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Abstract: In this paper, dynamic analyses of two untypical, modern footbridges made of glued-
laminated timber are presented. One of them is among the longest cable-stayed bridges for pedes-
trians in the world, made of such a structural material. Both structures are qualified as having low
sensitivity to vibrations. The results of numerical modal analysis using FEM and non-destructive
experimental dynamic tests of investigated footbridges are compared. Important differences in
obtained results are captured, which are identified as the positive effect in relation to design aspects.
Moreover, the same in situ measurements confirm the high level of damping in footbridges made of
glued-laminated wood, which is a very significant and distinguishing feature not commonly recog-
nized. The study also calls attention to the choice of timber as an advisable material for footbridges.
This is not only because of environmentally friendly and aesthetic reasons, but also due to providing
highly satisfying vibration comfort for pedestrians.

Keywords: footbridges; dynamic behaviour; glued-laminated wood

1. Introduction

One of the basic scientific problems of contemporary bridge engineering, in relation to
pedestrian footbridges, is dynamic sensitivity. Modern footbridges are more sensitive to
vibrations. This is caused by technologically advanced materials used for their construc-
tion, which have better strength parameters compared to those used before, along with a
tendency for designing atypical and original structures. Landmark structures should be
attractive in terms of an interesting architectural shape, which quite often contradicts the
classic principles of designing footbridges. Apart from the progress in material technology,
a factor which makes it possible to meet engineering challenges is the development of com-
puter software, which solves complex design problems. A consequence of the mentioned
factors is the greater sensitivity of modern structures to dynamic loads [1-9].

Nowadays, many different structural materials are used to construct footbridges—
mainly steel and concrete [10-12]. Wood [13,14] is not so popular, although it can be
characterized by a lot of positive, important aspects, e.g., sustainability, ecology, or renewa-
bility. In the times of carbon footprint reduction and a green world tendency [15], wood
should be significantly considered as a suitable and modern material.

The glued-laminated wood is also friendly material to pedestrians. The structures
built with its application are generally aesthetic [13,16].

Finally, in the context of this study, a positive potential of wooden structures in terms
of dynamics should be highlighted. It is caused by the damping ratio [17], which has the
highest value among structural materials (see Section 4). This feature is very important in
relation to the dynamic behaviour of wooden footbridges.

In this paper, two glued-laminated timber pedestrian bridges built in Poland are
presented. Both footbridges are characterized by unusual structural solutions, modern
construction material, and low sensitivity to vibrations. The results of the dynamic tests
and the design aspects of both structures are further described.

Materials 2022, 15, 1529. https:/ /doi.org/10.3390/ma15041529

https:/ /www.mdpi.com/journal /materials


https://doi.org/10.3390/ma15041529
https://doi.org/10.3390/ma15041529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-8787-1121
https://doi.org/10.3390/ma15041529
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15041529?type=check_update&version=2

Materials 2022, 15, 1529

2 0f23

2. Materials and Structures

Glued-laminated wood [18] combines traditional, natural, and biologically renewable
material with the modern technology of production. The fabrication process consists of
preparing wooden boards and their permanent connection by using specialized glue. The
advantage of such technology is that there is no limit in the length or height of the wooden
girders, and no deformation of the timber beams due to rheological processes. Such wooden
girders are also better protected against biological corrosion thanks to deep impregnation
of the boards.

The prefabrication of glued-laminated wooden girders and the footbridge deck during
construction are presented in Figure 1. The photo was taken in the woodworking company
in Germany during the deck’s pre-assembly. The footbridge with detailed innovative
structural solutions is described in Section 2.1.

Figure 1. Environmental-friendly glued-laminated wood used for construction of the footbridge’s
main girders and the deck (Photo credit: Schmees & Liihn Holz- und Stahlingenieurbau GmbH & Co.
KG and Mosty-Wroctaw Design & Research Office).

2.1. Cable-Stayed Structure

The footbridge [19,20] was built over the Dunajec River in a mountain resort of the
Pieniny National Park and connects two countries, Poland and Slovakia. The structure
has significant influence on this attractive border region through the development and
improvement of the tourist infrastructure. The ambition was to create a footbridge as a
landmark structure, corresponding with the surrounding landscape (Figure 2).

