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Abstract: This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous
(NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The prepara-
tion of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at
550 ◦C for 1 h. The Cu/CuO surface consists of island-like structures, with an inter-distance of 100 nm.
Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction
(XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm.
The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving
an incident to photon conversion efficiency (IPCE) of 14.6%. Further, the effects of light intensity
and wavelength on the photoelectrode performance were assessed. The current density (Jph) value
increased from 2.17 to 4.7 mA·cm−2 upon raising the light power density from 50 to 100 mW·cm−2.
Moreover, the enthalpy (∆H*) and entropy (∆S*) values of Cu/CuO electrode were determined as
9.519 KJ mol−1 and 180.4 JK−1·mol−1, respectively. The results obtained in the present study are very
promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.

Keywords: hydrogen generation; sewage water; photocatalyst; water spiting; CuO; nonporous

1. Introduction

Photocatalytic materials represent an important class of components for potential
applications in renewable-energy-related fields such as solar cells, optoelectronic, and
photocatalytic H2 production [1–4]. On the one hand, the production of H2 gas from
sewage water is a very promising field of renewable energy. This process provides H2 gas
fuel for different uses of normal life such as cooking and warming, especially in remote
regions inside deserts or rural areas. Moreover, this H2 gas is used as a fuel for airplanes
and aircrafts, in addition to its normal utilization in industrial factories and companies. On
the other hand, this photocatalytic reaction removes contamination (sewage water) through
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conversion into fuel. In addition, the H2 fuel is clean energy; its combustion has no side
effects. The dependence of the world on this clean energy reduces the use of fossil fuels
with their harmful produced gases such as CO2, NOx, and SOx [5–7].

The photocatalysts applied for H2 generation reaction must be semiconducting ma-
terials such as metal oxides, sulfides, nitrides, or organic [8,9]. Metal oxides have many
benefits that qualified them to be ideal photocatalytic materials for H2 production such as
low cost, stability, and easy preparation [10,11]. There are some methods for enhancing
the photocatalytic activity such as increasing the surface area (nanofibers, nanowires, and
nanotubes) [12–14]. Another way to enhance the photocatalytic activity is through the use
of plasmonic materials [15,16], or materials with high thermal capacity such as Cu metal.
These materials are effective for light capture and cause electron localization phenomena
extended over the composite semiconductor materials, after which the neighbor materials
use these phenomena for the H2 production process [17]. Previous studies examined the
effect of Cu as a plasmonic material in Cu/ZnO for light capture and enhancement of the
photocatalytic properties of ZnO [18].

CuO and Cu2O are promising materials for renewable energy applications, owing to
their bandgap values of 0.7–1.6 eV and 2.0–2.2 eV for CuO and Cu2O, respectively [19,20].
These low bandgap values enable these materials to absorb most of the sunlight, which is
preferable to large bandgap semiconductors that can absorb 10% to 20% of sunlight [21].
Moreover, the lower bandgap and high absorption efficiency of CuO favor its application
(compared with Cu2O) in the renewable energy field [22].

In 2014, Li et al. managed to synthesize a nanoporous CuO layer onto Cu foil through
the annealing of Cu (OH)2 nanowires at 500 ◦C under an oxygen flow. A thick Cu2O
interlayer was also formed; this annealing process formed under high oxygen pressure,
which is higher than CuO dissociation pressure, so the CuO layer formed at the outer
surface of the structure. The Cu/Cu2O/CuO structure is used as an electrode for glucose
sensing. Sagadevan et al. prepared CuO nanoparticles via the combustion technique
for various annealing temperatures (100 ◦C and 300 ◦C), with ascorbic acid used as a
capping agent [23]. Ragupathi et al. prepared CuO/g-C3N4 for a water-splitting reaction,
but the produced current density (Jph) and the incident photon to current conversion
efficiency (IPCE) were very small [24]. Quyen et al. studied the effect of Cu on TiO2 for the
photocatalytic water splitting reaction and determined that Cu nanoparticles increased the
photocatalytic effect very much and increased the rate of H2 generation, which resulted
from increasing oxygen vacancies in TiO2 and the charge transfer process [24]. Shen et al.
prepared graphite carbon nitride and decorated this material with CuO for photocatalyst
application, and studied the effect of CuO for increasing the efficiency of the catalytic
reaction and H2 generation, but the rate of H2 generation was small [25].

