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Abstract: The number of fossil fueled power plants in electricity generation is still rising, making 
improvements to their efficiency essential. The development of new materials to withstand the 
higher service temperatures and pressures of newer, more efficient power plants is greatly aided by 
physics-based models, which can simulate the microstructural processes leading to their eventual 
failure. In this work, such a model is developed from classical nucleation theory and diffusion 
driven growth from vacancy condensation. This model predicts the shape and distribution of cavi-
ties which nucleate almost exclusively at grain boundaries during high temperature creep. Cavity 
radii, number density and phase fraction are validated quantitively against specimens of nickel-
based alloys (617 and 625) tested at 700 °C and stresses between 160 and 185 MPa. The model’s 
results agree well with the experimental results. However, they fail to represent the complex inter-
linking of cavities which occurs in tertiary creep. 
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1. Introduction 
Nickel-based superalloys are the current paragons of creep resistant metals. They are 

known for their great strength and toughness plus excellent creep and corrosion re-
sistance. They have been used predominantly in turbine engines during the past century 
[1]. Newly developed, advanced supercritical thermal power generation facilities [2] are 
in need of materials to cope with their high operating temperatures of up to 700 °C and 
pressures up to 350 Bar. Here, nickel-based superalloys are being employed as tubing, 
heat exchangers and fasteners due to their exceptional microstructural stability at high 
temperatures. These applications demand long component lifetimes and high safety fac-
tors, but the demands made on them for component thickness and weight are fortunately 
less stringent than those for aviation. 

These creep conditions, characterized by low stresses at moderately high homolo-
gous temperatures and long creep times lead to diffusion creep [3], which is dominated 
by the diffusion of vacancies and most commonly leads to intergranular fracture [4,5]. In 
some cases, single crystals [6] are produced to mitigate this issue, although this is not 
feasible for large components. 

A physically based model explaining how diffusion leads to intergranular failure 
would be a great help in predicting the lifetimes of materials under these conditions and 
ensuring safety in their future use. Intergranular fracture has long been explained by the 
nucleation of cavities on the grain boundary [7], which then coalesce to form large cracks 
[8]. The exact mechanisms of cavity nucleation, however, are still not clear [9]. Needham 
et al. [10] found that the nucleation rate of cavities is proportional to the strain rate, a 
relation which is accepted to this day [11]. Grain boundary sliding, most recently devel-
oped by He and Sandström [12–14], demonstrates this expected relation. 
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We propose a model based on classical nucleation theory [15], which was first used 
by Raj and Ashby [16] and which has been improved with recent new developments by 
Fernandez-Caballero and Cocks [17] to model the nucleation of nanosized cavities at grain 
boundaries. The growth of these cavities is then described by diffusion-controlled growth 
[18], which is similar to equations previously derived by Hull and Rimmer [19]. The sim-
ultaneous nucleation of new cavities and growth of existing cavities are simulated in a 
Kampmann–Wagner framework [20]. Elements of our model have been used in previous 
research with more [21,22] or less [23] success. An understanding of the material proper-
ties affecting the nucleation and growth of pores will help in the development of superior 
materials. Appropriately defined critical conditions at which tertiary creep, and shortly 
thereafter, failure, are expected to occur will lead to better predictions of components’ 
creep lifetimes. 

2. Materials and Methods 
2.1. Materials 

Two nickel-based alloys, Inconel® Alloy 617 and Inconel® Alloy 625 were chosen for 
creep testing. Their nominal chemical composition, as defined in Ref [24,25], can be seen 
in Table 1. The high chromium content provides the excellent oxidation and hot corrosion 
resistance and the molybdenum in solid solution increases strength. In Alloy 617, addi-
tional cobalt also increases strength while the aluminum added combines with nickel to 
make spherical γ’ precipitates in the matrix. Alloy 625 is designed to have strong and 
stable microstructure without γ’ precipitates, instead using niobium as a solid solution 
strengthener [26]. Alloy 625 was solution-treated at 1200 °C for 12 h and quenched in wa-
ter. 