The footbridge was designed as a cable-stayed structure with a deck made of glued-
laminated wood. The main span is 90.0 m long, whereas the side spans are each 10.50 m
long. The total length of the structure is 149.95 m (Figure 3).

The deck of the footbridge was constructed with wood and steel elements. The width of
the deck is 2.50 m, and the total width is 3.50 m. The total height of the deck is 1.87 m. The deck
consists of two main girders made of glued-laminated wood braced by steel semi-frames and
wind bracing. The girders were designed using pinewood of GL32 class with a rectangular
cross-section of 1.60 m x 0.30 m. The total length of the wooden girders is 112.0 m. They
are protected against atmospheric and biological corrosion by additional, external wooden
layers. The deck was made of prefabricated segments 12.2 m + 5 x 15.0 m + 24.80 m long
(Figure 4). The assembling joints were constructed from steel screwed sheets and are
discussed in detail in Section 3.1.
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Figure 2. The cable-stayed footbridge in the Pieniny mountains made of glued-laminated wood.

The wooden deck is supported by five pairs of stays in a distance of 15.0 m. The stay
cable system was manufactured by Pfeifer (Figure 5). Full locked cables of J40 mm or
)28 mm were used in the main span and tensioned rods type 860 of 360 mm or J52 mm
were used for the back-stays. The pylon was constructed from steel tubes with a diameter
of 508 mm and was inclined in the direction of the main span. The height of the pylon is
26.84 m above the concrete support.
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Figure 3. Structural solutions of the footbridge in the Pieniny mountains.

Figure 4. Assembling segments of the deck during their transport on the specialized lorries from the
woodworking company in Germany to the construction site in Poland (Photos credit: Schmees &
Lithn Holz- und Stahlingenieurbau GmbH & Co. KG and Mosty-Wroctaw Design & Research Office).
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Figure 5. The stay cable system of the footbridge in the Pieniny mountains.

2.2. Beam Structure

The footbridge [21] was designed in the south-west part of the Old Town in Wroctaw
(Figure 6). The structure (Figure 7) connects the busy junction with a quiet walk area.
Heavy traffic on the streets and a lot of trees planted along the moat are characteristic for
that location. There is a promenade, where pedestrians can rest in the shadow of the trees.
Bicycle paths were designed there, along with a small square with a round flowerbed on
the moat’s bend. This green area is only about 0.5 km far from the Town Hall of Wroctaw. It
is situated in the city centre and belongs to the monumental section, so it is often visited by
both office workers and tourists. Its construction improved pedestrian traffic in this zone.
The surroundings of the footbridge and characteristics of its location are shown in Figure 6.
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Figure 6. The beam footbridge in Wroctaw made of glued-laminated wood.
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Figure 7. Structural solutions of the footbridge in Wroclaw.

Design conditions forced the footbridge to be built to about 40 m in length. Its width
has been specified to be 3.50 m. A difference in ground level between both of the moat’s
banks caused the longitudinal slope of the footbridge to be about 6%. The footbridge was

designed for pedestrians, as well as cyclists.
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The footbridge was designed as a single span beam structure with the span of 37.50 m
long (see Figure 7). The total length of the structure is 43.61 m, and the width of the
pavement on the deck is 3.50 m. The main girders were made of glued-laminated wood,
class GL32. They have variable cross-section. The height changes in a range of 0.20 m =+
2.10 m, while the width is constant at 0.30 m. Both side girders lean about 30 degrees from
the vertical. The main girders are braced by wooden crossbeams and tension rods.

The deck was designed in the form of a closed box. The deck’s elements (deck plate,
longitudinal ribs, and crossbeams) were designed to be made of plates of different thickness.
The deck pavement is made of 5.0 cm thick boards supported on six longitudinal wooden
beams of 80 mm x 80 mm cross-section.

On both sides of the moat, concrete abutments were designed. The structure is fixed to
one abutment, whereas on the opposite side it is supported on two bearings. This structural
solution caused different dimensions of both abutments (see Figure 7).

3. Results
3.1. Dynamic Analysis of the Cable-Stayed Structure
In the experiments, ten accelerometers and a laser device were used (Figure 8). It was

sufficient to register the dynamic response of the footbridge in the vertical and horizontal
directions, and then restore the modal shapes corresponding to the lowest natural frequencies.