Most of the previous studies on CuO relied on the use of an additional sacrificing agent
such as Na2SO3, Na2S2O3, HCl, and NaOH [26–28]. Moreover, the H2 rate production was
limited [29–32]. Various fabrication methods of CuO have been reported such as physical
sputtering, atomic layer deposition, spray pyrolysis, radiofrequency sputtering, and so
on. However, these techniques have drawbacks of high-cost, long fabrication time, and
complex fabrication processes [33,34].

This study provides the H2 gas fuel from the contamination (sewage water) without
using any additional electrolyte. The catalytic electrode is prepared with a low-cost com-
bustion method without using any complex techniques. The prepared electrode has a high
Jph in comparison with the previous literature. The produced efficiency is promising for
application of this electrode in H2 generation from sewage water in industrial applications.

In this study, Cu/CuO photocathode, prepared by an oxidation/combustion process,
was evaluated for H2 production from a sewage water-splitting reaction without using any
sacrificing agent. The influence of various factors such as light intensity and wavelength,
temperature, and on/off chopped current was assessed on the photocathode performance.
Finally, IPCE was estimated under different monowavelength light, and the mechanism for
the sewage water splitting reaction was examined.
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2. Materials and Methods
2.1. Cu/CuO Nanomaterial Preparation

Prior to sample preparation, the Cu foil was cleaned using water, soap, acetone, and
ethanol under ultrasonication for 10 min each. The preparation of Cu/CuO was carried
out through oxidation combustion of copper foil (99.9%, thickness 0.3 mm) in Nabertherm
box furnace (Nitrex Metal Inc., St-Laurent, QC, Canada) at 550 ◦C for 1 h. Through this
combustion process, the Cu metal is oxidized to generate CuO NP material. Then 1 cm2 of
the Cu/CuO was used as electrode for hydrogen generation under wastewater splitting
reaction through electrochemical measurements.

2.2. Characterization

X-ray diffraction pattern (XRD, Malvern Panalytical Ltd., Malvern, UK) analyses
were carried out using a Bruker D8 advance diffractometer using Cu Kα radiation (wave-
length = 0.15418 nm). Field-emission scanning electron microscopy (FE-SEM, Hitachi,
S-4800, Schaumburg, IL, USA) was used to assess the morphology. The energy dispersive
X-ray analysis (EDAX, Hitachi, Schaumburg, IL, USA) elemental composition and elemen-
tal mapping were examined using the EDAX unit attached to the FE-SEM. The optical
properties were examined using a double beam spectrophotometer (Perkin Elmer Lamba
950, Shelton, CT, USA).

2.3. Electrochemical Measurements

The H2 generation reaction was carried out from sewage water solution (100 mL,
pH 5.5) using a three-electrode cell, in which Cu/CuO nanomaterial (1cm2), a graphite
sheet of the same dimensions, and calomel act as working, counter, and reference electrodes,
respectively, as shown in Figure 1. All measurements were carried out using a workstation
(CHI660E, Tennison Hill Drive, Austin, TX, USA) in a potential range from −1 to 1 V,
a xenon lamp acts as a solar simulator. Some parameters were studied such as the light
intensity (25 to 100 mW·cm−2), light wavelength (390 to 636 nm), on/off chopped current,
and temperature on the electrode performance.
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Figure 1. Schematic diagram for photoelectrochemical H2 generation process from sewage water.

The sewage water was obtained from the drinking water and sanitation of Beni Suef city,
Egypt, and the construction was confirmed using gas chromatography–mass spectrometry.

3. Results and Discussion
Morphological, Structural, and Optical Properties

The morphology of the CuO NP, prepared from Cu metal using a simple combustion
process in air at 550 ◦C for 1 h, is displayed in Figure 2a,b. The CuO NP substrate consists
of island-like structures with an inter-distance of 100 nm. Each island is highly porous with
a pore diameter of about 250 nm. The formation of these pores with high homogeneous
distribution on the CuO surface enlarges the surface area. This feature is beneficial for the
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photocatalytic process through high light absorption efficiency, in which the porous surface
acts as a cave for light absorption [7,12].
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Figure 2c shows the XRD pattern of the Cu/CuO sample showing the two characteristic
peaks of CuO at around 35.6◦ and 38.5◦ (JCPDS #41–0254), indicating that CuO NP were
formed on the copper foil [35–37]. The other three strong diffraction peaks at 43.5◦, 50.7◦,
and 74.5◦ correspond to the (111), (200), and (220) reflections, respectively, of the face-
centered-cubic Cu (JCPDS #02–1225) [36,38]. The crystal size of the CuO nanomaterials is
calculated using the Scherrer equation [39–41], Equation (1):

D = 0.94λ/ss cos θ (1)

where ß is the full width at half maximum (), λ is the X-ray wavelength (CuKα = 0.154 nm),
and θ is the Bragg’s angle [42]. From the equation, the average crystal size of CuO is about
89 nm.