Table 1. Chemical compositions of the two nickel-based alloys in wt%. 

Alloys Ni Cr Mo Co Al Nb Fe Mn Cu Ti Si C S P B 
Alloy 617 Bal 21.94 8.64 11.68 1.16  1.02 0.04 0.03 0.39 0.08 0.06 <0.002 <0.002 0.002 
Alloy 625 Bal 20.82 8.34 0.005 0.11 3.40 3.29 0.18 0.22 0.12 0.26 0.02 0.014 0.009  

2.2. Creep Testing 
The creep specimens were machined according to DIN 50,125 Type B 14 × 70 and 

were loaded at a constant stress and constant temperature of 700 °C until failure according 
to DIN EN ISO 204. The temperature was selected to represent the service conditions in 
advanced ultra-super-critical (A-USC) powerplants [2] using nickel-based superalloys 
and the stress was chosen to induce moderate creep times between 5000 and 20,000 h. 
Creep conditions and time to rupture of the specimens are shown in Table 2 and Figure 1, 
and they show ordinary scatter for creep experiments [27] and a non-monotonic relation 
between stress and creep time. 

Table 2. Creep test parameters. 

Specimen 
ID Material 

Temperature 
(°C) 

Stress 
(MPa) 

Time to Rupture 
(h) 

Neck Diameter 
(mm) 

31 Alloy 617 700 185 7558 9.00 
32 Alloy 617 700 175 19,656 9.25 
33 Alloy 617 700 170 11,577 9.39 
71 Alloy 625 700 165 12,317 9.53 
72 Alloy 625 700 168 12,990 9.45 
73 Alloy 625 700 163 14,940 9.59 
74 Alloy 625 700 182 6600 9.07 
75 Alloy 625 700 183 5652 9.05 
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Figure 1. Time to rupture vs. stress for the specimens in this study. 

2.3. Density Measurements 
Small sections of the specimens’ shafts near the fracture surface were cut off and 

weighed in ethanol and in air using a Radwag PS210.X2 Precision (Radwag, Radom, Po-
land) balance and density determination kit (Radwag, Radom, Poland) to determine their 
density. Three density measurements were averaged per sample. 

2.4. Secondary Electron Microscopy 
To investigate the microstructural damage, the shafts of the specimens were longitu-

dinally cut in half. These specimens were embedded in Struers Polyfast (Struers Inc, 
Cleveland, OH, USA) and ground and polished, at first with Silicon carbide paper, then 
with diamond polishing paste (9 μ,1 μ) and finally with an OPS solution at a low force for 
several minutes. The specimens were examined by a Zeiss Ultra 55 (Carl Zeiss AG, Ober-
kochen, Germany) and a Tescan Mira3 FEG (TESCAN ORSAY HOLDING, Brno, Czech 
Republic) scanning electron microscope (SEM) with excitation voltages of 3 kV and 5 kV, 
respectively. The operator identified grain boundaries and captured micrographs when 
cavities were found along them. Using MATLAB’s image processing toolbox and custom 
functions, the sizes of these cavities were documented and processed. Cavities in second-
ary electron imaging appeared as dark circles with white annular highlights, caused by 
the edge effect at the steep cavity edges. Non-spherical cavities were approximated by the 
curvature of their edges. The average grain size was also determined from these micro-
graphs. 