Figure 8. Measurement devices (Bruel & Kjaer amplifiers, Noptel OY PSM200 laser device and
Endevco accelerometers).

Five measurement points were located on both wooden main beams. At each point,
one piezoelectric accelerometer of the 7752-1000 Endevco type was installed. The 3650C
PULSE system produced by Bruel & Kjaer Sound & Vibration Measurement (Virum, Den-
mark) was used to measure and analyse the vibrations (Figure 8).

One measurement point was doubled by the NOPTEL OY PSM200 laser device to
record the vibrations in displacement of the selected point of the structure. The laser device
consisted of a laser transmitter (placed on an undeformable place outside the footbridge)
and a receiver (placed on the footbridge). The location of all measurement devices is
presented in Figure 9.

OVERVIEW

15.00 15.00

a - accelerometers
L - laser device

Figure 9. Location of measurement devices.
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A three-dimensional numerical model of the footbridges was used for dynamic calcu-
lations (Figure 10). The FEM model consisted of 455 bar elements and 251 nodes. In the
case of some structural elements, an offset function was applied to model a proper location
of element nodes. The boundary conditions of the model are presented in Figure 10.

Figure 10. Numerical model of the structure.

The main verification of the deck’s dynamic properties was aimed at the determination
of the modal shapes and natural frequencies. The results of the modal analysis carried out
on the FEM model of the structure are presented in Figure 11.

Figure 11. Modal shapes: 1. £,V = 1.35 Hz (vertical), 2. f; = 1.41 Hz (horizontal), 3. f,V = 2.47 Hz
(vertical), 4. f;T = 2.89 Hz (torsional), 5. f3V = 4.18 Hz (vertical).
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The research programme consisted of normal live loads and vandal actions to the
footbridge. The normal live loads test examined the influence of various kinds of pedestrian
activity on the footbridge’s behaviour. The programme involved the group of 12 pedestrians
walking, jogging, or fast running. The live loads simulated regular pedestrian traffic on
the bridge, and the dynamic response under such conditions was measured. Vandal type
excitation consisted of synchronized walking or running and rhythmical half-crouching
at the antinodes of respective modes (according to the results of the computational modal
analysis). A metronome was used to determine the rate of crouching or path rate. The
main aim of the vandal live loads was to check the structure’s safety and behaviour in the
extreme dynamic conditions.

The values of the identified natural frequencies by using Fourier Transform were lower
than the calculated ones (see Table 1 and Figure 11). This indicates smaller stiffness of the
structure, which could result from the assembling joints in the wooden girders. The main
beam segments (Figure 4) are connected with steel plates and screws (Figure 12), as a result
of the construction technology (Figure 13). These joints probably decreased the stiffness of
the structure compared to the computational model’s stiffness. In the computations, the
main beams were reflected as continuous beams. This hypothesis has been verified below.

Table 1. Calculated and identified frequencies of the deck’s vibrations.

Results of Results of

No. Investigation f [Hz] Calculation f [Hz] Type of Vibrations
1 1.22 1.35 1st vertical bending mode
2 2.16 2.47 2nd vertical bending mode
3 3.84 4.18 3rd vertical bending mode
4 1.10 1.41 1st horizontal bending mode

Figure 12. Installation of the deck on the temporary supports and assembling joints in the wooden girders.
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Figure 13. Location of assembling joints.

The FEM model has been updated with the modified joint stiffness to verify the
theory regarding differences in frequency results. The assembling joints were defined
based on the design and technology of the deck installation. The location of assembling
joints is presented in Figure 13, whereas results of dynamic calculations conducted on the
updated model are shown in Figure 14. A greater accuracy of the updated model was
achieved in terms of all analysed modal shapes. The comparison of frequencies between the
experiment and the updated FEM model is presented in Table 2. The differences between
the in situ measurements and the calculated measurements are negligible. Moreover, a
very interesting fact was discovered regarding the direction of vibrations in connection
with changing the order of modal shapes (Table 3). In the case of the original FEM model,
the vertical mode was before the horizontal mode. In the case of the updated FEM model,
the order is consistent with the experiment—the horizontal mode is the first one, with the
lowest value of frequency.

