPL) to obtain the natural and whirl frequencies of the FG rotor
bearing system from its global dynamic stiffness matrix developed in this paper using the
Wittrick–William algorithm. The step-by-step validation procedure of the developed DSM
method with the published results has been presented in the following subsections.
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6.1. Validation of DSM Formulation—SteelRotor Bearing System

To begin with, the natural frequencies of the steel rotor bearing system have been
computed from the global DS matrix using the Wittrick–William algorithm. The follow-
ing properties of the steel rotor bearing system are used to validate the results from the
literature [28].

Steel material properties: E = 208 GPa, ν = 0.3, ρ = 7800 kg/m3.
Rotor dimensions: L = 0.5 m d = 0.2 cm.
Bearing stiffness, kb = 105 N/m.
Disk properties: Md = 5.5 kkg Id = 0.00773 kg·m2 Ip = 0.01546 kg·m2.
The natural frequencies obtained from DSM are compared with FEM results and

tabulated in Table 1.The results obtained are in good agreement with the literature. The
approximate mode shapes and corresponding natural frequencies obtained from the FEM
method varyfrom the exact solutions obtained from the DSM method at higher modes
compared to lower modes. Therefore, there is a higher variation in the natural frequen-
cies obtained from FEM and DSM methods at mode 3 compared to the lower modes.
The validation ensures the correctness of the Wittrick–William and DSM formulation for
homogeneous materials.

Table 1. Natural frequencies of steel rotor bearing system.

Mode
Natural Frequencies (rad/s)

Present FEM [28] Error%

1 152.4 152.5 0.065
2 597.9 598.2 0.050
3 1728.2 1733.6 0.312

6.2. Validation of DSM Formulation—FG Beam

Further, the exactness of the FG modeling and the corresponding DSM formulation
has been ensured by validating the non-dimensional natural frequencies computed for
the simply supported FG beam from the developed code. The non-dimensional natural
frequencies are computed for the slenderness ratio L

h = 20 at different modes and for
different power law indices from the developed code. The computed results are compared
with results available in the literature in Table 2. The natural frequencies are in good
agreement with the published results. The beam dimensions and FG material properties
used for determining the frequencies are obtained from [21] as given below.

Beam dimensions: b = 0.1 m, h = 0.1 m.
Bottom surface (steel): Eb = 210 GPa, νb = 0.31, ρb = 7800 kg/m3.
Top surface (Al2O3): Et = 390 GPa, νt = 0.25, ρt = 3960 kg/m3.
The non-dimensional natural frequencies are computed as

λi =
ωiL2

h

√
ρb
Eb
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Thus, the dynamic stiffness matrix formulation presented in this work can be used to
carry out a free vibration analysis of the FG rotor bearing system, and the Wittrick–William
algorithm can be used to determine the modal frequencies from the global dynamic stiffness
matrix of the FG rotor system.

Table 2. Non-dimension natural frequencies of simply supported FG beam at L/h = 20.

Mode
k =0.1 k = 0.5 k = 1 k = 5

Present [21] Present [21] Present [21] Present [21]

1 5.0664 5.0613 4.2971 4.2943 3.9061 3.9058 3.3035 3.3032
2 20.0268 20.0040 16.9857 16.9720 15.4375 15.4330 13.0463 13.0420
3 44.2153 44.1560 37.4997 37.4600 34.0734 34.0520 28.7623 28.7430
4 76.6660 76.5420 65.0189 64.9280 59.0597 58.9970 49.7804 49.7250

6.3. DSM Method Application to Thermally Loaded FG Rotor System

In this section, the DSM approach has been demonstrated for an FG rotor bearing
system (shown in Figure 7) subjected to thermal gradients with proper validations. The
FG rotor is divided into four rotor elements with a total of five nodes. The FG rotor is
made up of FGM, which is composed of metal and ceramic, as mentioned earlier in the
paper in the material modeling section. The metal and ceramic materials considered for the
material modeling of the FG rotor are stainless steel and zirconium dioxide, respectively.
The temperature dependent coefficients for the material properties of stainless steel and
zirconium dioxide are obtained from [18] and are tabulated in Table 3. The geometrical
dimensions of the FG rotor and the properties of disk and bearings used in the present
study are:

Rotor dimensions: L = 0.5 m, d = 0.02 m.
Bearing stiffness: Kb = 105 N/m.
Disk Properties: Md = 2 kg, Id = 0.0012 kg·m2, Ip = 0.0024 kg·m2

Table 3. Temperature coefficients of metal and ceramic material properties.

Properties Material P0 P−1 P1 P2 P3

E (Pa)
SS 201.04 × 109 0 +3.079 × 10−4 −6.534 × 10−7 0

ZrO2 244.27 × 109 0 −1.371 × 10−3 +1.214 × 10−6 −3.681 × 10−10

ν
SS 0.3262 0 −2.002 × 10−4 +3.797 × 10−7 0

ZrO2 0.2882 0 +1.133 × 10−4 0 0

K (W/m K)
SS 15.739 0 −1.264 × 10−3 +2.092 × 10−6 −7.223 × 10−10

ZrO2 1.700 0 +1.276 × 10−4 +6.648 × 10−8 0

ρ (kg/m3)
SS 8166 0 0 0 0

ZrO2 5700 0 0 0 0

The first three modes of the forward and backward whirl frequencies of the FG rotor
bearing system subjected to temperature gradients at the rotor spin speed 4000 rpm and
inner temperature Ti = 300 K has been computed using the dynamic stiffness method for
different power law indices and temperature gradients. The computed whirl frequencies
of the FG rotor bearing system subjected to temperature gradients havebeen compared
with the FEM results available in [18]. The comparison between the results from the DSM
method in the paper and FEM in the literature for temperature gradients at ∆T = 0 K, 300 K
and 600 K are presented in Tables 4–6.
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Table 4. Whirl frequencies (in Hz) of FG rotor bearing system at ∆T = 0 K, Ω = 4000 rpm.