3. Model Development 
3.1. Classical Nucleation Theory 

Classical nucleation theory (CNT) is used to calculate the base nucleation rate of cav-
ities at grain boundaries. This theory was developed in the 1920s [28] and formalized by 
subsequent authors [15,29]. It has shown great promise in modelling precipitate nuclea-
tion [30], phase transformations [31] and crystallization [32]. Raj and Ashby [16] were the 
first to apply CNT to cavity nucleation, inspiring Hirth and Nix [33] and Riedel [34] to 
further develop it in this context. In CNT, we consider the free energy change, ΔF, to nu-
cleate a spherical cluster of particles to be a function of its volume and a driving force, and 
the interfacial area between the cluster and the matrix and the interfacial energy density. 
In a first approximation of our implementation, the cluster is a cluster of vacancies, the 
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driving force is the external tensile stress, σ, and the interfacial energy density is the free 
surface energy of the bulk material, γ, giving us Equation (1) for the free energy change. Δ𝐹 = − 43 𝜋𝑟  𝜎 + 4𝜋𝑟  𝛾 (1) 

When plotted as a function of the radius, r, in Figure 2, a peak is visible at a specific 
radius that represents a barrier for nucleation. We designate these values as the critical 
radius, r*, and the critical free energy change ΔF*. Clusters smaller than the critical radius 
will shrink while supercritical clusters will grow as they both minimize their free energy. 

 
Figure 2. Free energy change vs. cavity radius. 

Upon sketching this curve and finding the maximum of Equation (1), we arrive at 
Equations (2) and (3) for the critical radius and critical free energy change, respectively. 𝑟∗ = 2𝛾𝜎  (2) 

∆𝐹∗ =  163 𝜋 𝛾𝜎  (3) 

Subcritical clusters exist in a quasi-constant equilibrium supply, as a result of thermal 
fluctuations with their prevalence defined by an Arrhenius function of their required free 
energy [28,29]. The sophistication of CNT is that the nucleation rate of stable clusters is 
dictated by the number of critical clusters, which become supercritical per unit time. The 
nucleation rate is given below in Equation (4), where Ns is the number of available nucle-
ation sites, which when multiplied with the exponential term signifies the equilibrium 
number of critical clusters, β* is the attachment frequency of vacancies to a critical cluster 
and Z is the so-called Zeldovich factor. 𝐼 = 𝑁  𝑒𝑥𝑝 − ∆𝐹∗ 𝑘𝑇  𝛽∗ 𝑍  (4) 

The vacancy attachment frequency, β*, as its names implies, expresses the rate at 
which vacancies present in the bulk attach to the critical cluster and thus, make it super-
critical. It is shown in Equation (5) to be linearly dependent on the number of atomic sites 
at the surface of a critical cluster, represented by its area, A*, over the average area of an 
atom, a2, on the relative prevalence of vacancies in these atomic sites, Xv, and on the jump 
rate of vacancies between sites, given as the quotient of the self-diffusion coefficient, D, 
and the square of the interatomic distance, a. 
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𝛽∗ =  𝐷𝑎 𝑋  𝐴∗𝑎  (5) 

The Zeldovich factor reduces the nucleation rate and accounts for thermal fluctua-
tions at clusters near the critical size, which are more likely to cause them to dissolve ra-
ther than to grow. It was derived by its namesake [35] by first considering a steady state 
distribution of clusters of all sizes with the principles of detailed balance. Assuming then, 
that supercritical clusters are removed from the system, but still using the terms for dis-
solution from the steady state led to a differential equation in terms of vacancies, n, for the 
nucleation rate. Inserting the Arrhenius relation and integrating the differential equation 
near the critical area of maximum free energy with a Taylor expansion up to the second 
order term, introduced the Zeldovich factor into the equation. More details on its deriva-
tion can be found in the original article [35] or in works by Russell [36] and Riedel [34]. Z 
is shown in Equation (6) in its general differential form and simplified with respect to a 
critical cluster. 

𝑍 = −12𝜋𝑘𝑇  𝜕 Δ𝐹𝜕𝑛 ∗ =  1𝑛∗ Δ𝐹∗3𝜋𝑘𝑇 (6) 

Inserting the terms from Equations (1)–(3), (5), and (6) into Equation (4), we arrive at 
the final nucleation rate in Equation (7) after simplifying. It is shown that the nucleation 
rate is proportional to the number of nucleation sites, the diffusion coefficient, and the 
concentration of vacancies. In most cases the exponential term has the greatest influence 
on the nucleation rate. 