Frequency: 1,13 (Hz) s 4 Frequency: 1,22 (Hz)

Frequency: 2,14 (Hz) > Frequency: 3,41 (Hz)

Figure 14. Results of dynamic calculations conducted on the updated model.
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Table 2. Comparison of frequencies between the experiment and the updated FEM model.

Results of Investigation Results of Calculation
No. Real Structure Updated FEM Model Type of Vibrations
f [Hz] f [Hz]
1 1.22 1.22 1st vertical bending mode
2 2.16 2.14 2nd vertical bending mode
3 3.84 3.41 3rd vertical bending mode
4 1.10 1.13 1st horizontal bending mode

Table 3. Comparison of calculation results.

No. Original FEM Model Updated FEM Model
f [Hz] Type of Vibrations f [Hz] Type of Vibrations
1 1.35 1st vertical bending mode 1.13 1st horizontal bending mode
2 1.41 1st horizontal bending mode 1.22 1st vertical bending mode

The in situ tests have proven satisfactory behaviour in the footbridge under normal
service conditions—accelerations did not exceed the admissible limits (see Table 4). The
maximum accelerations were 0.21 m/s? in walking conditions (Figure 15), 1.11 m/s? in
jogging conditions (Figure 16), and 1.38 m/s? in fast running conditions. Synchronization of
pedestrian activity caused a higher dynamic response of the structure, e.g., up to 2.20 m/s?
in synchronized walking conditions (Figure 17), 3.14 m/ s%in synchronized jogging condi-
tions (Figure 18), and 4.19 m/s? at some vandal excitations, such as half-crouching. The
comfort limit of acceleration is usually defined as 0.50 m/s? < 0.70 m/s? in the literature for
walking pedestrians [22-29]. However, for running people, whose sensitivity to vibrations
is lower, the comfort limit may be higher. According to the research of Hawryszkow, it
may be defined as 1.50 m/s? [30]. In all cases of the normal activity of pedestrians, the
comfort limit was fulfilled. In the case of vandal excitations, only the safety of the structure
should be guaranteed (the human comfort criteria may be exceeded). The damping ratio
determined by using the Logarithmic Decrement Method was above average and equals to

1.3% (Figure 19).
Accelerometer a7
I I
a,,, =017 mis?
0.1 Mm M lr]l
G 0 W
E
©
-0.1
- 2
02 ! | ‘ a i =-021m/s | ‘
0 20 40 60 80 100 120
t[s]

FFT magnitude
(] o

IS

Figure 15. Signal of vertical vibrations in the time and frequency domain registered for 12 peo-
ple walking.
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Figure 17. Signal of vertical vibrations in the time and frequency domain registered for the synchro-

nized walking of 12 people.
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Table 4. Values of extreme accelerations of the deck.

No. of v s e
Test Pedestrians amax ' [m/s*] Comfort Criteria
Walking 12 0.21 Fulfilled
Running 12 111 Fulfilled
Fast running 12 1.38 Fulfilled
Synchronized walking 12 2.20 -
Synchronized running 12 3.14 -
Synchronized half-crouching 12 4.19 -
4
2 i
Eo \VAVAVAVA'
P 5, =0.0845
2 ¢=0.0134 [|
¢ =1.3%c
4 I I I £l
25 30 35 40 45
t[s]
w T I T ]
10° F 3
E
Totp :
E 1 1 1 E|
25 30 35 40 45
t[s]

Figure 19. Determination of the damping coefficient.
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3.2. Dynamic Analysis of the Beam Structure

The measurement devices were installed in four cross-sections of the footbridge. In the
experiments, eight accelerometers of Hottinger Baldwin Messtechnik GmbH (Darmstadt,
Germany), B12/200 type were used (Figure 20). The vibrations in both directions (vertical
and horizontal) were measured. The location of the measurement devices is presented in
Figure 21.

Figure 20. Measurement devices (HBM GmbH accelerometers and amplifier).

OVERVIEW
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1 ‘ 4!
et
< al,a6(y), a2 ad,a7(y) a5,a8(y) S e\

1016 i\ 10.16————

— 11.05 347 6.99 | 10.16 : IE—

Figure 21. Location of the measurement devices.

A similar research programme was applied with the same load schemes as in the case
of the footbridge in the Pieniny mountains. Ten pedestrians took part in dynamic tests of
the footbridge in Wroctaw (Figure 22).