Mode
k = 0.5 k = 1 k = 5

Present FEM [18] Present FEM [18] Present FEM [18]

1BW 36.167 36.166 35.980 35.979 35.531 35.530
1FW 36.168 36.169 35.981 35.981 35.533 35.533
2BW 115.473 115.421 112.845 112.794 106.266 106.213
2FW 123.916 123.974 120.866 120.924 113.274 113.333
3BW 298.710 298.593 294.381 294.259 286.371 286.243
3FW 298.999 299.121 294.668 294.785 286.666 286.784

Table 5. Whirl frequencies (in Hz) of FG rotor bearing system at ∆T = 300 K, Ω = 4000 rpm.

Mode
k = 0.5 k = 1 k = 5

Present FEM [18] Present FEM [18] Present FEM [18]

1BW 35.386 35.384 35.309 35.307 35.129 35.128
1FW 35.388 35.387 35.311 35.310 35.131 35.131
2BW 115.061 115.009 112.505 112.453 106.082 106.028
2FW 123.669 123.727 120.660 120.717 113.159 113.217
3BW 279.719 279.577 277.548 277.400 275.020 274.872
3FW 280.007 280.103 277.834 277.924 275.314 275.413

Table 6. Whirl frequencies (in Hz) of FG rotor bearing system at ∆T = 600 K, Ω = 4000 rpm.

Mode
k = 0.5 k = 1 k = 5

Present FEM [18] Present FEM [18] Present FEM [18]

1BW 34.870 34.868 34.837 34.834 34.723 34.723
1FW 34.872 34.872 34.839 34.838 34.725 34.726
2BW 114.774 114.722 112.253 112.201 105.889 105.836
2FW 123.498 123.555 120.508 120.564 113.039 113.097
3BW 269.173 269.020 267.446 267.286 264.933 264.812
3FW 269.459 269.545 267.731 267.809 265.227 265.352

The whirl frequencies computed from the DSM method are in good agreement with
FEM results obtained from the literature. The FG rotor has been divided into ten finite
elements to obtain the required convergence of the results using FEM in the literature.
However, the results obtained from the DSM method have been found to be independent
ofthe number of elements considered in the analysis, which exemplifies the exactness and
computational efficiency of the DSM method.

7. Conclusions

The dynamic stiffness matrix formulation has been developed for the first time for the
free vibration analysis of a (FG) rotor bearing system subjected to temperature gradients
and to investigate its application to FG rotors. The translational and rotational equilibrium
equations have been obtained by applying the equilibrium conditions to the expressions
of various loads acting on the FG rotor elements. The governing equations of motion for
FG rotor elements have been derived from the equilibrium equations, and the dynamic
stiffness matrix has been developed for the same. The Wittrick–William algorithm has been
employed as a root searching technique to compute the natural frequencies from the global
DS matrix.

The dynamic stiffness matrix formulation code has been thus developed to carry out
the free vibration analysis of FG rotor bearing systems. The correctness of the dynamic
stiffness matrix formulation has been ensured with the validation of the results obtained
from the DSM code, with the results available in the literature. The natural whirl frequencies
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of the FG rotor bearing system subjected to temperature gradient have been obtained from
the DSM code and compared with the FEM results available in the literature. The exactness
of the DSM method has been exemplified as the results obtained from the method have
been found to be independent of the number of the FG rotor elements considered, which
saves a significant amount of computational time.

The authors’ believe that the current article is a step in the right direction in the
accurate analysis of complex systems made up of FGMs in the broader view of applications
in engineering. The developed DSM method can be used to study the vibration behavior
of systems used in various applications, such as micro/nano applications and so on,
re-modeled using functionally graded material to investigate its possible application in
those systems.
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Abbreviations, Symbols and Notations

FGM Functionally graded materials
FG Functionally graded
DSM Dynamic stiffness matrix
DS Dynamic stiffness
NLTD Non-linear temperature distribution
TBT Timoshenko beam theory
A cross-sectional area
Pm material properties of metal
Pc material properties of ceramic
Vm volume fraction of metal
Vc volume fraction of ceramic
k power law index
K thermal conductivity
Ri, Ro inner and outer radius of the FG rotor
Ti, To temperature at inner and outer surface of the FG rotor
Ki, Ko thermal conductivity at inner and outer surface of the FG rotor
(x,y,s) coordinate system
u, v lateral deflections in (x,s) and (y,s) planes, respectively
θx, θy bending slopes in (y,s) and (x,s) planes, respectively,

qx, qy
distributed transverse force (x,s) and (y,s) planes, respectively, based on
translation inertia

Qx, Qy
distributed moments in (y,s) and (x,s) planes, respectively, based on rotation inertia and
gyroscopic moments

Tx, Ty shear forces in (x,s) and (y,s) planes, respectively, based on transverse shear effects
Mx, My bending moments in (y,s) and (x,s) planes, respectively
E Young’s modulus
ν Poisson’s ratio
G shear modulus
κ shear factor
ρ density
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Id diametric mass moment of inertia of the disk
Ip polar mass moment of inertia of the disk
d rotor diameter
L rotor or beam length
l element length
R radial distance
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