𝐼 = 𝑁  𝑒𝑥𝑝 − 16𝜋𝛾  3𝜎 𝑘𝑇  𝐷𝑋 16𝜋𝛾𝑎 𝜎  𝑎64𝜋 𝑘𝑇 𝜎𝛾= 𝑁  𝑒𝑥𝑝 − 16𝜋𝛾  3𝜎 𝑘𝑇  2𝐷𝑋𝑎  𝛾𝑘𝑇 

(7) 

3.2. Heterogenous Nucleation at Grain Boundaries 
Equations (1)–(7) are valid for the general case of spherical clusters of vacancies in 

the bulk, referred to as homogenous nucleation and must be adapted to suit nucleation at 
other sites in the microstructure. 

Clusters and cavities formed on grain boundaries are not spherical but lenticular 
(lens-shaped), as seen in Figure 3. This is due to the pulling force caused by the grain 
boundary energy density, γgb, forming a dihedral angle, δ, where the cluster’s surface 
meets the grain boundary. Balancing the forces of grain boundary energy and free surface 
energy gives us Equation (8). These clusters are smaller than the spherical ones in the bulk 
even though they have the same curvature, r*, at their maximum free energy. The energy 
barrier is lower [37] due to their smaller surface area and the energy gained by dissolving 
the prior grain boundary (dashed green line in Figure 2). When nucleation occurs at sites 
such as grain boundaries, it is called heterogeneous nucleation. 𝛿 = 𝑎𝑐𝑜𝑠 𝛾2 𝛾  (8) 
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Figure 3. Schematic shape of a cavity at a grain boundary (green line). 

Diffusion at the grain boundaries, which is several orders of magnitude greater than 
the diffusion coefficient of the bulk, also promotes nucleation. Grain boundaries also ex-
perience a higher stress than the bulk, because their movement is constrained. This in-
crease was calculated by Anderson and Rice [38] for grains containing 6 square and 8 
hexagonal faces. Another important consideration is the effect of real defects (dislocations, 
faults, tilt boundaries) in the microstructure on the free energy. A theory proposed by 
Fernandez-Caballero and Cocks [17] assumes the total volume of vacancy clusters and 
defects to be constant, which then allows these defects to supply vacancies to the clusters 
and increases the final driving force, σ, by up to several gigapascals for dislocations inter-
secting a grain boundary. These modifications are shown in Equation (14). This practically 
eliminates the typically observed, high critical stress, which is normally needed for nucle-
ation to begin. 

We use a theory based on generalized broken bonds [39] to calculate the free surface 
energy density from the energy of vacancy formation, shown in Equation (15). As a result, 
it is lower than values from the literature [40], although this is expected for small clusters 
[41]. 

3.3. Cavity Growth 
Hull and Rimmer [19] pioneered the theory of the stress-directed, diffusion-con-

trolled flux of atoms away from cavities, and this has been widely accepted [34,42] even 
in contemporary literature [13]. This theory also shows surprising similarity to the SFFK 
model [18], which is based upon Onsager’s principle of maximum entropy production 
[43]. Equation (9), for the growth rate of a cavity’s radius, r, is given below and is also 
directly proportional to the self-diffusion coefficient, and the number of vacancies in the 
microstructure. The driving force for growth, σ, is reduced by the sintering stress, 2γ/r, 
which causes subcritical clusters to shrink. 𝑟 = 𝐷 𝑋  𝛺𝑘𝑇 𝑟 𝜎 − 2𝛾𝑟  (9) 

3.4. Modelling Implementation 
Preliminary calculations showed practically no homogenous nucleation in the bulk, 

which was expected and observed in the microscopy results. Therefore, we only simulate 
the nucleation and growth at grain boundaries in detail. 