Figure 22. Examples of the dynamic tests carried out on the footbridge in Wroctaw (synchronized
walking and running).

A three-dimensional numerical model of the footbridge was used for dynamic calcula-

tions (Figure 23). The FEM model consisted of shell elements only, for which material and
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geometrical characteristics were defined to properly model the complicated cross-section
and unusual shape of the structure. The boundary conditions of the model are presented in
Figure 23.

Figure 23. Numerical model of the structure [31].

The results of the modal analysis carried out on the FEM model of the structure are
presented in terms of identified natural frequencies in Table 5, and in terms of modal
shapes of corresponding frequencies in Figure 24. The Fast Fourier Transform (FFT) was
used to identify frequencies. The accuracy of the model according to the first bending
mode of vibrations was high. In the case of horizontal vibrations, greater stiffness of the
structure was determined. The higher than expected differences between measured and
calculated results mainly concern the horizontal direction, and are most likely connected
with the very unusual shape of the structure and the complicated 3D shell-elements of the
FEM model. As this work mainly concerns experimental campaigns (supported by FEM
model analysis) and is focused on vertical vibrations as they are usually connected with
the comfort of pedestrians crossing the footbridge, the problem of inaccuracy in results of
natural frequencies has not been further analysed and can be part of a future study.

Table 5. Calculated and identified frequencies of the deck’s vibrations.

Results of Results of o
No. Investigation f [Hz] Calculation f [Hz] Type of Vibrations
1 2.93 2.96 1st vertical bending mode
2 7.38 9.10 2nd vertical bending mode
3 2.63 1.31 1st horizontal bending mode
4 3.23 3.51 2nd horizontal bending mode

The research programme has also proven proper behaviour of the footbridge in normal
service conditions (see Table 6). The maximum accelerations were 0.13 m/s2 in walking
conditions (Figure 25), 2.36 m/s? in jogging conditions (Figure 26), and 1.04 m/s? in fast
running conditions. Synchronization of pedestrian activity caused higher dynamic response
of the structure, e.g., up to 0.52 m/s? in synchronized walking conditions (Figure 27),
2.42 m/s? in synchronized jogging conditions (Figure 28), and 2.75 m/s? at some vandal
excitations such as half-crouching. The maximum comfort limit for vibrations was fulfilled
in the case of walking and fast running. In the case of jogging, the minimum comfort limit
was achieved (accelerations range limit: 2.20 m/s? + 3.30 m/s? according to [30]). Human
comfort was evaluated only for the normal activity of pedestrians. The damping ratio
determined by using the Logarithmic Decrement Method was high and equals to 2.3%
(Figure 29).
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Table 6. Values of extreme accelerations of the deck.
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Figure 25. Signal of vertical vibrations in the time and frequency domain registered for 10 people walking.
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nized walking of 10 people.
2
a1 = 242 M/s”| Accelerometer a2
‘ v |
2l -
1 -
%
£ 0 | v
©
A -
2C ! ! L L | ! ! ! N
0 5 10 15 |, =-2.3mis 25 30 35 40
t[s]
f=2.91Hz
0.4 =
803 =
2
=
So2f- =
£
s
w
w
041~ =
| \ \ ! \ | ! | \
1 2 3 4 5 6 7 8 9 10
f[Hz]

Figure 28. Signal of vertical vibrations in the time and frequency domain registered for the synchro-

nized running of 10 people.



Materials 2022, 15, 1529 19 of 23
05 T T T T T T m
0.25 B
-
€
£ 0
© 3,=0.148
-0.25 - ¢=0.0235 ||
¢ =2.3%c
cr
05l | I 1 I I I =l
13 14 15 16 17 18 19 20
t[s]
100 ¢
-
K4
€10 E
N [\
1072 | | | | L /’\‘ j
13 14 15 16 17 18 19 20

t[s]
Figure 29. Determination of the damping coefficient.

4. Discussion

The results of both research campaigns, conducted on glued-laminated wooden foot-
bridges, are discussed below in relation to the identified frequencies (Table 7), the dynamic
responses of the structures (Table 8,) and the damping coefficient (Table 9).

Table 7. Comparison of identified frequencies of the deck’s vibrations.