The EDAX spectrum (Figure 2d) and EDAX mapping images (Figure 2e) confirm the
formation of the CuO NP material where Cu and O peaks are obviously present. The Cu
and O elements are homogeneously distributed over the whole examined area.

The optical diffuse reflectance of the CuO NP was determined using a double beam
spectrophotometer, as shown in Figure 2f. It is evident that the prepared CuO NP has a
high light absorption behavior in a wide optical range (Vis and near IR). This is related
to the low reflectance behavior of CuO NP in these regions. The bandgap is calculated
using the Kubelka–Munk equation (Equation (2)) [12], as shown in the insert of Figure 2f,
where K is the molar absorption coefficient, and S is the scattering factor. From Equation (2),
a bandgap of 1.38 eV was determined for the CuO thin film, which is in good agreement
with a recent research study [43].

K/S =
(1 − R)2

2R
(2)

The cross section and roughness is estimated using the modeling program (Image J) as
shown in Figure 2g,h. From this figure, the surface roughness appears well with a surface
area of 235 µm2 in 38 µm2.

The photoelectrochemical (PEC) activity of the Cu/CuO photoelectrode was assessed
in sewage water (chemical composition in Table 1) at room temperature (25 ◦C) with
a sweep rate of 1 mV/s under xenon lamp illumination. The PEC measurements were
performed in dark and light without optical filters, as shown in Figure 3a. The broad surface
area of the prepared nanotextured electrode generates a high density of electron-hole pairs
when exposed to light, leading to the splitting of H2O molecules to conduct the hydrogen
electro-generation reaction. The effect of light on the Cu/CuO photoelectrode generate
Jph values of −0.07 and 4.7 mA·cm−2 at 0 and 1 V, respectively (Figure 3a), although the
density of the dark current is very small for the electrode and can be ignored. Therefore,
from the Jph values, the Cu/CuO with the lowest photogeneration voltage (0.56 V) is a
highly efficient electrode for water splitting and H2 gas generation.

The substrate Cu metal contributes to a high density of pairs of electrons formed. This
will motivate H2O molecules to be broken to produce hydrogen when it reaches the CuO
surface. The spectral overlap between CuO absorbance oscillator frequencies and the Cu
metal oscillator frequency improves the produced photocurrent.

The stability (time-Jph relation) of the prepared Cu/CuO photoelectrode was studied
as presented in Figure 3b. At +0.1 V, the produced Jph value under on and off chopped light
is mentioned. From the figure, the electrode has high stability and sensitivity to light. From
the magnified part in Figure 3c, the change in the Jph values under on and off chopped
light appears well. This confirms the high sensitivity of the electrode to light due to the
high effect of the light on the electrode. The reproducibility of the electrode for four runs is
shown in Figure 3d, in which the voltage–current relation shows the same behavior until
four runs. This reproducibility was carried out at 30 ◦C and in normal light. The standard
deviation (SD) value for the Cu/CuO photoelectrode is 0.3%.
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Table 1. The sewerage water chemical composition used as the electrolyte for H2 production.

Material or Element Concentration (mg/L)

Phenols 0.015

F− 1.0

Al3+ 3.0

NH3 5.0

Hg2+ 0.005

Pb2+ 0.5

Cd3+ 0.05

As3+ 0.05

Cr3+ 1.0

Cu2+ 1.5

Ni3+ 0.1

Fe3+ 1.5

Mn2+ 1.0

Zn2+ 5.0

Ag+ 0.1

Ba3+ 2.0

Co2+ 2.0

Other cations 0.1

Pesticides 0.2

CN−1 0.1

Industrial washing 0.5

Coli groups 4000/100 cm3

The effect of light intensity (50 to 100 mW·cm−2) on the Cu/CuO photoelectrode is
mentioned in Figure 4a,b. This effect appears clearly, in which the Jph values increase from
2.17 to 4.7 mA·cm−2, directly with the light intensity until 100 mW·cm−2. This increase
is related to the electron–hole pair formation under the increasing light intensity [44], in
which many photons activate the active sites on the photocatalytic materials [45]. The
Jph represents the electrons collected on the surface of the photoelectrode; this Jph then
represented the water splitting and H2 generation rate [46,47].