After all corrections the nucleation rate used for the simulations is 

𝐼 = 𝑁  𝑒𝑥𝑝 − ∆𝐹∗  𝑘𝑇  𝐷𝑎 𝑋  𝐴∗𝑎 1𝑛∗ ∆𝐹∗3𝜋𝑘𝑇 (10) 

with 

∆𝐹∗ = 𝜋 𝛾 − 2�̅� 𝛾 + 4�̅�3𝜎  (11) 
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𝐴∗ = 16𝜋�̅� 1 − 𝛾2�̅�𝜎  (12) 

𝑛∗ = 2𝜋 𝛾 − 12�̅� 𝛾 + 16�̅�3 𝑎 𝜎  (13) 

and 𝜎 = 2.24 𝜎 + 𝜎  (14) 

�̅� = 0.328 𝑄𝑎  (15) 

The model was implemented with MathWorks’ MATLAB in a Kampmann–Wagner 
framework [20] with the parameters in Table 3. At first, the total grain boundary area 
density is calculated [44] assuming that all grains are tetrakaidekahedral and of the same 
size, with the mean grain diameter determined from the SEM images, shown in Table 7. 

At every timestep, a new class of cavities is created with a radius equal to r* from 
Equation (2). The number density of cavities in this class is the product of the nucleation 
rate, in Equation (10), and the time interval. All previously existing classes grow their 
respective cavity radii according to Equation (9). The remaining grain boundary area den-
sity, Ngb, that is available for the nucleation of new cavities in the next timestep, is calcu-
lated by subtracting the grain boundary area occupied by all existing classes from the total 
grain boundary area. These steps are repeated until the rupture time of the specimen. 

Table 3. Model parameters and constants. 

Parameter Description Value 
γ Free surface energy of Ni 1.84 J m−1 [39] 
σ Stress on specimen Variable (described in Table 2) 
Ns Nucleation sites Variable (described in Table 7) 
k Boltzmann constant 1.380649 × 10−23 J K−1 
T Temperature 973 K (700 °C) 
σD Driving force of defects 1.2 × 1010 Pa 
γgb Grain boundary energy of Ni 0.8 J m−1 [45] 
Qv Vacancy formation energy in Ni 1.7 eV [46] 
DGB Diffusion coefficient along grain boundaries of Ni 1.511 × 10−12 m2 s−1 [45] 
lp Lattice parameter of fcc nickel 0.3499 × 10−9 m [47] 
Ω Atomic volume 1.0710 × 10−29 m 
a Interatomic spacing (Ω1/3) 0.204 × 10−9 m 

4. Results 
4.1. Density 

The densities of all specimens were measured to be lower than that of their corre-
sponding references, as seen in Table 4, with a general trend toward lower densities after 
longer creep times which is consistent with continuous cavity nucleation and growth. Fig-
ure 4 shows a pronounced minimum density in specimens which ruptured after approx-
imately 10,000 h. They may have experienced more creep cavitation due to their combi-
nation of high loading and long creep time. 
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Table 4. Specimen densities. 

Specimen Time to rupture (h) Density, Mean ± SE (g/cm3) Density Decrease (%) 
Alloy 617 reference - 8.4188 ± 0.003 - 

31 7558 8.3698 ± 0.004 0.58 
32 19,656 8.2685 ± 0.007 1.79 
33 11,577 8.2271 ± 0.009 2.28 

Alloy 625 reference - 8.5607 ± 0.002 - 
71 12,317 8.5138 ± 0.001 0.55 
72 12,990 8.5251 ± 0.008 0.42 
73 14,940 8.5341 ± 0.008 0.31 
74 6600 8.5574 ± 0.003 0.04 
75 5652 8.5524 ± 0.012 0.10 

 
Figure 4. Time to rupture vs. specimen density. 