Cable-Stayed

No. Footbridge Beam Footbridge Type of Vibrations
f [Hz]
f [Hz]
1 1.22 2.93 1st vertical bending mode
2 2.16 7.38 2nd vertical bending mode
3 1.10 2.63 1st horizontal bending mode

Table 8. Comparison of extreme accelerations of the deck.

Test Cable-Stayed Footbridge Beam Footbridge

amaxV [m/s?] amaxV [m/s?]
Walking 0.21 0.13
Running 1.11 2.36
Fast running 1.38 1.04
Synchronized walking 2.20 0.52
Synchronized running 3.14 242
Synchronized half-crouching 4.19 2.75

Table 9. Values of the damping coefficient.
Damping Cable-Stayed Footbridge Beam Footbridge
Dampmg[ ;o(]efflaentc 13cqr 2.3
Logarithmic decrement
of structural damping 0.08 0.15

5s [-]

As it can be concluded from Table 7, when analysing the natural frequencies of both
structures, the beam footbridge in Wroctaw is much stiffer than the cable-stayed footbridge
in the Pieniny mountains. However, the first flexural frequency (f1Y = 2.93 Hz) is within
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the critical frequency range for running pedestrians and is undesirable. In the case of the
cable-stayed structure, the most critical frequency is connected with horizontal vibrations
(f;1=1.10 Hz).

When comparing results presented in Table 8, both footbridges are not sensitive to
vibrations induced by walking pedestrians. The low values of vertical accelerations are sim-
ilar. However, in the case of people running, the acceleration values differ significantly—for
the cable-stayed structure: amax’ = 1.11 m/s? (comfort criteria fulfilled) and for the beam
structure: amax’ = 2.36 m/s? (comfort criteria exceeded). The dynamic response of the
footbridge in Wroctaw, which is twice the size, is connected with the first flexural frequency
discussed above (2.93 Hz), which is close to the mean value of a step frequency for running
pedestrians (2.70 Hz). It can be seen that sprinting does not cause a serious dynamic
response in the case of both footbridges, which is a result of higher natural frequencies
remaining outside the critical range for fast running. As a result of pedestrians’ move-
ment synchronization, higher values of accelerations can be observed for the cable-stayed
structure, which is connected with a much larger span of the footbridge (90 m vs. 40 m
in the case of the beam footbridge), and consequently with lower stiffness and lower
vibration resistance.

The values of damping (see Table 9) are in line with the values mentioned in the
Eurocode EN 1991 [33] (in Part 14, Annex E5). The value of logarithmic decrement of
structural damping for timber bridges is defined in [33] as 0.06 = 0.12. Other materials
are characterized by much lower values of damping, e.g., for steel bridges 65 = 0.02,
and for composite and concrete bridges &s = 0.04 [33]. This means that timber is the
structural material with the highest damping among materials listed in [33], and this
positive feature makes the glued-laminated wood a very suitable option in terms of the
vibration serviceability of footbridges.

5. Conclusions

The material used in the case of both analysed structures is modern, sustainable, and
ecological. It is also user-friendly for pedestrians.

The choice of glued-laminated timber was accurate in terms of the architecture and
the final aesthetic effect.

The technology of the material production enables easy shaping of structural elements,
which is an additional positive design aspect.

Both tested footbridges differ from each other in structural systems and length of
spans, but both are characterized by sufficient dynamic properties (especially in relation to
the damping coefficient) and low sensitivity to vibrations.

High level of damping in footbridges made of glued-laminated wood is a very sig-
nificant and crucial factor when determining the proper dynamic behaviour in a resonant
zone of vibrations.

The structures discussed above are landmarks created with the application of unusual
and innovative design solutions.

It should be stressed that the footbridge in the Pieniny mountains is one of the longest
cable-stayed pedestrian bridges in the world. It is also the most recognizable Polish
footbridge, which was found as one of the twenty most interesting objects built for tourism
and recreation in Poland [34]. Until now, no claims to the dynamic behaviour have occurred,
even in very crowded conditions (Figures 30 and 31).
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Figure 30. Snapshots of the crowd moving along the footbridge in the Pieniny mountains (direction
Poland-Slovakia).

Figure 31. Very dense pedestrian traffic on the cable-stayed footbridge during the Opening Ceremony.
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