The number of photons (N) is directly proportional to the light intensity (P) as shown
in Equation (3). This equation depends on other factors such as wavelength (λ), Planck
constant (h), and light velocity (c). From this equation, the N per second is changed from
4 × 1021 to 8 × 1021 photon/s under light intensity from 50 to 100, mW·cm−2, respectively.

N = λP/hc (3)

The effect of the light monowavelength (390 to 636 nm) on the produced Jph for
Cu/CuO electrodes is presented in Figure 5a. From this figure, the Jph has varied values
under the monochromatic light effect. The optimum Jph value is 4.6 mA·cm−2 at 390 nm, in
which these values correspond to the optical analyses data (Figure 3). The inset figure in
Figure 6a shows this relation clearly.
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The incident photon to current conversion efficiency (IPCE) represents the electrons
collected on the surface of the photocatalytic materials under the photon flux (Figure 5b).
This IPCE value can be calculated from the wavelength values [48], through Equation (4).

IPCE =
Jph
(
mA·cm−2)·1240 (V·nm)

P(mW·cm−2)·λ(nm)
(4)

The IPCE is determined at 100 mW·cm−2 for the photoelectrode Cu/CuO and pre-
sented in Figure 5b. The IPCE values very much depend on monochromatic light, in which
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the optimum IPCE value is 14.6% at 390 nm. The IPCE values decrease with increasing
wavelengths. Therefore, the photocatalytic electrode has the ability for sewage water split-
ting and H2 generation with 14.6% efficiency. This high value was produced without using
any additional electrolyte and infers that the electrode converts the sewage water into H2
and O2 with high efficiency in comparison with other previous literature [29,49–53].
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There is an inverse relationship between the number of photons and IPCE. The op-
timum values occur at low wavelengths, in which the light has a high frequency for
transferring most electrons to the conducting band, so the Jph value increases, and thereby
the H2 production increases [54].

The water splitting reaction for the H2 generation process using the Cu/CuO photo-
electrode under different temperatures is mentioned in Figure 6a. The Jph values increase
from 4.7 to 8.8 mA·cm−2 with increasing the temperature from 30 to 60 ◦C, respectively.
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This increasing behavior of the Jph indicates the high mobility of the sewage water ions
with increasing temperature, in which the high ionic mobility facilitates the H2 and O2
generation in both sides of the electrochemical cell. So increasing the Jph values with the
temperature indicates an increase in the H2 generation rate [55,56].

The activation energy (Ea) for the H2 generation can be calculated under different
temperatures using the Arrhenius equation (Equation (5)) [57]. This Ea depends on the
rate of collisions (k is the rate constant) and temperature values in Kelvin (T) using the
universal gas constant (R) and Arrhenius constant (A) as the standard constant. From the
Ea value, the initiator temperature for starting the splitting reaction is determined [58–60].
Ea values are obtained from slope of ln Jph versus 1/T as shown in Figure 6c. The Ea value
is 11.8 KJ mol−1 for the electrode. The small value of the water splitting reaction indicates
the splitting occurs easily for the H2 and O2 evolution [61].

For calculating the enthalpy (∆H*) and entropy (∆S*), Equation (6) is applied (Eyring
equation) [62,63]. This equation is similar to the Arrhenius equation, but it contains
additional parameters and uses additional constants, in which kB is the Boltzman constant
and h is the Planck constant. By applying this equation for the sewage splitting reaction
of the Cu/CuO photoelectrode, ∆H* and ∆S* values are obtained as 9.519 kJ mol−1 and
180.4 JK−1·mol−1, respectively (Figure 6c).