4.2. SEM 
Over 1100 images were taken from which 250 were analyzed and 814 cavities were 

measured. Table 5 shows the number of cavities measured in each specimen as well as the 
size range of cavities measured. Cavity radii were determined to be between a few na-
nometers, which represents the limit of modern secondary electron microscopy, and a few 
micrometers. Exemplarily, the simulation results will be validated against the microscopy 
results from the specimens 31, 33, and 75 considering the large number of cavities found 
in them to generate statistically valuable results. 

Table 5. Measured cavity radii by SEM. 

Specimen Number of Cavities Measured Radii Range (nm) 
31 424 69–1959 
32 3 46–121 
33 189 101–2942 
71 17 17–234 
72 18 18–682 
73 22 20–113 
74 55 3–712 
75 86 25–1603 
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In Figure 5 some cavities can be seen along the grain boundaries with their corre-
sponding measured radii overlaid. The external stress is horizontal in all images and most 
cavities were found at transverse or slightly inclined grain boundaries. Additionally, in 
most images the larger cavities have begun interconnecting to form microcracks. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. SEM images of cavities at grain boundaries in specimens 31 (a,b), 33 (c,d) and 75 (e,f). 
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4.3. Cavity Distributions and Number Densities 
Table 6 reveals the phase fraction of cavities in each specimen, which was determined 

from the density measurements, the mean volume per cavity, Vmean, and the number den-
sity of these cavities required to occupy the corresponding phase fraction. The mean vol-
ume per cavity is calculated with Equation (16) from the measured cavity radii, ri, and the 
number of cavities. Figure 6 shows the distribution of cavity radii and their number den-
sity for the selected specimens. The peaks in the histograms shift toward larger radii as 
creep times increase and cavities have more time to grow. These large cavities may be 
primarily responsible for the formation of large cracks when they coalesce during tertiary 
creep. 

𝑉 = 1𝑛 43 𝜋𝑟  (16) 

Table 6. Phase fraction, number density of cavities and mean volume per cavity. 

Specimen Phase Fraction of Cavities 
(%) 

Vmean  
(µm3) 

Number Density of Cavities 
(m−3) 

31 0.58 3.05 1.91 × 1015 
33 2.27 5.44 4.18 × 1015 
75 0.10 1.77 5.50 × 1014 

  

  
(a) (b) 

 

 

(c)  

Figure 6. Cavity radii vs. number density in specimens 31 (a), 33 (b), and 75 (c). 
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4.4. Simulation Results 
Figure 7 shows the simulated results for cavity radii for the selected creep tests. Dur-

ing the first steps of the simulation the nucleation rate is at its nominal maximum. As the 
grain boundary area is consumed by other existing growing cavities, newer cavities have 
fewer nucleation sites available, and the nucleation rate decreases. Figure 8 illustrates the 
growth of the largest cavity, which nucleates at the beginning of creep. As shown in this 
figure, the size of cavities is almost equal for all specimens, although their initial sizes are 
not identical and depend on the applied stress. The steady decrease in nucleation rates 
and the slowing of cavity growth led to an apparent accumulation of large cavities in the 
histograms. The nominal nucleation rates are listed in Table 7 along with the number of 
grain boundary nucleation sites available at the beginning of the simulation. 

  
(a) (b) 

 

 

(c)  

Figure 7. Simulated cavity radii vs. number density for the creep conditions of specimens 31 (a), 33 
(b), and 75 (c). 
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Figure 8. Simulated growth of cavity radii vs. time for the creep conditions of specimens 31, 33 and 
75. The x marks the rupture time and end of the simulation. The inset shows the early stage of 
growth on logarithmic axes. 

Table 7. Nominal nucleation rates and number of nucleation sites. 