Moreover, the H2 moles are calculated from the Faraday equation, Equation (7) [64,65],
under time change (dt), using the Faraday constant (F). The estimated H2 mole for the
Cu/CuO photoelectrode is 60µmol h−1 cm−2. In addition, a comparison between the
present study and the previously reported literature is added in Table 2.

k = Ae−Ea/RT (5)

k = T·kB
h
·e∆S/R·e−∆H/RT (6)

H2 mole =
∫ t

0
Jph·dt/F (7)

The mechanism of the CuO photocatalytic materials for the sewage water-splitting
reaction is based on the effect of incident light on the motivation of the photoelectrons
from the CuO NP material that resulted from the energy band changes (Figure 7). The
photoelectrons generated under the effect of light incidence have two steps. First, electron-
hole generation, in which the generated electrons leave the holes and transfer to the upper
level. The second step is the localized surface plasmonic resonance (LSPR); this resonance
process causes the energy transfer [66]. These two steps occurred easily due to the small
CuO band gap of 1.39 eV in addition to the absence of depletion regions inside the Cu
and CuO nanomaterials. Therefore, the results are the transfer of electrons from the Cu
to CuO without any restrictions, and the continuous electrons flow is carried out without
any restrictions [67]. These hot electrons cause the generation of Jph under the applied
potential [68–70]. The experimental image of electrons transfer processes is represented
in the optical analyses (Figure 3) and the electrochemical measurements under various
effects such as light intensity and light wavelengths. The Cu metal substrate has plasmonic
properties that cause the light capture and electron resonance process [52] that motivates
the CuO nanomaterials and generates electrons over their surface [71–73]. These electrons
are represented in Jph values and the H2 generation reaction rate [74,75].
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Table 2. Comparison between the present study and the previous reported literature; electrolyte
used, Jph, and IPCE values.

Photoelectrode Electrolyte
Jph

(mA/cm2)
Applied

Voltage (V)
IPCE%

(390 nm) Light Source

g-C3N4-CuO [23] NaOH 0.01 1.6 - 300 W xenon lamp

CuO-C/TiO2 [76] glycerol 0.001 −0.5 - 300 W xenon lamp

CuO nanowire [77] Na2SO4 1.5 −0.5 - simulated AM1.5 illumination

CuO nanostructure [78] KOH 1 −1.2 - White light

CuO thin films [79] Na2SO4 2.5 0 3.1 Solar simulator 1.5 global (AM 1.5G)

CuO nanocrystals [80] Na2SO4 1.1 −0.5 8.7 Xenon lamp light

TiO2/CdS/PbS [81] Na2S/Na2S2O3 2 0.2 4 AM 1.5G illumination

GaN [82] HBr 0.6 +1 8 Sunlight

ZnO/TiO2/FeOOH [83] Na2S2O3 1.59 0.8 - A 150 W xenon lamp

SnO2/TiO2 [84] Na2S2O3 0.4 0.6 - 1 Sun (100 mW cm−2)

Au/PbS/Ro-GO/PANI [85] Na2S2O3 1.1 +1 10 400 W xenon lamp

TiN-TiO2 [86] NaOH 3.0 × 10−4 0.2 0.03 Solar simulator (150 mW cm−2)

BiFeO3 [29] NaOH 0.1 1.6 0.21 1 sun (AM 1.5G solar spectrum)

ITO/VO2 [50] Na2S2O3 1.5 +1 4 400 W metal halid

PrFeO [49] Na2SO4 0.130 −0.6 - Simulated sunlight

Poly(3-aminobenzoic acid)
frame [53] H2SO4 1.2 1.6 - 150 W xenon lamp

Cu/CuO (Present work) Sewage water 4.7 +1 14.6 Simulated sunlight

4. Conclusions

This work provides promising results in support of H2 production from sewage water
using a CuO NP photoelectrode. All the analyses were carried out for confirming the
chemical structure, morphology, and optical properties of the prepared CuO NP. From
the SEM, the prepared materials have nanoporous features that look like small islands
with diameters of about 300–400 nm, with each island composed of a package of small
nanoporous particles. XRD confirmed the monoclinic CuO crystalline phase with crystallite
size of 89 nm. The obtained optical band gap value for CuO NP was 1.39 eV. The sewage
water was used as a source of H2 gas produced by the Cu/CuO photoelectrode. The Jph

value was changed from 2.17 to 4.7 mA·cm−2 upon increasing the light power density from
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50 to 100 mW·cm−2, respectively. The IPCE was changed under the effect of monochromatic
light, in which the optimum IPCE value was 14.6% at 390 nm. Moreover, the effect of on
and off chopped current was studied that confirms the motivation of the photocatalyst
under light incidence. The sewage water splitting thermodynamics were studied, in which
the enthalpy (∆H*) and entropy (∆S*) values for the Cu/CuO electrode were 9.519 kJ·mol−1

and 180.4 JK−1·mol−1, respectively. A mechanism was proposed to explain the relationship
between the incidence light and the Jph values of the H2 generation rate.
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