Specimen Grain Diameter 
(m) 

Ns  
(m−3) 

Nucleation Rate 
(m−3s−1) 

31 200 × 10−6 2.65 × 1023 6.43 × 107 
33 150 × 10−6 3.53 × 1023 7.58 × 107 
75 500 × 10−6 1.06 × 1023 2.51 × 107 

5. Discussion 
The SEM images show abundant and exclusive grain boundary cavity nucleation as 

expected, in both the model and the existing literature [48]. Their sizes range from a few 
nanometers, which is also the limit modern SEM, to a few micrometers. These agree well 
with results from small angle neutron scattering [49] and microtomography and serial 
sectioning [50] on creep cavities. Most cavities appear lenticular, as in Figure 3, at all stages 
of growth until they interconnect with neighboring cavities to form long and thin mi-
crocracks. Microcracks were more prevalent in alloy 617 as well as in specimens enduring 
longer creep times. In order to compare the experimental and simulated results, it is nec-
essary to take into account the error that results from measuring the radii of cavities, 
which were cut with a plane at an arbitrary height. Figure 9 overlays the cavity size dis-
tributions from the experiment (in blue, from Figure 6) with the calculated distributions 
from Figure 7 when each cavity class is intersected by many planes at uniformly random 
heights. The simulation agrees quite well with the experiments both in terms of cavity 
radii and the populations of each size for all but the largest cavities. The largest cavities, 
which are formed by many cavities combining, cannot be represented in the simulation 
since it simulates only nucleation and growth, but not with coalescence. To model coales-
cence would require a deeper physics-based understanding of the interaction of two or 
more cavities and a suitable framework considering the locations and relative spacing be-
tween cavities on a grain boundary surface. This deficiency also explains the discrepancy 
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in the results for the density of the final specimens in Figure 10 where the model predicted 
lower cavity fractions. 

Since the coalescence of cavities is characteristic of tertiary creep, which only repre-
sents the short final stage of creep life, it may be adequate to predict creep lifetimes with 
a “critical” cavity fraction which defines the onset of tertiary creep. 

Unfortunately, no detailed strain rate data was recorded for these specimens, making 
it impossible to contrast these results with other models. Existing empirical or semi-phys-
ical models for cavity nucleation predict a linear relation between strain rate and cavity 
nucleation rate. Grain boundary sliding is one model attributing the nucleation of small 
cavities to the relative motion of grains [14]. Dislocation pile-ups have also been proposed 
to nucleate cavities at grain boundaries [9]. While recent advances in calculating creep 
curves by modelling dislocations are promising [51], dislocation creep plays only a minor 
role in the long term creep of power plant components. It is more reasonable to model 
cavity nucleation and growth by diffusion where diffusional creep is the dominant defor-
mation mechanism. 

  
(a) (b) 

 

 

(c)  

Figure 9. Cavity radii vs. number density of the simulations (red) and experimental (blue) results 
for specimens 31 (a), 33 (b), and 75 (c). 
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Figure 10. Comparison of cavity fraction vs. time between the simulation (◯) and experiments (❌). 

6. Conclusions 
This study presents a model based on classical nucleation theory, incorporating cor-

rections and improvements, and existing growth models to simulate the complex pro-
cesses of cavity nucleation and growth in nickel-based alloys during creep. The model 
was validated by using specimens crept for up to 15,000 h. 

The experimental results show cavities at grain boundaries, measured to have radii 
up to a few micrometers, several of which have interlinked to form cracks in the specimens 
subjected to longer creep tests. These cavities grow in size and number as creep lifetimes 
increase. 

The model correctly predicts the shapes and relative prevalence of these cavities at 
the grain boundaries qualitatively, and also the sizes and number densities of the cavities, 
quantitively. The complex interlinking of cavities in specimens is not simulated and pre-
sents the final challenge for this model to predict failure during creep. As such, the final 
phase fraction of cavities is in better agreement with the specimens exhibiting less cavity 
interlinking and shorter creep times. 

This physics-based modeling will allow the development of new materials with im-
proved creep cavitation resistance and better assessment of creep lifetimes. 
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